
Séminaire Brelot-Choquet-Deny.
Théorie du potentiel

KOHUR GOWRISANKARAN
On minimal positive harmonic functions
Séminaire Brelot-Choquet-Deny. Théorie du potentiel, tome 11 (1966-1967), exp. no 18,
p. 1-14
<http://www.numdam.org/item?id=SBCD_1966-1967__11__A10_0>

© Séminaire Brelot-Choquet-Deny. Théorie du potentiel
(Secrétariat mathématique, Paris), 1966-1967, tous droits réservés.

L’accès aux archives de la collection « Séminaire Brelot-Choquet-Deny. Théo-
rie du potentiel » implique l’accord avec les conditions générales d’utilisation
(http://www.numdam.org/conditions). Toute utilisation commerciale ou impression sys-
tématique est constitutive d’une infraction pénale. Toute copie ou impression de
ce fichier doit contenir la présente mention de copyright.

Article numérisé dans le cadre du programme
Numérisation de documents anciens mathématiques

http://www.numdam.org/

http://www.numdam.org/item?id=SBCD_1966-1967__11__A10_0
http://www.numdam.org/conditions
http://www.numdam.org/
http://www.numdam.org/


18-01

ON MINIMAL POSITIVE HARMONIC FUNCTIONS

by Kohur GOWRISANKARAN

Seminaire BRELOT-CHOQUET-DENT
(Théorie du Potentiel)
l1e année, 1966/67, n° 18 25 mai 1967

Let 0 bQ a locally compact connected Hausdorff space with a countable base for

its open sets. Let there be a harmonic system of Brelot on Q satisfying the axioms

1, 2 and 3. Let there be a potential &#x3E; 0 of this system on Q . We shall consider

here the poles on any compactification of Q corresponding to minimal harmonic

functions, and give some applications. Let S and H be respectively the posi-
tive superharmonic functions and harmonic functions on Q . Let A be a compact

base (in the T-topology) of S+ , and A. the set of minimal harmonic functions

contained in A.

1. Minimal harmonic functions and their oles.

Let Q be a compact metrizable space containing Q as a dense open subspace.
Let r be the boundary viz. r == Q - Q . Let w &#x3E; 0 be a fixed harmonic

function on 03A9 , and w its canonical measure on A (carried by Corres-

ponding to each w E H+ , w &#x3E; 0 , let 03A3
w 

be the class of all lower bounded w-

hyperharmonic functions on Q . The following minimum principle is proved easily by
standard methods.

LEMMA 1. - For any v E E y the condition

lim inf 0 , for all z E r implies that v ~ 0 .
x-z

This shows that the set of traces of all filters of neighbourhoods of the points
of r is associated Let us consider the associated Dirichlet problem.
Let us denote, y corresponding to any extended real valued function f on r, the

upper (resp. lower) solution of this problem by r; (resp. r;). Any of these
functions, if finite, will be a w-harmonic function on 03A9 . A resolutive function

for this problem will be called 0393w-resolutive, and the solution denoted by r; .
Corresponding to each x let r x,w be the Daniell measure associated to this

problem.

LEMMA 2. - For any A ~ r , if CPA is the characteristic function of A , 9 then
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where {V. 1 }. J.E I iS the family of all open sets in " containing A .

Proof. - Consider any such open set V.. Then, 1 w R J.. is and further
- i w W w

the lim inf of this function majorises 03C6A on r , and hence we get

On the other hand, if v belongs to the upper class corresponding to cpg and if

E &#x3E; 0 , then we can find an open set V such that

Hence, 9

Now, by varying e &#x3E; 0 , and then v y in the upper class defining F , we get’A
the required opposite inequality. This proves the lemma.

COROLLARY. - For any compact set y we can find a sequence {Vn} of open

sets of Q such that :

~~ ~n~~n+1 ~ ~~~ ~~~ ~ 
’

(ii) 

(iii) 0393w03C6K , lim 

Let A ~ r and be the open sets as in the above.

LEMMA. - Each V. nQ being an open subset of Qy the set 6. of all points of

A y where V. n Q is not thin, is a Borel subset [4j. Let

It is clear then that A ~ B for A ~ B c r and that 0393 = 

LEMMA 3. - For every compact set the set K is Borel, and further

Proof. - We can find a seauence {V} of open sets of 03A9 such that n ::&#x3E; V 
1.---- n n . n+

for every n ~ 1 and n Vn = K . It is easy to verify that
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where § 
n 

is the set of all points of A, where is not thin. Hence9 S~
is a Borel subset of A.. ° Further,

and this’-limit (being a decreasing limit) is nothing but

the greatest harmonic minorant of R ’" [4], and we deduce the required result.

This proves the lemma.

COROLLARY 1. - Let C and D be compact subsets of F satisfying :

(i) C CD ,
°

Then,

By the above lemma, the canonical measure p ’D 
of wD is nothing but  W res-

tricted to ~D , and hence we get

COROLLARY 2. - If u~ , u2 E H , then, for any compact set we have

THEOREM I. - The following four statements are equivalent :

(1)) Every finite continuous function on r is 0393W-resolutive ;

(2)) The characteristic functions of compact subsets of r are 0393W-resoluti-

ve ;
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(fii (3)) For any two disjoint compact subsets C and D of r ,
w 2014.2014.20142014201420142014-2014201420142014~2014~~~ 

- -

(l/~ (4) ) For any two disjoint compact subsets C and D such that WD =w fl 0 ,
w ~ ’ 

° ° ° ~~- -~~ ~ ~

Proof. - The equivalence of the first two statements can be proved by 
standard

Baire class arguments. We shall now show that these are equivalent to the last 
two.

If we assume ( df§ (2)), then, from the additivity of the w-solutions, we find that

(R0393W (3)) iS true. Let us now assume (3)), and show that (1] (4)) is a consequen-
ce.

Let C and D be two disjoint compact sets such that 0 . From (3)),

we get that wC~D = wC + But, from the corollary 2, lemma 3, we deduce that

i. e.

Since w-~0 , we get that =0 .

Finally, let us suppose that (4)) is true. We shall show that (2)) is

true. Let K c r be a compact set. There is nothing to prove if r = 0 . Hence,

let us assume that

Let us first note that

Now, r - K is the limit of an increasing sequence of compact sets A~ . For each
w~ .J~ 

n

n . =0 , and hence, 0393K03C60393-K =0 . This implies that
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It follows that

We deduce that is 0393w-resolutive, and moreover that

This completes the proof of the theorem.

DEFINITION 1. - The harmonic function w is said to satisfy the resolutivity

axiom relative to r (or simply ((R~)), if anyone of the above four (equivalent)

properties holds good for w.

The following lemma is proved easily.

LEMMA 4. - Let h be an element in A . Then, 0393h is identically h or zero,

for any 

THEOREM 2. - is a compact set such that I- == 1 , then
- 1 - 20142014201420142014201420142014201420142014201420142014201420142014  

-

there is at least an element P E K such that

Proof. - If there exists no such point in K , we can find an open neighbourhood
201420142014 

VnQ

V (in Õ) of each point of K such that RhQ is a potential. Hence, we can

choose a finite number of points Q ~ ... , ~ such that

covers K. We get immediately that fh = 0 from the lemma 2 and the fact that

~K

is a potential ; contradicting the assumption. The theorem is proved.

COROLLARY. - Corresponding to each he 03941 , there is at least one point P ~ 0393

such that
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DEFINITION 2. -Let he ðl . Any oint P ~ 0393 such that r = 1 is called a
20142014 1 201420142014201420142014 201420142014201420142014 

(p~
pole corresponding to h. If the set of poles corresponding to a h E ðl consists

of a single point, then this point is called the unique pole of h on F .

The following proposition is an immediate consequence. 0

PROPOSITION 1. - Let h E Ôl . A point P in r is a pole corresponding to h

if Q n V is not thin at h , for every neighbourhood V of P.

PROPOSITION 2. - Let p be the projection mapping from the set of all potentials

in A with point support ( p maps each such potential to its support in 0). Let

Q e r be a pole corresponding to h e A . The filter p°°°°~(5) , where ~ is the

trace on Q of the filter of all neighbourhoods of Q , is adherent to h.

Proof. - Let V be any open set of Q . Then, it can be seen easily as in [2J

(using a sequence of relatively compact open sets covering V ) that RV (for any

positive harmonic function u ) is represented as an integral with a measure sup-

ported by in the compact base A.

Let, now, W~ be an open neighbourhood of Q , and let W = Q n Since Q

is a pole of =: h . If p-1(W) does not have h as an adherent point,

then ~ could be expressed as an integral over some subset of H n A . This is

impossible in view of the fact that h is minimal (and ~ = h ). Hence, 
is adherent to h. This being true for each open neighbourhood WI of Q , the

proposition is proved.

THEOREM 3. - There is a unique pole on r corresponding to a h E 61 ’ if anyone
of the following two conditions is satisfied :

1° is valid.

2° The fine filter ~h is convergent.

proof. - Let the axiom ((R~) be valid. If P and P are two different poles

corresponding to h E then

This inequality is absurd, and hence there cannot be two different poles correspon-

ding to h . Conversely, if P is the unique pole corresponding to h , then for

any two disjoint compact subsets, C and D, evidently
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Let us now suppose that h is convergent to a P (evidently Then,
for any Q E r , Q ~ P 9 there is a neighbourhood W such that nQ is

thin at h . This implies that no point of r , other than P, can be a pole of

h . Conversely, suppose P is the unique pole corresponding to h . Let ~~’ be an

open neighbourhood of P in ~’ , and let W = W n Q . We can choose an open set

V in 03A9 such that V ~ F - W and is a potential (theorem 2). Let

it is clear that K is compact. Hence,

is in 3~ .  This being true for all neighbourhoods of P y ~h is convergent to

P . The proof is complete.

DEFINITION 3. - Let

A r ==(h~A. : there is a unique pole on f corresponding to h} ,

and 03A60393 the mapping ~ f which takes each h to its unique pole on f.

LEMMA 5. - Let K c r be a compact set. Then 9 the set of all points of A. for

which there exists at least one pole on K is a Borel subset of A..

Proof. - The lemma follows immediately by observing that the set in question here

is nothing but &#x26;.. considered in the lemma 3.

The proof of the following theorem is exactly as in the chapiter V, 6, and we

omit it.

THEOREM 4. - The set ð~ is a Borel subset of &#x26; y and $ : ð~ 2014~-r is a

Borel mapping.

We have the following corollary [_7~t.

COROLLARY. - The image by ipf of every Borel subset of is universally mea-

surable for all Borel measures on r .

THEOREM 5. - A necessary and sufficient condition in order that (ól) be valid-for
a u ~ H is that
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Proof. - For any two compact sets, C and D , of r, if u ru , then

Let be valid. Then, for any two disjoint compact sets C and D ,u

i. e. the set of all points of A. which can have a pole simultaneously in C and

D is of measure zero. Now. (chap. V, ) , tl.i can be expressed as a countable
union of sets of the form 6~ n 6,. / where C and D are disjoint compact sets.

We deduce that tl.i) = 0 .
Conversely, if = 0 , then, for any two disjoint compact sets C ’ and

D , since we get ~(~ n 5~) = 0 . Hence ((~ (4)) is true.

The proof is complete.

THEOREM 6. - Let (R ) be true for u. Then , which are Radon measures on

r , are precisely the image by 03A6 of the measures h(x) (x) d  (h) , for every x e Q .-- - -.... ,-.. 
- 

.. -... -..m u

Hence y for all F -resolutive functions (or equivalently r 
u 

summable functions)
on 0393u-solution is given by 

" 

, 
’

Proof. - Let K be a compact set in r y and Cfk its characteristic function.

Then,

for all x But, from the last theorem and the lemma 3, we get

This is true for all the compact sets ~ ~ r , and hence the two Radon measures

d r and d p(~ p ) are identical. This is again true whatever be the pointx,u u
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x The rest of the proof follows by a standard theorem in the theory of Radon

measures [7 J.

COROLLARY 1. - For any extended real valued function f ~ F y

Proof. - We know that

On the other hand, let and satisfy

The function v in Q continued by its lim inf on the boundary is lower semi-

continuous, and this function 03C8  f on r. Hence, we get

This is true for all such v , and the required opposite inequality follows.

COROLLARY 2. -A set A c r is 0393u-negligible (i. e. rU == 0 ), if

In particular, r - 1?r(ði) is 0393u-negligible.

Remark. - A real valued function f on r is 0393u-resolutive ( u as in the

theorem), if f o $ is  u -summable.

2. The case of "proportionality".

Let us now assume that the axiom of proportionality is valid in addition for the

system i. e. the potentials with the same point support are proportional to

each other. In this case, 03A9 can be identified homeomorphically with the set of

extreme potentials on A L2~j. Let Q be the closure of Q in A the boun-

dary (i. e. Martin boundary). Then ð ~ 61 ’ and A consists only of harmonic

functions, We shall show that the axiom of resolutivity is valid in this case (for
all u&#x3E;0). 

’

THEOREM 7. -Let u &#x3E; 0 , and K c ð any compact set. Then, there

exists a measure X on A , supported by K , satisfying
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Proof. - The existence of the measure is proved by the method of Martin, and the

adaptation of the proof is exactly as in [2]. We have only to note the fact that
any open set V of Q is the increasing union of a sequence of relatively compact

open sets 6 , and R is the limit of R03B4un.
THEOREM 8. - Fo r every he the f ine f i lt er ðh i s convergent t o h.

Proof. - Let w~ be an open neighbourhood of he and nQ. We have

to show that 03A9 - cu is thin at h . For this, it is enough to show that # = 0 ,

where K = ð. 

Suppose A # 0 ; then this function is = 1 (lemma 2). Hence there exists at

least one pole h t E K for the function h . Hence = 1 . But, by the last

theorem, we get that

This is impossible, since h and h’ f belong to the same base and are not propor-
tional. The proof is complete. 

’

COROLLARY 1. -Every has a unique pole (i. e. 

COROLLARY 2. - The axiom (Otð) is valid for all u E H+ u&#x3E;0 .

(Consequence of the theorem 5.)

Remark. - In this case (of proportionality) y it is easily seen that the axiom (Ru)
introduced in [2] is valid for all u E H+ . In other words, we have shown here
that the axiom D is not needed for proving the validity of this result.

3. A sufficient condition for the ro ortionalit of otentials with same oint
’ 

support.

Let us now go back to the general case. We shall give a sufficient condition in

order that the potentials with the same point support are proportional.
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THEOREM 9. - be any Then ~~ ’ ~ ~ 4 j~
a minimal harmonic function for a unique connected component of Q - K .

Proof. 

Case 1 : K polar. Then R" = 0 . Let u be a positive harmonic function on

(1 - K (which is connected) satisfying 0  u  h . Then~ 2014 is a bounded h-

harmonic function on Q - K , and it can be extended to a h-harmonic function u t

on Q such that 0  u’ f I [ij.It follows that hut is proportional to h on

Q , and hence u is proportional to h on Q - K . This shows that h restricted

to Q - K is a minimal harmonic function.

Case 2 : K is such that Q - K is connected (and K not polar). Let (jo==Q-’K .

We shall show that

is a filter on (jo (in fact equal to S n W ). Then it follows that h’ is a mi-

nimal harmonic function on w [3]"

Consider and Then F=K uCE is such that CF belongs to

3.. Hence, there exists a v  h on K u CE ? and such that v(y)  h(y)
at some and v  h on Q. Let p=R=R . Consider v - p on w .

The function v- p &#x3E; 0 , superharmonicon o)~ and v- on w - E .

But (v-p)(y)  h’ (y) , and hence E E ~1 .
To prove the opposite inclusion, let us consider a relatively compact open neigh-

bourhood ô of K. Let q == R- ; this function is a potential on Q . Using the

minima principle [5 ], it is easy to see that the greatest harmonic minorant in (D

of .the function q is ~ == R . Hence, q - R~ is a potential on w , and

on ô no). Now, if E~&#x26; ~ then, E n (w - 6) also belongs to

~h’ ’ ~ ....

where A = (w - E) u (w n 8~ ; and it is clear that En(~-5) also belongs to

~i’ ’ 
’

Now, there exists a superharmonic function v &#x3E; 0 on w such that v ~ h 1 on

(w - E) u (w n5) y v~h’ and v’(y)  h’ (y) for some y E E . It is clear that

the function w=v+~ in w and w = h on K belongs to S~ . Further, w~h
majorises h on (w - E) u 8 y and w ~ h on Q. Hence Q- E belongs to ~ .
This shows that completing the proof of the theorem in this case.
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General case : As in the case 2, we can show that Fh n 03 = is a filter

(where w = Q - K ). But as in [3]~ we can see easily that there exists a unique
connected component o of w (note that the connected components of w are at

m

most countable) such that (jo (and hence V = U (i) is thin at h ). Now,

is minimal harmonic on 03C9m, and the fine filter corresponding to h’ on w m is

precisely n 

The proof is complete.

Let us now take a point P in Q such that w = Q - (P) is connected. Let Q

be the Alexandroff compactification of Q with A the point at infinity. Q is

also a compactification of w.

LEMMA 6. - A minimal harmonic function u &#x3E; 0 on ill has a pole at A if and

only if, there is a h E 03941 such that u is proportional to h - R{P}h on w .

Proof. - The proof is trivial if ~P~ is a polar set. Let us assume that {~
is not polar. The last theorem shows that the condition is sufficient. It remains

to prove the necessity of the condition. By the proposition 2, we know that there

is a sequence (x ) of elements of w, converging to A such that there is a

potential 1n on w with support at x (and belonging to a compact base of the
cone S ) with -~ for all x E w . But every such cL is a constant

multiple of p - where p e A y p supported by x . Suppose

But, by the compactness of A , we can find a subsequence of (p ) which converges

to a harmonic function h on Q (since the supports x 
n 

of p 
n 

converges to in-

finity). From this subsequence, we can choose yet another subsequence such that
,. converges to a potential p with support at P . It is seen easily that uR{P} . .converges to a potential p with support at P . It is seen easily that u

is equal to V(h - p) . Now, using the minimum principle, it can be shown that

p = Ic_ -" . Hence y u is a constant multiple of h - R" -’ in If h is not

minimal y suppose h = hi + h2 with hi and h2 not proportional, then

and this is impossible. The proof is complete.
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COROLLARY. - Every minimal (positive) harmonic function on w has a unique pole

(either at P or A ~ .

Remark. - The proof shows that, even if Q - (P) is not connected, 

harmonic function on any connected component with a pole at the Alexandroff point

of Q comes necessarily from an element of A.. The same proof applies to minimal
harmonic functions on the connected components of Q - K , where K is a compact

set of Q.

THEOREM 10. -Let [p} be a polar set of Q . Then the set of extreme potentials

on Q with support at P have the same cardinality as the set of positive minimal

harmonic functions {p} with pole s,t P .

Proof. - Since {P} is polar, there is a one-one correspondence between the mi-

nimal harmonic functions on (D (= Q - (P)) and the extreme potentials on 03A9 with

support at P . The proof is easily completed.

THEOREM 11. - Let P be such that [p} is not polar, and Q - (P) connected.

If the set of positive minimal harmonic functions {P} with a pole at P

consists of a single element, then the potentials on Q with support at P are

proportional to each other.

Proof. - Let u be the unique positive minimal harmonic function on Q - (P)

having a pole at P . Let p 1 and p 2 be potentials on Q with support at P .

The canonical measure of the harmonic function p. on Q - ~P~ does not charge

the set of elements of the form h - where h E A.. Hence, both Pl and p~
are constant multiples of u on Q - ~P~ . Hence, Pi and P2 are proportional

to each other" on the whole of Q . The proof is complete.

Remark. - An example of N. BOBOC and A. CORNEA shows that the converse of this

theorem is not true.
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