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THE INDEX OF ELLIPTIC OPERATORS ON COMPACT MANIFOLDS

by Michael F. ATIYAH

Introduction. - The index of elliptic operators has been studied recently by

several authors (AGRANOVIC-DYNIN [2], SEEIEY [6]). Using the theory of singular
integral operators they make good progress on the analysis but rapidly get invol-

ved with difficult questions of algebraic topology. In [4~! on which this talk is
based, these topological aspects of the problem are dealt with, and we obtain

finally an explicit formula for the index on compact manifolds.

1. Preliminaries on K(X) .

We recall (cf. [3]) that, for a finite complex X and subcomplex Y ~ we have
the Grothendieck group K(X , Y) . This may be defined as the set of homotopy
classes of maps

where BU is the classifying space of the "infinite" unitary group ! U = lim U(n) .
Moreover we have a natural homomorphism (the Chern character)

For a complex vector bundle E of dimension p it is usual to write

where the x. J. have formal dimension 2 . The Todd class of E is then defined by

Consider now a sequence

where the Ei are complex vector bundles on X, the homomorphisms 03C3i are

defined on Y and the sequence is exact on Y . Such a sequence is element
if for some j ,
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Two sequences E ~ EI are e uivalent if there exist elementary sequences

Pi~...~ r~ ..~Q such that
.

The set of equivalences is an abelian semi-group under e and is denoted by

L(X , Y) .

(1.1). PROPOSITION. - There is a unique natural homomorphism

such that, if 

Moreover X is an isomorphism*

(~.z?. PROPOSITION. - If E is a sequence as above and V is a vector bundle

on X ~ then

where, on the right, we use the K(X)-module structure of K~X ~ Y~ .

The proof of ~(1.1) is elementary but lengthy and will be omitted. Essentially
it provides us with a "Grothendieck-type" definition of the relative group

K(X , Y) . (1.2) is an easy consequence of (~.1).

2. S bols of differential operators.

Let X be a corapact oriented smooth (i. e. infinitely differentiable) manifold

of dimension n ~ let E ~ F be smooth complex vector bundles on X and denote

by r(E) , r(F) the spaces of smooth sections. Let

d : r(E)... r(F)

be a linear differential operator of order k ~ i. e. a linear. operator given

locally by a matrix of partial derivatives of order $ k with smooth coefficents.

Thus d is a smooth section of a certain vector bundle F) . Now we

have an exact sequence of vector bundles :

where T = T(X) is the tangent bundle of X , Sk denotes the k - th symmetric

power and Hom is the bundle of homomorphisme. Thus d defines a section of

S (T) $- Hom~(E ~ F) and hence a bundle homomorphism
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where 1t: T* -~ X is the projection X of T* (the dual of T ). The

homomorphism o(d) = ik Qt(d) is called the symbol of d (the factor ik is

inserted to fit in with Fourier transforms). An operator d is elliptic if o(d)
is an isomorphism on the complement To of the zero-section of T* .

More generally we shall consider a complex of operators, i. e. a sequence of

differential operators (all of the same order (1))

with d = 0 . The symbol 03C3(~) will be the sequence on T*(X)

The complex ~ is elliptic if is exact on T*(X) .
Suppose now that X has a Riemannian metric and let B(X) , S(X) denote the

unit ball and unit sphere bundles of T*(X) . Then the symbol 0(&#x26;) of an ellip-
tic complex defines an element (still denoted by o(~) ) of L(B(X) , S(X)) .
Using the homomorphism of (1.1) and the Thom isomorphism

we shall define a cohomological invariant ch6 by

If ~ has only two ter~ns’ i. ee if we are dealing with an elliptic operator
d : r(E) ~ r(F) I we write ch d for ch &#x26; .

For applications it is importnnt to be able to calculate ch &#x26; . This can be

done if X has a G-structure and o(~) is as s ociated to the G-structure ( G
being a compact Lie group). This means that we are given : a principal G-bundle
P over X, a real oriented G-raodule V, an isomorphism

complex G-modules M, and G-homomorphisms s. : Sk(V*) ~ HomC(Mi , Mi+ 1) soi i I I+
that ~i = ~ ~G ~i and ~i is induced by ~i 

-

(2,1) . FROPOSITION. - Suppose &#x26; is an elliptic complex associated to a G-struc-
ture as above and assume further .that dim X = 2 ran kG, where GV °is the
~ 

’ 
~ 

- ~ -~ -- 

V ~ . -
image of G in Aut V . Then ch &#x26; is the characteristic class of the G-struc-
ture associated to the universal class

(1) This restriction can be relaxed. _ - 
--. - 

- -- 

__ - _
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where chM. is the character of the G-module Mi’ w. are the negative (2)
weights of the real G-module V and we use the Borel-Hirzebruch method of des-

cribing the cohomology of B~..

Proof. - By considering the bundle over BG with fibre V* : is the

Euler classe of this bundle.

In another direction one can also prove

(2.2). PROPOSITION. ~ ch &#x26;= 0 if dimX is odd.

Froof. - By considering the real projective space bundle associated to S(V*) .

3. The main theorems.

(3.1). PROPOSITION. - The cohomology of an elliptic complex is finite-dimensional.

Thus we can define the Euler characteristic

For one operator d this is called the in~dex~ thus

index (d) = dim (Ker d) - dim ( Coker d) ,

Define the Todd class of X by

and, for any a E H*(X ; Q) 9 denote by 03B1[X] the value of the top-dimensional

component of a on the fundamental homology class of X . Then the main result

is the following formula for’ the Euler characteristic of an elliptic complex :

(3.2) . THEOREM. - be an elliptic complex~ then

In particular for one operator this becomes :

(z~ The "negative" weights w. depend on some choices but depends only on
the orientation. J ~
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Applying (3.2) and (2.1) to the usual ? complex, and then using the Dolbeault

isomorphism, one gets :

(3.4). THEOREM (HIRZEBRUCH-RIEMANN-ROCH). - Let X be a compact complex manifold,

V a holomorphic vector bundle on X i V) the Euler characteristic of the

cohomology of the sheaf of germe of holomorphic sections of V , the n

where = ~( T(X) ) .

Remark. - One must not confuse 5(X) for a complex manifold X with ~(Xr) ~
where X is the underlying differentiable manifold : in fact ~(Xr) ~ ~(X) ~
where = ~(T(X)*) . Thus (3.4) follows from (3.3) because (2.1) gives, in

this case,

Now let X be Riemannian with dim X = 2~ ~ and let

be the usual operator on differential forms. Let a be the involution of

E =Q~(T’) defined on ~p T* by a = and denote by E+ , E~

the p sub-bundles of E corresponding to the + 1 ~- 1) eigenvalues of a . Let

d be the exterior derivative, 6 its formal adjoint, then one easily verifies

that

is elliptic and, if l is even,

index D = Hirzebruch index of X (i. e. the index of the quadratic form on

.!!) 0 ).
(3 .3) then becomes the Hirzebruch index theorem, expressing the index of X in

terms of Pontrjagin numbers.

Remark. - All the various integrality theorems of Borel-Hirzebruch are included

in (3.2).

4. Inte ral o erators.

We discuss first elliptic operators in a Hilbert-space framework. Introducing
metrics we consider the Hilbert-space d(E) of square-integrable sections of

E . We denote by the subspace of Lz(E) consisting of all u such that
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du E L2(1) for all d E Diffk(E , 1) = r Diffk(E , 1) (where 1 is the trivial

bundle X x.C and du is taken in the distribution sense). If D E Diff’k(E , F)
we denote by D the extension of D to an operator

Then the main facts about elliptic differential operators (on compact manifolds)
may be summarized as follows :

(4.1). PROPOSITION. - If D ; 0393(E) ~0393(F) is elliptic, then

is a closed operator (from L2(E,) to L2~F) ) with closed range,
(ii) f D* : r(F) - r(E) is the f ormal adjoint of ~ then ) is the

*

Hilbersspace ad j oint of D ,

(iii) KerD= Ker  and is finite-dimensional,

(iv) Coker D ~ Coker D .

Remarks.

a. These results are not unfortunately, to be found in this form in the litera-

ture, mainly because P. D. E. experts do not like manifolds, bundles, etc. However,
they are easily, deduced from what is available in published form.

b. (4.1) implies that index D = index D .

c. If we have an elliptic complex

then we can introduce its adjoint ~*

which will also be elliptic. Moreover the operator

is elliptic. Using this one can deduce (3.1) easily from (4.1) ~ on the lines of the

Hodge theory, and one finds that

Thus (3*3) follows from (3.2), so that we need only consider a single elliptic

operator.

Now let dE : r(E) .~ r(E ~ T*(X)) be the covariant derivative with respect to

some connection, and put ~ = d~ dE (the Laplacian of E ). Then 1 + ~E is,
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by (4.1), a positive definite self-adjoint operator. Thus We cau defino a bounded

(in fact compact) operator J E on such that

Moreover one can show [5] that, for all k ~ J~ maps isomorphically

( as vector space) onto 

Next generalizing Calderon-Zygmund from Rn to manifolds, one can define the

space Int ~E ~ F l of singular. integral operators [5]. These are bounded opera-
tors Lz~E) .~ and l?Y Fourier transforms one can define a s bol Q which

is a homomorphism

(where denotes all continuous homomorphisms on S(X) ). This symbol has
the following properties

(i) o is an epimorphism and Ker a consists of all compact operators,

(ii) o(T e T’) = o(T) + o(T’) , o(T) a(T’)

where T ~ T’ belong to appropriate bundles,

(iii) if D E Diffk(E , F) then

An operator T e Int(E , F) is elliptic if a( T) is an isomorphism. It. follows

from (i) and ( ii) that T E Int(E , F) is elliptic if and only if ~ Tt e 

with TT’ and T’ T both equal to the identity plus a compact

operator. This implies that T is a "Fredholm-operator", i. e. has closed range,
and Ker T , Coker T both finite-dimensional. Thus index T is defined. Since

is an isomorphism it follows that. if D E Diffk(E , F) is elliptic, then

index D = index (DJ E) .

Thus, in view of remark (b) after (4.1)t (3.3) will follow from :

(4.2). THEOREM. - Let T E Int(E , F) be elliptic then

index T = {ch T x ~(X) } [X] .

( ch T is defined by the same formula as ch D ). Now the following facts about
Fredholm-operators have been proved by various authors ( cf. for example [6~) .

(4.3). If T is Fredholm and K is compact then T + K is Fredholm and

index T = index (T + K) .
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t4.4~. If T is Fredholm and is sufficiently small then T~ is
Fredholm and index T= index T’ .

From these it follows that : ’

~4,5~, If T e Int(E ~ F) is elliptic index T depends only on the homotopy
class of o(T) in E , F) .

Now if T is an operator induced by T 0 E: Iso(E , F) then Q(T~ ~ n* T 0
and Ker T = Coker T = 0 , so that index T = 0 . From (4.5) therefore we deduce :

(4.6). If T e Int(E , F) and o(T) B(X) (as an isomorphism) then
index T = 0 .

This, together with additivity of the index under e and (1*1)~ implies that

the index is essentially a homomorphism

5* Main steps :Ln proof of (3*3)*
Let dim X = 2~ . and’let D be the operator described in § 3. JM o = o(D )~

(5.1). PROPOSITION. - K(H(X) ~ S(X)) ~ Q is a free ~-module with Xo
as a generator.

Proof. » Since ch : I~~n(X ; Q) is an isomorphism compatible with

products [3] and since S(X~ ; p) is a free H*(X ; Q)-module with

generator 03A6*(1) , it is only necessary to check that
ch Xo = E~*(1)

with e a unit of H*(X ; Q). (i. e. e ~ 0 where e is the zero-dimensional

component of E ). But (2.1~ gives

e ~ 2’~ .

0

(5.2). PROPOSITION. - Let X be the boundary of a (2t + 1)-manifold Y and let

V be a vector bundle on X which is the restriction of a bundle W on Y . Then

0 .
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be the operator on Y defined by D = ~ d + d * (using a metric on Y and a

connection in W ). On the boundary X the bundle E decomposes into E

(notation of § 3). Consider the subs pace B of o V) given by boundary
values of Ker D . Using Stokes’ fonmia :

Du , v)y - u , Dv)y = Const. {u+ , v+~X - u- , v-~X}

it follows that B is the graph of an isometric operator

If one assumes that there ia uniqueness in the Cauchy problem. ~3~ for if- then

ono can show that

so that index T = 0 . On the other hand by the methods of ~~~ one can show that

T E Int ~ E* ® V ~ V) and that

The result now follows from (1.2).

Remark. - If V = 1 then (5.2) has of course a simple topological proof and

this is a key step in Hirzebruch’s proof of his index theorem. Having now esta-

blished (5.2) we proceed to imitate the rest of Hirzebruch’s proof.

Let Z denote the set of all pairs V) where X is a smooth compact

oriented manifold of even dimension and V is a complex vector bundle on X .

Then we have

( 5.3) . PROPOSITION. - There is a unique function f : ~ such that

(i) f(X ~ V) = 0 if 3 (Y, W) with X ~ V ,

(ii) + X2 , V1 + VZ) = + ( + denoting dis j oint
sum) ,

(iii) V1 ~ V2) = f(X , V1) @ f(X , V2) ,
(iv) f(Xl x Xz , Vz) = V~) Vz) f
(v) f(S~ ~ V) == 2~ it S~ is the 21-sphere and 1 f V are a basis of

K(S~) . 
-

(vi) 1) = 1 , where ~is complex projective space.

(3) We can take everything analytic without loss. However there are ways of
avoiding the Cauchy problem.



Proo ,f (sketch). - Lat A denote the cobordism group of pairs V) where

dim V = n and the cobordism relation is that in ~i). Following THOM one can
easily determine Conditions (i) and (ii) assert that, for each n 9 f

induces a homomorphism

Properties (iii) and (iv) relate the different fn and give information about

the general form of f . Properties- (v) and (vi) are then sufficient to fix f

uniquely.

(5.4). PROPOSITION. - The functions

both satisfy (i)-(vi) of (5.3).

Proof. - The properties of fz are easily verified. For fl property.(i) is

(5.2), (ii) and (iii) are immediate while (v) and (vi) are special cases which

can be checked. The proof of (iv) presents a few technical difficulties which
we omit.

(5.1), (5.3) and (5.4) together establish the index theorem (4.2) for even-
di m ensional X . The odd case follows by considering X x S1.

Final remarks.

1° There should be a generalization of (3.2) which will yield the Grothendieck-
Riemann-Roch theorem.

2° Theorem (3.3) should hold also, on a manifold X with boundary ~X , for an

elliptic operator D with "well-posed" boundary conditions B . One can (with
much work!) define an invariant

ch(D , B) E 6X ; ~
and it seems that the same formula for the index holds.
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