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Séminaire BOURBAKI

19e annee, 1966/67, n°319 Fevrier 1967

HYPERBOLIC DIFFERENTIAL EQUATIONS

AND ALGEBRAIC GEOMETRY (AFTER PETROWSKY)

by Michael F. ATIYAH

Introduction

Some twenty years ago Petrowsky ~4~ wrote a long and very interesting

paper concerned with the support of the fundamental solution of hyperbolic

equations. A substantial part of this paper was in fact concerned with some

theorems on the topology of algebraic varieties, and to prove these Petrowsky

based himself on the work of Lefschetz. The arguments were highly geometrical

and involved a lot of intuitive topology which is not always easy to follow.

In the intervening twenty years algebraic geometry has progressed

considerably and it has developed algebraic machinery to replace the older

geometrical reasoning. It seems therefore reasonable that one should look

again at Petrowsky’s paper and try to prove his results by more modern

methods. Leray and Garding took some steps in this direction and last year

Garding drew the attention of Bott and myself to Petrowsky’s paper. As a

result of our joint efforts a modern version of Petrowsky’s work is emerging,

and it is this that I propose to report on here. I should say that a number

of alternative approaches seem to be possible but the one I will present seems

to be as simple as any.
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§ 1. The Theorems of Petrowsky

Let a(~.,..., § ) be a homogeneous polynomial of degree m with real

coefficients. We say that a is hyperbolic with respect if, for

every non-zero real vector (03BE2,...,03BEn), the equation in 03BE1

has m real distinct roots. Note that this is an "open condition" so that

the set of hyperbolic polynomials of degree m is open in the vector space of

all homogeneous polynomials of degree m. We shall be interested in the

fundamental solution E(xl,..., xn) of the corresponding differential operator

a(-a ,..., a -), i.e. E is a distribution satisfying
x1 n

where 6 is the Dirac delta function. One can show (uniqueness of Cauchy

problem) that there is a unique E with support in the half-space x~ ’ 0,

and we shall be concerned only with this E. ’When we want to exhibit its

dependbnce on a we write Ea.
The classical example is of course given by

and (1.2) now defines the fundamental solution of the wave equation. In this

case the support of E is contained in the cone

but there is a difference between n odd and n even. If n is odd supp.E

is the whole solid cone (1.3) while if n is even (and > 2) supp.E is just



the boundary of (1.3), namely

In the first case (n odd) one says that diffusion occurs. In the second

case there is no diffusion and the interior of (1.3) is called a lacuna of E.

These phenomena have well-known physical interpretations.

Petrowsky’s programme was to investigate the existence of lacunas for

general hyperbolic equations. Now the condition of hyperbolicity is easily

seen to imply that (1.1) defines a non-singular hypersurface A 
R 

in Pn-1(IR).
The hyperplanes Ex. S. = 0 which are tangential to A define a duali=1  ~ R 

hypersurface with equation say

b(xl,..., xn) = 0 (1.5).

It so happens that for the wave equation the polynomials a and b are of

the same form but this is fortuitous and in general one must distinguish

carefully between (1.5) in the x-space and (1.1) in the dual ~-space. The

complement (in the half-space 0 of Rn) of the cone (1.5) consists of

a finite number of connected open sets, which generalize the interior and

exterior of the quadratic cone (1.4). Now explicit formulae for E due to

Herglotz show that E is in fact analytic on each of these components, so

that the problem of the lacunas is to determine on which of these components

E vanishes identically. Actually Petrowsky only investigates lacunas which

are stable in a sense which we now describe.

Let a be a fixed hyperbolic polynomial with dual b , let C be a

component of 0 (xi> 0) and let x~C. We say C is a stable

lacuna for ao if, for all polynomials a sufficiently close to a , the
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fundamental solution Ea vanishes identically near x. It is easy to see that

this notion is independent of the chosen point x(C, and depends only on C.

If one attempts to pass from constant coefficient differential operators

to variable coefficients only the stable lacunas are of any significance. This

is really Petrowsky’s motivation.

Petrowsky’s theorems give necessary and sufficient condition for stable

lacunas in terms of the homology of the algebraic hypersurface (1.1). There

are a number of different cases depending on the values of n and m. In fact

one must distinguish between

(i) n odd or n even

(ii) m odd or m even

(iii) m ~ n or m  n .

Partly for brevity and partly because I have not worked through the details

I will omit the case of odd n. The parity of m makes only a very slight

difference and for simplicity I will take m even. The two alternatives in

(iii) are however more substantial and I will describe the results in both

cases.

We denote by A the hypersurface in complex projective space Pn _ 1(~~
given by the equation

and by AR the set of real points of A, i.e.

We already know that AR is non-singular, but A might have singularities

which are not real. However since we are only interested in stable lacuna we

can perturb the coefficients of A and so assume that A itself is non-

singular.
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From the condition of hyperbolicity one easily deduces that Ap consists

of k = ~ components A-,... ,A~ each homeomorphic to S~" . Moreover if

B~ denotes the component of P .(!R) -A-~ containing the point (1,0,...,0)

then B~ is an A~ = ~B~ and (for a suitable ordering)

Thus if we choose an orientation of the tangent space to (R) at

(1,0,...,0) it induces an orientation on each A~ and so on A~ .
Suppose now that C is a component of b(x) ~ 0 (in x. > 0), let 

H~ the x~ ~ = 0 in P~(c) and (H~)~ = P~_~(!R). ° We

denote by A the intersection A D H . Since b(x) ~0, A and H cut
x x x

transversally and so A is non-singular. In particular

is non-singular.

Since AR is contained in the contractible set Bk the restriction of

the Hopf bundle L of to AR is trivial. Hence, if we choose an

isomorphism

(Ax)R may be viewed as the zero-set of a function AR -~ ~ and so it inherits

an orientation from the orientation of AR . Hence (Ax)R defines a cycle

in Ax . Its homology class will be denoted by p : thus

(to .avoid special cases we shall assume n ~ 2).
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The linear form in g

is a section of the Hopf bundle L. Its restriction to AR may as above be

regarded as a function AR  ~. Then ~ ~ sign (x.~~ defines a map

and we may consider sign (x.~~ A as a relative cycle of A mod (Ax). Its

homology class will be denoted by : thus

If we denote by a the boundary homomorphism

then clearly we have

8a x = 2Sx . .

In particular this shows that the image of SinH 3(A C) is zero.

It is clear that ax and p depend only on the component C and not

on the point X(C chosen. We may therefore write aC and SC instead of

Q’x ’~x . . The theorems of Petrowsky (for n and m both even) are :

THEOREM. 1. Let m  n. Then C is a stable lacuna if and only if 03B2C = 0.

THEOREM 2. Let m ’-_ n. Then C is a stable lacuna if and only if aC = 0.

Remark. It is well-known that the "external component" - corresponding to

hyperplanes x.~ = 0 meeti.ng all the components of AR - is always a stable

lacuna. Thus theorems 1 and 2 imply that ~C = 0 in this case : a topological

result which is by no means obvious. o

§ 2. Proof of Theorem 2

The proofs of Theorems 1 and 2 are on similar lines but with a number of
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important differences. I will restrict myself here to giving the proof

of Theorem 2.

By use of the Radon-transform one obtains explicit integral formulae for

the fundamental solution a , known as the Herglotz-Petrowsky formulae

(cf. [2, p.1q.0~ for a modem derivation using distributions). To describe

these in a suitably invariant form we recall first that the sheaf 0 of

holomorphic (n-1)-forms on is isomorphic to(*) - 0(-n) and so

o(n) 

has a one-dimensior.al space of sections. Let

be a generator, then

and taking the residue on A we get

where Q~ is the sheaf of (n-2) forms on A. Similarly we have an element

The Herglotz-Petrowsky formula for the case m,n both even and m ~ n

is then

Let s = (s1,...,sn) be a multi-index with Is! = E si = m-n+1 and put

(*) We use the standard notations of algebraic geometry.



Applying this operator to (2.1) we find

Note that 03BEs03C9a,x is a holomorphic on AX and so the integral in

(2.2) depends only on the homology class of in A -denoted in § 1 by

~x. To exhibit this fact we will rewrite (2.2) as

Const.  
x ’~x ~ (2.3~

where  , > denotes the pairing between homology and cohomology (or

harmonic forms). Suppose now that p = 0 so that

= 8C

where C is a chain in A . Then

rx = sign (x.§)A~ 4. 2C
is a cycle in AR defining a homology class, say Yx . Since (x.~) nwa
is a holomorphic (n-2)-form on A its restriction to Ax vanishes identically

and so

Thus if p x = 0 the fundamental solution E a (x), given by (2.1), is a

period of a holomorphic form :

Const.  Yx> (2.4). .

Note that the image of y in the homomorphism

Nn_~ (A ~~ " C)

is just ax and that (2.4) holds for any class y x with this property

- because the period of on a cycle in Ax is zero.

One half of Theorem 2 is now easy. Suppose in fact that ax = 0. Then
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and so (2.4) holds. Moreover since ax = 0 we can take 03B3x = 0 and so,

from (2 .4.) , = 0. Thus the component of x is a stable lacuna for

a as required.

The converse is more difficult and needs a non-trivial result from

algebraic geometry. To explain this let us consider

F(a,p) _ a > ( 2 . 5 )

where p is a homogeneous polynomial of degree m-n and a is any homology

class on A. We make no restrictions beyond assuming that A is non-singular

In a sufficiently small’ neighbourhood of a given polynomial ao we may

identify the homology group R(A) with Thus for fixed aEH(Ao),
F(a,p) is a function of a and p. Thus for fixed a e 

PROPOSITION 1. Let -F(a,p) be defined by (2.5) and assume that it vanishes

identically-for all p and for all a near a . Then

(i) if n is odd a = 0.

if n is even « is a multiple of the homology class obtained b

intersecting A with a general linear space of dimension 2 .
~~e defer the proof of this to the next section and proceed now to show

how Proposition 1 leads to the second half of Theorem 2. We assume therefore

that the component of x is a stable Iacuna. Thus by (2.3)

 03BEa03C9a, x , , 03B2x > = 0 = m-n+ 1 .

Applying Proposition 1 to the hyperplane x.F = 0 we deduce at once that

~X = 0. Hence we can use formula (2.4) for Ea(x). Applying the operator

Dr when r) - m-n to (2.4) we get

0 =~wa ~ , Yx>.
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Applying Proposition 1 again we deduce that y is the class of the intersec-

tion A n Pn/2 . In particular therefore y x is homologous to a class in Ax
and so , the image of y in C), is zero. This completes

the proof of Theorem 2.

§ 3. Proof of Proposition 1

We shall deduce Proposition 1 from the following result

PROPOSITION 2. Let X be a protective non-singular variety, Y a non-singular

hyperplane section. Then the groups H*(X-Y ; C) are isomorphic to the de

Rham groups of the complex of rational differential forms on X with poles

on Y.

Remarks. Proposition 2 is proved in ~1 ; Theorem 4]. It is in fact part of

the theory of "integrals of the second kind", and its proof is not difficult.

Actually Grothendieck ~3~ has recently extended Proposition 2 to any affine

variety X-Y - but this needs the resolution of singularities and is more

difficult.

We shall apply Proposition 2 with X = P n- 1 (C) embedded in a high

projective space by the polynomials of degree m, so that we can take Y

to be the hypersurface A c X given by a(~,~,...,~n) = 0. A rational

(n-1)-form on P 1(C) with poles on A is then of the form ~~ where
ri-1 a

q is an integer ’-_ 1 and p is a homogeneous polynomial in (S1’...’~)
of degree qm-n. As a corollary of Proposition 2 we therefore deduce :

COROLLARY. ° Let ~:EHri-1 (Pn-1 (C ~ - A ; C ) and assume that

for all q~1 1 and all p homogeneous of degree qm-n. Then ~’~ = 0.
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Before proceedin.g to the proof of Proposition 1 we make some remarks

about the homology of A~ and of Pn 1 - A. For any we can associate

a class A) . . Geometrically if a is represented by a cycle

C then T(a). is represented by a "tube" with axis C - i. e. the normal

circle bundle of A in P n- 1 restricted to C. Thus if deg p .= m-n, and

k = n-2, we have

p03C9a , 03B1> =  ResA p03C9 03B1 03B1> = 1 203C0i  p03C9 a, T(03B1) > (3.1).,

Note also that if we apply Poincare duality on A and P n- 1 - A to make

identifications

then T(a) becomes the coboundary homomorphism

The exact sequence to which (3*2) belongs shows that

Taking k = n-2 this is zero for odd n and generated by the dual of

A fl Pn/2 for n even. Thus the conclusion of Proposition 1 is just the

assertion T(a) = 0.

We pass now to the proof of Proposition 1. We consider the variable

polynomial

aA = ao + Àb

where b is fixed (of degree m) and B is a small parameter. By hypothesis



therefore

where degree p = m-n. Applying (3.1) this gives

Applying ( a w and then putting x = 0 we get

But this holds for all p and b of the given degrees and the pbv span

the space of all homogeneous polynomials of degree m-n+vm. Thus (3.3) shows

tha,t ~’~ = T(a) satisfies the hypotheses of the Corollary to Proposition 2 and

so we have T(a~ - 0. As pointed out above this is precisely the required

conclusion of Proposition 1.
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COMPLEMENTS (*)

A slight variation of the proof given above leads to some improvements

on the results of Petrowsky. Thus one can prove :

(1) If m  n every lacuna is stable.

Moreover a simple topological lemma combined with Theorem 2 above yields :

(2) If m ~ n there are no (non-trivial) stable lacunas.

The "outside" of the cone b(x) = 0 is always a stable lacuna : this is the

trivial lacuna. The condition that n is even, which held throughout our

exposition, is essential in the proof of (2) but probably unnecessary for (1).

(*) Added June 1967.


