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REPRESENTATION OF UNRAMIFIED FUNCTORS. APPLICATIONS

by J. P. MURRE

(according to unpublished results of A. GROTHENDIECK)

by J. P. MURRE

Seminaire BOURBAKI
17e année, 1964/65, n° 294 Mai 1965

1. Introduction.

Let S be a prescheme which is locally noetherian, i. e. every point has a

neighbourhood which is the spectrum of a noetherian ring. In the following all

preschemes (and rings) are assumed to be over S (we say that a ring A is over

S if Spec(A) is over S ) and the morphisms are morphisms over S .

Let X be a prescheme ; X defines a contravariant functor

from the category (Sch/S) of preschemes over S to the category (Sets) . Many
existence problems in algebraic geometry are of the following type : given a con-
travariant functor F : (Sch/S)° -~ (Sets) , determine if the functor F is of

the form i. e. if there exists a prescheme X together with ape F(X)
such that the map Homs(S’ , X) -~ F(S’ ) , given by u -~ F(u) (p) , is bijective for
all S’ . If this is the case then we say that F is a representable functor, we
write F = X and we do not distinguish between F and X . Also we write in the

following 03B6 : S’ ~ F instead of 03BE E F(S’) when F is a contravariant func-

tor, representable or not. Most of the solutions of problems of the above type are
based on projective methods (in particular on the Hilbert schemes) ; here we want
to discuss a non-projective construction.

We are going to list a number of necessary conditions for a functor in order to
be representable. Let X be a prescheme which is locally of finite type over S .

Consider F(S’ ) = hX(S’) = Homes’ , X) , then F has the following properties :

(F1a) Let T E (Sch/S) and ~U ~ an open covering of T in the Zariski topolo-
gy, then

is exact (verification trivial ; the maps are the natural maps).
(Fib) If T’ - T is a faithfully flat, quasi-compact morphism, then



is exact (this follows from the descent theorems, see [2], SGA, VIII, theorem 5.2).
(Fla) and (Flb) are expressed together as :

(Fl) F is a sheaf in the faithfully flat, quasi-compact topology.

(F2) F commutes with inductive limits of rings 3 i. e. if A is an inductive
filtered system of rings such that the Spec(A~) are all above an open affine

piece of S and if A = hm A , then the natural map

The verification of this is easy but laborious, the essential point being that
F = X is locally of finite presentation over S ; 3 see EGA, IV, 8.8.2 (i).

(F3) F commutes with projective adic limits of local artinian rings, i. e. if A

is a complete, local noetherian ring with maximal ideal m , then the natural map

The verification of this is immediate.

Next we note that F = X is (by definition) a left exact functor, i. e. if

T - T’ ~ T" is an exact sequence of preschemes then F(T) -~ F(T’) ~ F(T") exact ; 3
however we are going to list only a very special case of this property because the
left exactness of the functor (when the functor is given before we know if it is

representable) can usually only be established in this special case. We formulate
this -special case in terms of rings :

(F4) If A - A’ ~A A’ is an exact sequence of rings (exactness in terms of
the underlying sets) with A local artinian, 1 , and trivial re-

sidue field extensions, then

(i. e. (F4) + (Fib) means F is universally prorepresentable ; see [4], p. 9,
theorem 1, the details of which can be found in [6]).

The geometric significance of (F4) (+ is the following : it is possible
to find topological rings which are, if the functor is representable, the comple-

tions OX a of the local rings in the points a of X which are closed in their

fibre.

The above conditions are necessary for a functor in order to be representable,
but they are, as is easily seen, by no means sufficient. In fact, we don’t have

manageable sets of sufficient conditions for the general representability problem.
Therefore we.shall assume further special properties of X. .



Let X (locally of finite type over S ) be unramified over S ; 3 this means

that if T : X -~ S , x E X and s = ~r (x) , then ms ~X x = and k(x)/k(s)

separable algebraic for all x EX. It turns out (~2~, .~C~1., I, prop. 3.1 ) that

z : X -~ S is unramified is equivalent with the fact that the diagonal X -~ X xs X

is an open immersion and from this follows the following property of the functor

(which as is easily seen, in turn implies unramification of X over S ).

(F~) is injective, where A is a ring and I is a

nilpotent ideal of A , and in fact we have to require this only for rings A of

the type k~E~/(Ez) , where k is a field (we say : the functor is formally unra-

mified over S ).

Assume moreover that X is separated over S, by the valuative criterium ([1J,
EGA, II, prop. 7 .2 .3 ) , this is equivalent with :

(F6) If 03BE1 , 03BE2: Spec(V)  F with V a discrete valuation ring (over S ),
are equal in the generic point, (we say the functor is separated).

These conditions are still not sufficient for representability, we need two more

conditions which follow if F = X from the fact that X is unramified over S .

Namely every point x E X has an open neighbourhood U such that T/U : U - S

can be factored in U - ~-~ V -a-~ S with a (J: V -~ S which is etale and j a

closed immersion (~z~, SGA, I, corollary 7.8). A morphism a : V -~ S is said to

be etale if it is unramified and flat over S . Now suppose we have a commutative

diagram of the following type :

with I a nilpotent ideal in A . In case T is étale, then ~’ can uniquely be
lifted to a ~ : Spec (A) -~ F (i. e. ~’ = ~.i ) ([2], SGA, I, corollary 5.6).
In our case, T is only unramified ; it follows from the above mentioned local

factorization that there exists a largest subscheme between Spec(A/I) and

Spec(A) to which ~’ can be lifted. Furthermore : the formation of this subscheme

is compatible with localization (use (F2». From this follows in particular the
following conditions on the functor :

(F7) Let the situation be as in diagram (~ ) . Assume moreover that A is a com-

plete, local noetherian ring with dim A = 1 , and that A has only one associa-

ted prime (in particular : T irreducible). Let N = nilradical A , and assume



N.I = (0) . Let t be the generic point of T and assume that

can be lifted to a

Then S’ itself can be lifted to a

(Fa) Let the situation be as in diagram (*) with A noetherian. Assume T irre-
ducible and I.N = (0) ( N nilradical of A ). Let t be the generic point of
T and assume that

can not be lifted to any subprescheme of Spec(At) which is strictly larger than

Spec(A/I)t . Then there exists a (non empty) open set W on T such that for all

open subschemes WI of T contained in W the restriction ~’/~~1 : F of

~’ I to (with W1 = Wl xT T’ ’) can ~ be lifted to any subscheme of W 1
which is strictly larger than W1 , .
(Note : using (FZ), it follows that for every t1 E W the 03BE’t1 : Spec(A/I)t1 ~ Fcan not be lifted to a strictly larger subscheme of Spec(At) .) 
The main result is the following :

THEOREM 1. - S locally noetherian. A contravariant functor F : (Sch/S)°-~(Sets)
is representable by a prescheme X which is locally of finite type, unramified
and separated over S if and only if F satisfies (F1) , (F2) , (F ) , (F4) ,
(F~) , (F6) , ( ? ~ and (Fa).
(Note : neither (F7) nor (Fa) can be omitted.)

COROLLARY 1. - The above theorem holds true if condition (F4) is replaced by the
condition (F4) below (which is easier to verify) provided (F~) is taken in the

strong form (at least for local artinian rings A ) :

(F4) Given a local artinian ring A with residue field k and 03BEo E Spec(k) .
Let A -~ A’ be injective and 1 ~ assume that the image ~’ of

So in. ®A k)~) can be lifted to a ~’ I E Then So can be

lifted to S E 



In the above situation, A -~ A’ ~ A’ ~A A’ is exact (see ~6~, page 39, lemme 7).
The equivalence of (F4) and (F4) is straightforward by using (Fib) and (FS).
We have immediately :

COROLLARY 2. - A functor F : (Sch~S)° -~ (Sets) is representable by a prescheme
X which is locally of finite type, etale and separated over S, if and only if

F satisfies (F~) , (F2) , (F~) , (F6) , and

(F5) bij ective ( I nilpotent ideal of A ).

Note : it is possible to prove a statement similar to theorem 1 with "unramified"

replaced by "locally quasi-finite" over S’ .

In section 2, we give an outline of the proof of the theorem, and in section 3

some applications. In the proof of the theorem, we need a technical result from

descent theory ; 3 for the sake of completeness, we have sketched a proof of this

result in the appendix.

2. Outline o f the proof.

First of all, we note that the above conditions on F are stable under base

change.

CASE I. - dim S finite. 
-

We proceed by induction on dim S .

Step 1. - dim S = 0 . We can assume S = Spec (A) , A local artinian ring.

Using the prorepresentability (F4), we find a system of complete local rings Ai
(i e I) and (by (F )) morphisms p. : Spec(A.) = X. ~ F . Put X (dis-
joint union), by (F )y we get p : x - F such that = p.. From (FJ fol-
lows that the are unramified and finite over A . The following lemma conclu-

des the proof in step 1 :

LEMMA J ( A noetherian ring). - Let X and F be two contravariant functors

from (Sch/A) to (Sets) satisfying both (F1) , (F2) , and (F3) . Let p : ° X ~ F

be a functor morphism. Assume that the map X(T) ~ F(T) , defined b p, is injec-
tive (resp. bijective) for reschemes T of type T = Spec(B) with B a local

A-algebra which is artinian and the residue field of which is a finite algebraic
extension of k(s) ( s is the point of S = Spec(A) below the closed point of

Spec(B) ). Then p is a monomo rphism (res . isomorphism). 
~ ’ ~



The proof is straightforward. For the injectivity of the map X(T) -~ F(T) one

first restricts to a local T, obtained from localizing a A-algebra of finite
type and such that the residue field of the closed point of T is a finite alge-
braic extension of the residue field of the image point in S . Next one restricts

to a T of finite type over A , and finally one takes T arbitrary. For the
surjectivity one proceeds in the same order.

Step 2. - The induction step from dim S = n - 1 to dim S = n .

Step 2a. - Let S = Spec(A) with A noetherian local ring which is complete
and dim A = n . Let s be the closed point S’ = S - ( s) . By the induction as-
sumption, Fs, = F xs S’ is representable by a S’-scheme F’ = X’ which is lo -

cally of finite type and unramified over S’ . Put A 
n 

= ( m maximal

ideal of 

According to step 1, F is representable by a scheme Y, clearly

The scheme Y is of type Spec(Bni.) ( i E I = set of points of Y ) ? for
each fixed i , we put Hi = lim Bni (Note : the Bi are the local rings prore-
presenting F above S ). From (F5), we get that the Bi are unramified and fi-

nite over A . Using (F 3 ), we find Ti: F ; put Y 

there exists T : Y -~ F (extending the T. 1 ). Consider the morphism

Ye want to show that T ’ is an o en immersion and that the images of (Spec Bi)S ’

and (Spec Bj)S’ under T ’ are disjoint for I / j . Write for shortness

Zi = Spec Bi and Z! i = (Zi)S’ . In order to see that the images are disjoint, we
have to show that under the morphism T[ x T l : Zg X’ X’ the inver-

se image of the diagonal of X’ xS’ X’ is empty. If this is not the case, then we

can find a morphism Spec(V) ~ Zi S Z. J of a discrete valuation ring V having

its closed point above a point b e Zi S Z. J which is itself above the closed ,
points of the factors Z, I and Z , J and having its open poiht above a point a

Which iS in the above mentioned inverse image Of the diagonal (Note: zi xs zj
is Proper over S ) (see I i I , EGA, TI , prop. 7 . 1 .9 ) . The maps Spec (v ) - zi xs Zj  F
contradict (F6). There remains to show that T[ : Zg - X’ is an open immersion;

ve drop the index I (and write therefore Z = Spec(B) ). We may assume that



Z -~ S is a closed immersion, because otherwise we make (~1~~ EGA, III, chap. 0,
10.3.2) a faithfully flat finite base extension killing the residue field exten-

sions of B over A (note this does not increase dim S ,cf, EGA, IV, corol-

lary 6.1.3 ) ; it suffices to show that T’ is open immersion after such a base

change and then Z -~ S is a closed immersion because B is unramified over A . .

If Z -~ S is a closed immersion y then also Z’ -~ X’ is a closed immersion. If

z E Z is a closed point of Z’ , then it suffices to show that the ideal J

which defines Z’ at the point z in is zero. n If +1 J ,~ (o) , then there

exists an integer no such that 
n J +1 c mF; ’ z , , but J ~ mF’o ’ Z 

. Let a (resp.

03B11 ) be the inverse images of mF, ’ Z 
c 

(resp. of mF; ’ z + J ) in A +1 under the map
 ~ QS,z ~ OF’ > z .We note that 01 because OF’ is surj ec-

tive ( F’ is unramified over S’ , and we have now equal residue fields in z

because Z’ -~ S’ is closed immersion) ; they are p-primary ideals, where p de-

notes the prime ideal of A corresponding with the point z . ~ Finally, we note
that Ala o is of dimension 1 ( z is closed point in Z’ ), and (o) .
We can therefore apply (F7) to the commutative diagram :

The morphism ~’ : can not be lifted to a morphism -* F ,
but F’ exists, which contradicts (F7). Therefore J = (o) ; i. e.

T’ is open immersion.

We construct (by "recollement" ) X = X’ .~. Y , with Y’ = Y ~ ~ and using 
we obtain p : X --~ F . This X represents F by lemma 1 .

Step 2b. - S = Spec(A) with A noetherian local ring dim S = n . Consider

S’ = Spec(£) where ~1 is the completion of A , and F’ = F x S S’ . By step 2a,
this F’ = X’ representable and X’ has by construction a descent date with res-

pect to S’ -~ S . We conclude by means of the following "descent theorem" :

PROPOSITION 1. - Let S’ - S be faithfully flat and quasi-compact, with S and

S’ locally noetherian. Let Y,’ -~ S’ be locally quasi-finite and separated over
S’ . Then evew descent date on X’ relative to S’ - S is effective.

For a sketch of the proof, see the appendix.

Step 2c. - dim S = n, S otherwise arbitrary.



CASE II. - di,m S - ~ .

Both follow from :

PROPOSITION 2. - Let F satisfy the conditions of theorem 1. Suppose

is representable for all s E S . Then F itself is representable.

Remark. - Some of the conditions follow from the representability of . On

the other hand, the conditions imply that the X(s) which represent the F. x
are locally of finite type, unramified and separated over ’ 

()

We first prove some lemmas :

LEMMA 2. - Let F be as in proposition 2. Assume moreover that F is represen-
table on all closed subschemes of S (strictly contained in S ).

Y -~ F be given with Y non-ramified, separated and of finite type over
S . Then the set of points U where 03BE is étale is open.

Remark. - Let y E Y, y T : Y -~ S the structure map, and s = T (y). We say
that S is etale in y if

is etale in the point y . We note that U is stable under generalization, i. e.

if y’ is a specialization of y and if 03BE is etale in y’ , then g is etale

in y . . (We also note that it is possible to define the notion etale in a point
entirely in terms of the functor (see ~3~, SGAD, XI, remarques 1.6 and 1.7).)

Proof of lemma 2 . - First we note that we may assume T : Y ~ S is a closed

immersion. Because if y E U , then we have (after replacing, if necessary, Y by
a neighbourhood of y ) a factorization Y ~ S’ -~-~ S , with T’ closed im-

mersion and cp etale. From § : Y -~ F , we get a ~’ in the following commuta-

tive diagram :

and since cp’ is etale (always after base extensions S ), ~ it suffi
ces to prove the lemma for ~’ . We may have lost our assumption on the closed



subschemes, but we still have that F’ is representable above closed subschemes

which are strictly contained in an irreducible component of S’ ~ and this we

shall use. Therefore assume To: Y -~ S closed immersion.

According to EGA (III, chap. 0, cor. 9.2.6) it suffices to show : if y E Y ,
then (y) n U either is empty or contains an open set of {~r} . We distinguish
between :

(a) If s = T(y) , then s is not a generic point of an irreducible component
of S . If d is the Ideal defining the (reduced) subscheme )~s’) ~ then consider
the subschemes of S ; put F S S and S S .
By our modified assumption, F is representable and clearly

The F (resp. Y ) determine a formal scheme F (resp. Y ), and we have an ~ " n"
morphism 03BE : Y ~ F obtained from the

Now it is easily seen that ~ is etale in a point of Y , if and only if ~ is

étale, and furthermore ~ is etale in an open set.

(b) s is generic point of an irreducible component of S which we clearly can
assume to be S itself. Then Y (being a closed subscheme) is defined by a nil-

potent Ideal 3 (write Y = V(~) ) ? 3 let n be the Nilradical of S . Consider

the commutative diagram

We can assume y E U (otherwise U n {y~ - ~ because U is stable under genera-

lization). Since 03BE(y) : Y(y) ~ F(y) is a closed immersion, we have that the
etale homomorphism OF ~ OY,y is an isomorphism, can not be

lifted to a subscheme of Spec(OS,y) strictly larger than Spec(OY ") . Therefore,
by (F8), there exists a neighbourhood W of y , and, for simplicity, we may as-
sume W = S , such that in W = S for all open subschemes WI of S, the

~/(Y/W~) can not be lifted to a subscheme between and It

follows easily that ~Y/W~ can not be lifted in W1 to a subscheme between

W1 and As we have noted before, it follows then (using (F2) that for
every z E Y F can not be lifted to a subscheme between

and (and strictly larger than 



From the commutative diagram of preschemes above we get a commutative diagram of

local rings : 
~-

(In the following, we write OS , 0y , and OF .) Here, 03C6 and u are surjective

(coming from closed immersions), 03C8 is unramified. Ye want to shov that u is an
isomorphism. Let J = J z (resp. K ) be the kernel of 03C6 (resp. u ) . Ve claim

= K . It suffices to show this for the corresponding completions and there it

follows from the fact that  is surjective (unramified and residue fields the

same). Since J is nilpotent, K is nilpotent. Then, using the fact that 03C8(OS)
and K generate OF , ve obtain easily K C 11"s) . Hence i is surjective, how-

ever then K = (0) for otherwise, we could lift § .
z

LEMMA 3 . - Let F be as in proposition 2 . Suppose that for every point x e F

(I. e. for every point x of every F ~ ~ ) there exists T : U - S and

§ : F such that T is of finite type, § a monomorphism and 6tale.
x x x -.- ..- - .-.. > . 

- 

-. -- x .--.. -- 
-- - .. - - - . -.. 

- -

Then F is representable (follows from SGAD, XI, prop. 3 .5) .

LEMMA 4. - Let T be of finite type over S and 03BE2 : T Z F . I,et
~ ~ %2) ~~ ’~ ~~~ °~ ~’ ~~~~ ~ ~~

representable and in fact is representable as an open immersion of T .

Proof. - From the first three properties of F , follow the same properties of

~ . , th~ fact that F is unramified, follows that G satisfies

(F’5), i. e. G is étale (we need for F only the weak form of (F§) , the strong
form follows from the representability of the ) . Furthermore, G ~ T is a

monomorphism. Then apply SGLD ([3], XI, prop. 3 .I ) .

proof oi proposition 2 . - Ue proceed bY noetherian induction. Starting with

x 7F , I. ’e. ’x e F§> for some s G S , ve take an open affine neighbourhood

of x in and ve take U(s) to be of finite typeover SPe6s, s) .
Then ve obtain ( [ I ] , EGA, IV, 8 . 8 . 2 ) aT: U ~ S of finite type such that

U S Spec(OS,s) = U(s) ; we can take U so small that U is non-ramified and se-

parated over S and that there exists a 03BE : U ~ F (use (F2)) such that

03BE  1Spec(OS, s) = l(S) (= canonical injection). Moreover, using lemma 1, we can



assume that S is etale. We want to show that we can take U so small that g

is a monomorphism. Let ’~~ , ’~? be obtained by composition :

By lemma 4, R = ~ -) U x~ U is representable as an open immersion ;

U x~ U is noetherian (for U small) and hence R is of finite type over S .

Since ~/ B is a monomorphism, we have = A~B with A the diagonal. Then

([l], EGA, IV, 8.8.2) R = A above a neighbourhood of s , i. e. we may assume

~ to be a monomorphism. Finally we do this for every point x 6 F , and we apply

lemma 3 *

3. Applications.

(A) The flattening functor and the construction of quotients.

THEOREM 2. - Let S be locally noetherian, f : X ~ S of finite type, and 

a coherent OX-Module. Consider the following functor F : (Sets) :

{Consists 
out of one point if ~T is flat over T (resp. faithfully

flat over T ).
if ~T is not flat over T (resp. not faithfully flat).

F(T) =~ flat over T ).

~ is not flat over T (resp. not faithfully flat).
(Here, ~T means the inverse image of 5 on X- = X S T .)
This "flattening functor" is representable as an unramified S-scheme, locally

of finite type over S ~ if and only if F satisfies (F~).
COROLLARY 1. - The above functor is representable if X is proper over S .

F is a subfunctor of S . (F1) , (F5) , and (F/) are easy 3 the other points
follow from [l], EGA, IV, namely (F~) from 11.2.6, (F~) and (F~) from 11.4.1, and
(Fj from 11.4.4.
As to (F-), let A be the complete local noetherian ring, and T = Spec(A) .

It follows from [2], SGA, IV, théorème 5.6 and théorème 6.10 that ~T is T-flat

in an open piece containing the fibre of the closed point, hence corollary 1.

COROLLARY 2. - S locally noetherian, f : X -* S of finite type. The following
conditions are equivalent :



f ~’
(i) f factors in X20142014~s’201420142014>S with f faithfully flat. fit monomor-

phism

factors in X201420142014~S’201420142014~S with f’ flat, f" monomorphism.
(iii) flat.

S 
p~ 

201420142014

The factorization in (i) is unique up to isomorphisms.

Proof. - (i) ==;> (ii) o (iii) trivial.

Uniqueness in (i) because f’ is quasi-compact and hence S’ is the quotient
of X under the equivalence relation X x X ~ X .

(iii) =:=> (i) . Apply theorem to ~ = 0 . There remains only to be checked
(F~) 3 we want X~ faithfully flat over A . There exists an open set U in X.
containing the fibre of the closed point such that U is flat over Spec (A) , but
U - Spec (A) is open, hence this is faithfully flat and quasi-compact. Look to :

The middle vertical arrow is flat, hence the right one, hence the left one.

As an application of corollary 2, we mention : let u : G -~ H be an homomor-

phism of S-preschemes of groups locally of finite type and u of finite type.
Assume that N = Ker(u) is flat over the base. Then G/N exists. A further ap-

plication of corollary 2 to the construction of quotients has been made by RAYNAUD.

Finally, we mention another application of the flattening functor of a different

type namely to the Picard functor.

COROLLARY 3. - Let X be proper over a noetherian integral prescheme S . Then

there exists anon empty open set U on S such that the Picard scheme of X/U
exists.

One reduces to the projective case using Chow’s lemma. It is not possible to gi-
ve the details here. This generalizes a theorem in [7]. We mention also that assu-

ming that the generic fibre of X is geometrically integral, that there is a sec-

tion, and that X is flat (and always proper) over S, one can drop the assump-
tion that S is integral ; 3 in order to obtain this result, one starts with corol-

lary 3, but one has also to use quite different techniques.



(B) Functors of type fl 
20142014201420142014201420142014201420142014 

X/S
THEOREM 3. - S locally noetherian. Let f : X - S be flat and of finite type,

and Y -~ X a closed immersion. Then the functor F = D Y/X is representable by
20142014 

r.m
a closed sub scheme of S, if and only if F satisfies (F3) . (In particular : re-

presentable in case X is proper over S .)

Some indications : (Fl ) , (F5) , (F6) clear, (F2) easy (see EGA, IV, 8.8.2).
For (F4), one has to show if F(A’ ) ~ ~ => (obvious notations), i. e.

Ov - 0 an isomorphism. Since we have surjectivity ( Y closed subscheme), one
"A A

has only to look for injectivity ; 3 since X is flat over S, one has Oy ~
~ A’

injective, and since 0 
A’ 

, we are done. For (F,~), one remarks that the
open set U consisting out of the generic point of T = Spec(A) is "schematical-

ly dense" in T ([3], SGAD, IX, § 4), X being flat the same is true for XU in

° From this YU implies XT = YT (this is stronger than (F7) na-
mely the valuative criterium for properness). For (F8), it suffices to show that

F is "generic representable" on T, i. e. representable above an open set U of

T . This follows since is "essentially free" over U (from the flatness, see

also ~2~, SGA, IV, lemme 6.7) (see [3], SGAD, VIII, § 7). For applications of this

type of functors, see [3], SGAD, VIII and IX.

GROTHENDIECK has informed me that he has also results on functors of this type
without assuming Y -~ X to be a monomorphism, namely by using theorem 1 together
with a method of MATSUMURA of reduction to the case where X is projective over

S . In this way, one obtains generalizations of the theorem of Matsumura and Oort
on the representability of Autk(X) for X a proper scheme over a field k .

(C) The functor of correspondence classes.

Let f : X -~ S , and g : Y -~ S ; consider the map

and let Y) be the sheaf (in the faithfully flat quasi-compact topolo-
gy) determined by the cokernel of u (this is the functor of divisorial corres-

pondence classes between X and Y over S ). Suppose that f~ 0 = Os ,
g~/Oy) = ~s universally, y and that X and Y have sections ex : S " X ,

ey : S - Y , then it is possible to give the following description for this func-

to r : Y) (S’) is the set of isomorphism classes of the invertible



(putting X’ = X x~ S’ , etc.) with trivialisations given on

eX’ S’ Y’ and X’ Xs 1 eY’ which must agree on eX’ S’
One has the following result :

THEOREM 4. - S locally noetherian, f : X -~ S and g : Y - S proper and

fiat. Let k(s) ~ and k(s) ~ Oy) for all s ~ S . ~

CorrS (X , Y) is separated (problem : probably always true under the previous as-
sumptions!), then it is representable by an unramified S-scheme which is locally
of finite type over S . Moreover CorrS(X , Y) is separated if PicX/S or

is separated, for instance if X or Y has geometrical integral fibres.

COROLLARY 1. - B) is representable for A -~ S , B - S abelian

schemes.

Some indications for the proof : making, if necessary, the faithfully flat quasi-
compact base change S ~- X xq Y , one can assume that there are sections.

(F1) , ... , (F4) follow then easily from the same properties of For

the non-ramification, one uses the following lemma :

LEMMA (Assumptions as in theorem 4) . - If 3 is a quasi-coherent OS-Module,
then the natural map

is bijective.

One constructs, using the sections, a map ~ in the other direction. Then

~r = identity : there remains to be shown Ker(~~) _ 0 (in case F = ~S this

is the infinitesimal form of the theorem of the square). First one proves this for
a field .k (Kfnneth) , next for an artin ring A (induction on n with. 

for arbitrary S use the comparison theorem.

For the non-ramification assume (for simplicity) S = k~E~~(ez) ; let

be represented by an invertible This ~ becomes trivial on

Xo xk Yo (with Xo = X xs k , Then L corresponds with an element 03B6 of

H1(X x S Y , OXo kYo); the fact that 03B6 = 0 follows, since L is triv ial on the

sections eX xs Y and X xs eY and from the lemma which tells us that



The difficult condition is (F7). Assume for simplicity that S = Spec(A) (the
A from (F7)). There is given an element § E CorrS(X , Y)(Spec A/I) , represented
by an invertible f E Pic the obstruction to lift 6 to PicX S Y/S(A)
is an element § of xs Y , y ~A I) . The L is trivial on the sections

and therefore the obstruction C is in the kernel of

Take a parameter u E A which is zero in the closed point of Spec (A) . From the
exact sequence 0 ----~ I ---u-~ I .--.-j 1/uI ----~ 0 (multiplication by u ) , one
gets an exact sequence

and for a suitable u, the § is in the kernel of u by the assumption of (F7).
There are similar sequences for X and Y, and since (, is also in the kernel

of

it follows, using the above lemma, that 03B6 = 0 . Hence 2 can be lifted ; the in-

determinancy of the lifting is in x S Y , ® A I) , and again, using the
lemma, it follows that ; can be lifted.

For (FS), one can assume (by. taking a small neighbourhood) that I is Ao-free
(with Ao = Ared ) and OXo SYo) is base 

for the latter, and start with an element 03BE represented by an invertible L as

above. The obstruction for the lifting of L can be written a e with
a cY cY

a E I . The assumption of is that the ideal J , generated by these a , is
such that for the generic point t of Spec(A) the Jt = It . . However then
J = I in a small neighbourhood of t, and we are done.

Let for instance PicX/S be separated, then Y) is separated, and

PicS is separated, if X has geometrical integral fibres (one can assume



S = Spec(V) with V a discrete valuation ring) ; one has an invertible f on

X , take a Cartier divisor D for E, then one finds that D must be a multiple
of the special fibre and therefore D lineairly equivalent to zero.

Moreover if X -~ S and Y -~ S are smooth, proper and have integral fibres, one
sees that CorrS(X, Y) fulfills the valuative criterium for properness (i. e. is

formally proper ; 3 cf. [4], n° 236, theoreme 2.1). This is the case in particular
if X = A and Y = B are abelian schemes.

Let X = Y = A (abelian scheme), consider the map

defined by

(where n : A xS A -~ A is the group multiplication). Then,
(i) Ker(6) = PicA S p. 90 theorem 2, and p. 100 corollary 3 ; 3 also

note that, since Corr (A , A) is unramified, it suffices to prove (i) over
fields).

(ii) 6 is formally smooth (this follows from the cohomology theory of abelian

varieties, see ~8~~ p. 191, theorem 10 ; 3 again it suffices to work over fields).
From this one finds that the Neron-Severi scheme NSA/S = is repre-

sentable as an open piece of CorrS(A , A) (Note : PicA S - 
An application of this is the following : i an abelian scheme A over a normal

variety is projective. One starts with an ample sheaf ~t for the generic fibre

At (theorem of Weil). This is a rational section in But NSA/S being
an unramified, separated and formally proper scheme over S, one shows that for a

normal S such a rational section is a section ; i. e. we have a E 

Now 6(0) E CorrS{A , A) (S) determines an invertible sheaf on A Xs A ; from the

diagonal A : A ~ A xs A , we obtain an invertible sheaf L’ on A and L’t is

algebraic equivalent with L~z . The set of points t’ on S such that ~’, is

ample is both open ([1J, EGA, III, 4.7.1) and closed (we can reduce to A over

the spectrum of a discrete valuation ring . one takes a positive Cartier divisor
D , and Dt, is ample if and only if 0 , where n = dim A ; this being so

in the open point of Spec(V) , it remains so in the closed point).

Finally, we mention the following variant : S locally noetherian, f.: ~ -~ S

proper and flat with a section Q , and assume universally. Let G

be a group scheme locally of finite type over S . Then (G,e)



is representable by an unramified S-scheme locally of finite type over S ( com-

pare with the preceding with G = There is a similar theorem where one

gives some properties of G, but where one does not assume G to be representa-
ble.

4. Appendix (proof of proposition 1 ) .

THEOREM. - Let S be a prescheme, f : S’ -~ S faithfully flat and quasi-

compact~ and g : X’ -~ S’ locally of finite presentation~ locally quasi-finite
and separated. Every descent date on X’ relative to S’ ~ S is effective in the

following cases :

(a) g quasi-compact (hence of finite presentation) ;
(b) f universally open (for instance ; f locally of finite presentation) ;
(c) S discrete ;

(d) S’ locally noetherian ;

Proof. - The descent date is effective if g is quasi-affine (~z~, SGA, VIII,
’~.9)~ and g is quasi-affine under the above assumptions if g is of finite pre-

sentation ([2]~ SGA, VIII, 6.2 and 6.6). This settles case (a) , and in the other
cases it suffices to show that every affine open set U’ of X’ is contained in

a quasi-compact open set V’ , which is saturated for the equivalence relation be-

longing to the descent date. Consider the "standard diagram" :

Let ui = q 1 .q z - 1(U’) , this is a quasi-compact and saturated set ( q~ is quasi-

compact because f is such) which is open in case .(b) and (c). We are ready in
these cases, and in case (d), we take for V’ the interior of the closure of U1 .
The formation of the closure commutes with flat base extension ( U1 is pro-cons-

tructible, see [1J, EGA, IV, 2.3.10) and similarly for the formation of the inte-
rior is ind-constructible). Therefore V’ is saturated ; 3 furthermore it

contains U’ , and we want to show that it is quasi-compact. We need the following
lemma.

LEMMA 1. - Let Z be separated and locally quasi-finite over aT, which is
the spectrum of a universally japanese noetherian ring. If U is a noetherian

open set in Z , then the closure U is quasi-compact.



Proof. - It suffices to prove the following : Z integral implies Z noethe-

rian (look to the irreducible components of U ). We may assume : Z -~ T domina-

ting, and T integral. Moreover we can assume Z normal because ( T being uni-
versally japanese) the normalization of Z in its function-field K is finite

over Z . Let T’ be the normalization of T in K , again this is finite over
T . From the main theorem follows easily that every noetherian open piece of Z

can be identified with an open piece o.f T’ 3 hence Z can be identified with an

open piece of T’ and since T’ is noetherian, Z is quasi-compact.

Returning to case (d) ; apply the lemma to a quasi-compact open set containing
Ui ’ we see that the theorem is true if S’ is "universally japanese". In parti-
cular it follows that we are done in case S is the spectrum of a local ring,
because we may in that case assume that S’ is the spectrum of a complete local
noetherian ring, and then (~1~, EGA, IV, 7.7.4) S’ is universally japanese (re-
place otherwise S’ by s, ,) , where s’ is a point above the closed

point of S ) . The general case follows from the following lemma :

LEMMA 2. - Let f : S’ - S be faithfully flat and quasi-compact, and g; X’~S’

quasi-separated and locally of finite presentation. A descent date on X’ relati-

ve to S’ - S is effective if it is effective after the base changes 
for all s e S . 

..- 
- 

.- - 

. -- 

~

Proof. - We can assume that S and S’ . are affine. For s e S , put

From the descent date on X’~S) _ X’ x S S~s) ’ we g et a p rescheme X(S) which is

u,nion of affine o p en p ieces which are of finite p resentation over S~s) .
By EGA, IV, théorème 8.8.2, we can find a Wi of finite presentation over a

neighbourhood U of sinS such that W, x S(s) = and we may assumes 1 S i ’

Us so small that W’i = Wi xs X’ is an open immersion, that this open set is
stable for the descent date on X’ , and that the induced descent date on W1
corresponds with the natural one coming from the fact that we have already Wi
over S (because all of this is true after base change U ~ S(s) ). These W!

s i

cover X’ , and this completes (see ~2J, SGA, VIII, 7.2) the proof.
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