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QUASI TOPOLOGY AND FINE TOPOLOGY

Bent FUGLEDE

Séminaire BRELOT-CHOQDET-DENY
(Théorie du Potential)
lOe 1965/~6~ t n° 12 5,12 et20mai 1966

Introduction. - When a subadditive capacity is gjven on a space , one may study
quasi topological notions such as quasi closed sets, quasi continuous functions,
etc. (cf. [8]). The results obtained are analogous to those for the fine topology
in classical cases. Under suitable assumptions the quasi topology is shown to be

equivalent to the fine topology, as is well known in classical potential theory. In

case of the usual capacity with respect to a kernel, we establish this key result

under the principal hypothesis of a dilated domination principle which is fulfilled,
e. g. by the kernels of order a for all a . Some of the results of the present

report were announced in [9~

1. Quasi topology. - Let X denote a Hausdorff space, and c  capacit on X in

the sense of CHOQUET [3]~ defined for all compact subsets of X and with values in

(0 , + oo) . Let c be the associated outer capacity, defined for arbitrary sub-

sets of X . We assume that c(Ø) =0 that c is subadditive :

~t
It follows that c is countably subadditive on arbitrary sets :

A capacity c will be called’ true if, for any increasing sequence of sets,

A mapping f : X - Y of X into a topological space Y with a countable

base is called quasi continuous if there corresponds to any number ~ &#x3E; 0 an open

set 03C9 c X with c (03C9)  E such that the restriction of f to X, (D is conti-

nuous. Quasi closed, quasi open, and quasi compact subsets of X are defined simi-

larly (cf. [8]).

For two sets 1B1 ’ li2 ’ we say that quasi contains A. ~ or that A. is

quasi contained in A~ ~ if c (Al ~. ~ = 0 . Equivalent sets are sets which
quasi contain one another. A property valid except in some set equivalent to ø is

said to hold quasi everywhere (q. e. ) .
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LEMMA i . - A quasi closed ’ set A~ is quasi contained in a quasi closed set Az
only c * (Ai n w) ~ c * (A2 n w) for every open set w a

Proof. - The necessity is obvious. As to the sufficiency~ the stated inequality

immediately extends to quasi open sets and we merely have to take (D = C A2 .

The intersection of any countable family of quasi closed sets is quasi closed.

Although the restriction to countable families is indispensable, we have the fol-

lowing main result : .

THEOREM 1. - Suppose that X has a countable b ase o f open set s and that the sub-

additive 9 is ;F every non-void est H of quasi clo-

sed sets which is stable under countable intersection has a quasi minimal element,
i . e . a set quasi contained in any other set 

Another way of formulating the conclusion of this theorem is that any non-void

family ? of quasi closed sets contains a countable subfamily whose intersection

is quasi contained in each of the sets of ~ .

To prove the theorem, one applies the method in Choquet’s proof [6] of a theorem
of Getoor [l0] Moreover~ lemma 1 is used under observation of the fact that, since
c is true~ it suffices, in verifying the inequality of that lemma, to consider

sets w from a countable base for X so chosen that it is stable under finite

union, and consequently that any open set (jo is the union of an increasing sequen-

ce of open sets from the base.

It follows, in particular, from theorem 1 that every set A  X has an equiva-
lence class of quasi closures, i. e. quasi minimal elements in the set of all quasi
closed sets quasi containing A . There are, of course, dual results concerning

quasi open sets o

It follows also from theorem 1 that every outer measure * (or outer, subaddi-

tive capacity) on X which does not charge the sets equivalent to ø has an equi-
valence class of quasi closed supports, i. e. quasi minimal quasi closed sets car-

rying *.

LEMMA 2. - For any decreasing sequence of quasi closed sets Hn oi’ finite capa-

city, one has inf c*(Hn) = c*(~ Hn).
This holds for any subadditive capacity on any Hausdorff space. The proof is ele-

mentary, based on the special case where the sets Hn are compact.
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2. A key property of the fine topologies of potential theory ( ).
In this section, we consider a set X on which a topology called the to-

2014 to this topology will be 

fied by the term " i ine ( ly ) ’I .

For any set A we denote by K the fine closure of A, by i(A) the set

of finely isolated points of A, and by

the finely derived set. Following BRELOT, we call b(A) the base of A ( ). Any
set B of the form B = for some A c X is called a base.

Me denote by &#x26; the class of all finely isolated sets E i. e. sets E

such that iCE) = E . The fine topology of classical potential theory has the pro-
perty forming the hypothesis of the following theorem.

THEOREM 2. - Suppose that every finely isolated set E is finely closed. Then we

have for any sets A2 c X :

(a) n C A2 e g) o (b(A1) c b(Ji2» . The converse implication holds if

Al and A~ are finely closed.

(b) A n C b(A) = i(A) = 

(c) b(b(A)) = b(f.) = b(Ã) . Thus any base B = b(A) is finely perfect, B = b(B) .

The proof is elementary and based on the fact that, since every point forms a fi-

nely closed set, we have i(Ã) = i(A) for any set A C X 0

3. Quasi continuity implies fine continuity q. e. (quasi everywhere).
Let X denote a Hausdorff space and c a subadditive capacity on X with

c(Ø) = 0 . In addition to the given topology, we consider another topology on X ,
finer than the given one. We shall refer to this second topology as the "fine" to-

pology, and we denote by K the fine closure of a set A eX.

(1) For a similar study covering also the probabilistic cases, see DOOB [7J.
(2) In Brelot’s definition, the so-called non-polar points of A are ihcluded in

b(A) . There would be no difficulty in modifying the subsequent definitions and re-
sults accordingly. ble have not adopted this convention here becsuse, in the appli-
cations we have in mind, all points are polar. 0
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THEOREM 3. - Suppose just that c (K) = c"(A) for every set AcX . Then any 

---T

quasi closed (quasi open) set is equivalent to its fine closure (fine interior). If
Y is a topological space with a countable base, then every quasi continuous func-

is finely continuous q. e.

Proof. - If A is quasi closed, there corresponds (cf. [8J) to E &#x3E; 0 a closed

set F c 11. such that F)  E . Writing A B F = B , we have

If f : X ~ Y is quasi continuous, and if (0) is a countable base of openn

subsets of Y , we write

Then A is quasi open, and hence U (!I B B ) = E has c (E) =0 ; and f is

continuous in the fine topology on X at any point E .

q.. Thinness and fine to olo gy with res ct to a cone.

Let X be a Hausdorff space with a. countable base, and let c denote a subaddi-

tive , true capacity on X. Further let U denote a convex cone of lower semi-

continuous functions on X with values in (0 , + 

Following BRELOT we associate with any set A c X the reduced function R.
defined by 

’

(interpreted as + 00 if no such u exists).

li is called thin of order c~ (0  ~ ~ ~ j at x if there is a function

u e U such that 
’

cr equivalently if there is a neighbourhood d of x such that

We say that A is thin at x if A is thin of order 1 at x, and that A is

strongly thin at x if A is thin of every order a &#x3E; 0 at x 0 For any set

we denote by the set of points of X at which A is thin.

It was discovered by that the complements of the sets thin at x and not

containing x form the neighbourhoods of x in a topology on X called the fine
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topology (with respect and this topology is the coarsest among all topolo-
gies on X finer given topology and such that the functions of class t1

are continuous 
’

In the sequel, the qualification "fine (ly)" refers to he fine topology
with respect The finely isolated sets, forming the class S, ., considered in

§ 2, are the sets E thin at each of their points, E C e(E) . The base of a set
A cX is b(A) = C e(A) , , 

’

We proceed to study the consequences of the following axioms ( ) :

Note that axiom (I) forms the hypothesis of theorem 3 above, and that axioms (II)
and (III) together imply the hypothesis df theorem 2 because any set E thin at

all points of C E is finely closedo Consequently, we obtain the following lemma :

3. - Suppose the axioms (II) and (III) . The sets E of class S (the fi-

nely isolated sets) are characterised by each of the following equivalent proper-
tie s 0

For any set A ~ the fine closure 7" is equivalent to the base b(A) .

THEOREM 4. - Suppose axioms (II) , (ill), and Then (~) :
(a) For any set A c X and any number E &#x3E; 0 , there is open set 03C9 c X such

that e(A) C W and  e .

(b) Any finely closed (finely open) set is quasi closed (quasi open).
Y is a topological space with a countable base, then any finely conti-

nuous function f : X 20142014~ Y is quasi continuous.

Proof. - Suppose first axioms (II) , (III), and (IV). We begin by proving that,
for any set A RA is quasi upper semi-continuous, i. e. the set

(3) The present axioms are, as a whole, somewhat weaker than the axioms in [9],
partly because we do not assume anything about the polar 

(4) Property (a) , which implies (b) and (c) , was discovered by CHOQUET [5J in the
classical cases. This property also implies the axioms (II) and (IV).
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real t . denote the class of all sets

where u e U and u ¿ 1 on According to the axiom (IV) the sets of class ~

are all quasi closed, and it follows therefore from theorem 1 that there exists a

sequence of sets Hn whose intersection H is quasi contained in every set

from ? . In view of theorem 2 (a) ,

and hence

Since b(H) is equivalent to H (lemma 3) , so is B , and consequently B is

quasi closed.

In the rest of the proof, we do not use the axioms (directly) , execpt when sta-
ted. The quasi upper semi-continuity of for all sets A is equivalent to (b).
In fact, for any finely closed set /1, we have A D b (1~) , i. e. C A C and

hence

Being thus a countable union of quasi open sets, C A is quasi open, i. e. A is

quasi closed. Conversely, (b) implies that any finely upper semi-continuous func-

tion f : X 20142014~ (0 , + 00) (in particular 
J. 

for any set A) is quasi

upper semi-continuous because the sets (x e X B f(x)~t) are finely closed and

hence quasi closed.

Next, we observe that the Choquet property (a) is equivalent to the conjunction

of (b) and the axiom (II). In fact, (b) amounts to stating that, for every set

A c x i K is quasi closed, io e. to every e &#x3E; 0 there corresponds a closed set

with c*(A , F)  £ , or in other words an open set 03C91 (= C with

c -$~ (K’n the axiom (II) amounts to stating that, for every set A 

i. e. to every E &#x3E; 0 corresponds an open set with c ~. (w2)  E . Con-

sequently, (b) and the axiom (II) are together equivalent to the existence, for

every set A and every e &#x3E; 0 , of an open set w (= wi U (!J2) with
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such that

Finally~ we show that (b) ===&#x3E; (c) axiom (B7). 0 Suppose (b) , and let
f : F 20142014~ Y be finely continuous. If (Q ) denotes a countable base of open

subsets of Y y the sets are finely open, hence quasi open, and it fol-
lows easily that f is quasi continuous. Clearly, (c) implies axiom (IV) since the

functions of class U are finely continuouso

Scholium. - Suppose all four axioms. 0 Then the quasi topology is equivalent to the
fine topology in the following sense s Quasi continuity is the same as fine conti-

nuity quasi everywhere. A set A is quasi closed and only if, it is equivalent
to a finely closed set, e. g.  or quasi closed set A. is quasi con-

tained in a quasi closed set £2 if, and only if, C b(A2) . Everyequiva-
lence class of quasi closed sets contains precisely one base, the base of all sets
of the class.

5 . A fine toporo*

Keeping the notations and assumptions stated at the beginning of the preceding

section, we infer from theorem 1 in view of the above scholium that every family

(H ) of bases, b(H ) = H , contains a countable subfamily (H ) such that
cf a 0153 an

b(n H ) C b(H ) for every i. e.
n cxn ~

Cle arly this base is the greatest mino rant for the given family within the

set of all bases, ordered under inclusion. Thus, we obtain the following result

(cf. which serves as a substitute for the absence o f a countable base of

finely open sets.

THEOREM 5. - suppose all four axioms. Then the set C6 o f all bases i s a

semi-complete lattice under inclusion. For any su,bset B, the greatest
minorant is the base o f the intersection of the sets of d :

inf d = d) ,

and there is always a count able subset with the same gre ate st minorant.

.a~

outer measure J.1" (or outer, subadditive capacity) or2 X which

does not charge the sets E with c * (E) == 0 , has a smallest finely clo sed support,
and it is a base.
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In classical cases, this is Getoor’ s theorem [10] (cf.., also CHOQUET [6]).

THEOREM 6. - Suppose all four axioms. For any decreasing directed family of sets
A contained in a quasi comp act set,

This result is due to BRELOT [2] in classical cases and in his axiomatic theory
of superharmonic functions.

Proof. -For any we have

in view of axiom (I) and lemma 3 . It remains therefore only to be proved that

and fo r this, we may assume that the sets A03B1 a,re bases, A u E 13 . According to

theorem 5 there is a sequence ~a ~ such that

We may suppose the sequence (A, ) is decreasing., Note that
an

Since the sets are finely closed, they are quasi closeda By assunption they

are contained in a quasi compact set, they are therefore themselves quasi com-

pact. Since c does not charge the points, and hence not either the finite sets,

every compact set has finite capacity. Consequently it follows from lemma 2 that

which completes the proof.

6. On the verification of the axioms.

The axiom (I) is obviously fulfilled if c (A) depends only on

in fact, any u E U is finely continuous. Usually, in applications to potential

theory, the sets E with c"(E) == 0 are precisely the polar sets, i. e. subsets
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o f sets o f the fo rm u"~((+ co)) ~ u 6 U . The i s then ~filled ifp
for every polar set E and every point E ~ there exists u E ti such that

u==+o3 in E whereas +oo (cf. [9])~

The most difficult axiom to verify in applications is (II). For any function

f : X ~ (0, + ~), denote by f the greatest lower semi-continuous function

majorized by f .

LEMMA 4. - Suppose there is a constant 03B1 , 0  03B1  1, such that for every se-

quence of functions un e u,

Suppose further that c does not charge the points of X. Then any set E ~ thin

of order al at each of its points, has c (E) = 0 .

In the applications to potential theory the thinness is always strong, i. e.

thinness (of order 1 ) implies thinness of any order a &#x3E; 0 . In that case? the

lemma gives a sufficient condition for the validity of axiom (II). In the classical
cases inf u is itself a function and equal q. e. to inf u . This fol-
lows essentially from the lower envelope principle. The above lemma indicates that

it suffices to assume a certain dilated lower envelope principle (cf. § 7).

Proof of lemma 4. - Let (uj ) denote a countable base of open subsets of X ,
and let E be a set thin of order a at each of its points. Writing

we have E = U E . It suffices therefore to verif that c  (E ) = 0 for each
n,p n,p

n and p . Let S denote a countable, dense sub set o f such a set E n,p . For each

s E S , there is u ~ u such that U (8)  a - and us  1 in E n w , ( s} ,
s s s n

in paxticular in E n,p ,S. Writing

we thus have in S~ and in E ~ S ~ By- hypothesis it
~ ~P

follows from the latter inequality that h ~a q. e in En v ~5 . On the other
~ ~ 2014~P 

hand, h  h  03B1 -1/p in. S implies -1/p in S ~ E
n,p 

because h is

lower semi-continuous. This leads to a contradiction unless c (E n,p B S) = 0 .

Since S is countable, c (S) == 0 , and we conclude that c (E) == 0 .



12-10

7. The usual capacity with respect to a kernel.
From mv on, let X be a locally compact space with a count able base of open

sets, and let G denote a kernel on x , i. e. a lower semi-continuous function on

X x X with values in + co) . hle denote by c the usual capacity (of. [8])
v

with respect to G , and by U the class of all potentials G03BB of bounded measu-

res ~. &#x3E; 0 on X with respect to the adjoint kernel G(x, y) = G(y , x) .

THEOREM 7. - Suppose that :

(i) G and G satisfy the continuity principle,

(ii) G is finite and continuous off the diagonal, infinite on the diagonal

(x = y) , and

(iii) G(x , y) - 0 as o ne of the variables t ends to the point at infinity, the

convergence being uniform with respect to the other variable on any compact set.

Then :

(a) c i s a sub additive , true capacity whi ch do e s not charge the points.

(b) 0 (A) = inf{iB.(X) I GÀ ~1 in A} .
(c) = 0) ===&#x3E; ( A is olar) .
(d) (0 -)} (A)  (0) (===&#x3E; ( A i s ’ contained in a quasi compact set) .
(e) The thinne s s is always strong.
(f) The axioms (I), (III), and (IV) are valid.

Indication of proof. - The assertions (a) , (d) and the axiom (IV) were establish-
ed in [8] (the fact that c does not charge the points being equivalent to the hy-

pothesis G(x , x) = + oo ). It was also proved in [8] that (b) holds for compact
A , and that, for arbitrary A,

It follows easily that (b) holds for any K , in particular for any open set, and

therefore for arbitrary A . Next, ( c ) and the axiom ( I ) are easily derived from

(b), and so is the axiom (III) because each transposed potential GÀ with 03BB (X)  +00

is finite and continuous off the support of À (cf. also § 6). Finally (e) was es-
tablished by BRELOT [1].

I do not know whether the remaining axiom (II) holds under the present rather
weak assumptions on the kernele It suffices, however, to add the following hypothe-

sis, called the dilated domination principle :



12-11

There exi s t s a co nst ant k sucthat for any two po sitive measures
of which ~ has finite energy ~ 

Since the assertion in axiom (II) is of a local character, and since an exceptio-

nal set equivalent to Ø is involved, it would actually suffice to assume that

quasi every point x of X has a neighbourhood on which holds (the cons-

tant k being allowed to depend on x ) e Whether this weaker form of (D ) holds
for all kernels satisfying the hypotheses of theorem 7 does not seem to be known.

It might be added that the analogous weaker form of the dilated maximum principle
is known to hold under the assumptions of theorem 7 CHOQUET [4]~ 
and the same is easily shown to apply to the corresponding weak form of the follow-

ing dilated principle o f positivity o f masses :

There exists a constant m such that, for any two positive measures
and v , 

~I

In proving that axiom (II) follows from (Ddil) under the hypothesis of theorem 7,
we may therefore assume that (p dil) holds.

We begin by deriving from and (Ddil) the following dilated lower envelope
principle :

(Ldil) There exists a constant k such that, for any finite set of potentials

... , up from the class ’U, there is a potential U E ’U with the following
properties 3

v

To prove this, write u. = with bounded measures À., j = 1 , .. c , p ,.
J J J

a.ndput .~o , up) .
Since r is lower semi-continuous, there is an increasing sequence of continuous

functions 0 of compact supports such that f = sup fn. Applying Kishi’s
n

existencé theorem [11J if G is symmetric, the Gauss variational principle),
we find measures n  0 of compact supports such that
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v

Since fn  f  u. ::: GÀ. , we infer from (Ddil) that,n J J dil

By virtue of this shows, in particular, that n (X)  Ink 1..1 (X) , a,nd so the

total masses  (X) remain bounded. Hence, the Brelot-Choquet convergence theorem

is applicable (cf. [8]). be any vague cluster point for the sequence (.J.n).
Then

On the other hand, for 

v

and consequently G   k f everywhere.

Having thus established we next extend this principle to the case of an
v

infinite sequence (u ) of potentials u = GX E again under application ofn n n

the convergence theorem. Writing this time

we obtain from a bounded measure p, ~ 0 such that

Since G n  k k G03BB1, it follows from (p dil) that the total masses u (X)
remain bomided. Let  denote a vague cluster point for (m ) . Then

 . n

( ) In the first instance, we obtain fp except in some set of inner capa-
city o. Since is quasi continuous (axiom (IV) ) , and fp is continuous, the
exceptional set is quasi open, hence capacitable (cf [8])~ and consequently also
of outer capacity 0 0
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I t is now clear that al so the principal hypothesis of lemma 4 is with

a = In fact, since u is lower semi-continuous, and 03B1u = k u $ f
everywhere, we have f , and consequently

Thi s completes the proo f o f the remaining axiom (II) under the hypothe ses o f theo-

rem 7 and the additional assumption (or just the above mentioned weaker form
o f thi s principle)

It is well known that the kernels of order a on Rn ,

satisfy the actual domination principle for 03B1  2 only, but the dilated domina-

tion principle (Ddil) for Hence the preceding theory is applicable to

these kernels.

In conclusion, let us remark that results similar to those described above for

the usual capacity with respect to a kernel G can be obtained for the energy ca-

p acity with respect to a symmetric kernel of positive type, taking for U the set

of all potentials GX of measures X  0 of finite energy. The continuity princi-

ple and the hypothesis (iii) of theorem 7 are now replaced by the principle of con-

sistency and the hypothesis that G(x , y,) remains bounded as x tends

to infinity in X while y~ and Y2 remain in a compact set. In order to secure

that any set of outer energy capacity 0 be polar (with respect to the present co-
it is assumed moreover that X is not thin at any point.
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