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Séminaire BRELOT-CHOQUET-DENY 401
(Théorie du Potentiel)
6e année, 1962, n° 4 29 mars 1962

A CIASS OF ELLIPTIC DIFFERENTIAL EQUATIONS
WITH DISCONTINUOUS COEFFICIENTS

par Charles B. MORREY, Jr

1, Introductione

We shall discuss equations of the form

v
(Lo1) _/G{gv (%aaﬁu +bau+eu)+v(z ¢*u +du+f)lax=0
o=l % Bt '3 o=L » &

in which G is a bounded domain in v dimensional space, the coefficients
a® , p%, c*, and d are bounded and measurable, e and f are in IZ(G) ,
u € Hi(D) for each demain D for which D (the closare of D ) € G , and the
equation is supposed to hold for all Iipschitz fumctions v with compact sup=-
port. A function u € Hllo(D) if and only if u and its "distribution deriva-
tives", which we denote by Uy XS L, eee y Vv, € Lp(D) 3 that is to say
u e Lp(D) and there are functions p 5 a=1, «e0y v, also in Lp(D) ,
such that

(1.2) Jp u(x) g, () ax = - Jpp (%) glx) ax

for every function g of class ¢ on D and having compact support j; here,

of course, g a denotes the ordinary partial derivative. These spaces are well
’

known but are discussed rather completely in [7] (see the bibliography at the

end)o

Tn case the function u is of class C<(G) , the coefficients a®f, b*,
cand e%e Gl(G) , and ¢ ,d and fe CO(G) , thon cne sees that wu satisfies
(L.1) for all the v mentioned above if and only if u satisfies the differen~-

tial equation

(Le3) 3_%.(\2’30‘% -x-bau)-(}fcau +du):f-§ eaa .
o=l dx~ p=l s P a=Ll ’Q a=L
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However, if the coefficents are not smooth, examples show that there may not be
any solution u of the equation (l.1) which is in Cl(G) , let alone Cz(G) 3

in such cases, of course, it is not legitimate to write the differential equa=

tion (1.3).

Equations of the form (L.l) with "rough!" coefficients arise in attempting to
prove the differentiability of the solutions of variational problems. For
example, suppose that a function 2z minimizes an integral of the form

Iz, 6) =/, flx, 2(0) , va@)] ax  (x=(x , eeu , D))

(Le4)
Vz(x) = grad z(x) = {z,l(x) g see z’v(x)}

among all admitted functions having the same boundary values (in a generalized
v .
class G in its arguments and satisfies a set of inequalities, too long to

sense)s Then, if the function f(x1 y see 4 X

write here (but see [7]), one can proceed as follows : first, if C is any
Lipschitz function with compact support, then 2z + AL has the same boundary
values as 2z for any A and so the function

(Le5) ey =/G flx, a(x) + A(x) , Va(x) + AVE(®) ] dx

has a minimum for A =0 and the first step in the derivation of the Euler

equation can be carried through to yield

.
(1.6) ¢'(0) =0=/, (ai C’a fpa + Gf ) ax

for any Lipschitz function ¢ with compact support ; here

f =f [x, 2 Vz(x)] , etc. f =29 etc.
Dy, pOL[A ’ '7(3{) ’ ( ) ’ ’ Py ﬂepa sy €U

At this point, all we know about 2z from the existence theory (see the notes
[7] referred to above) is that it belongs to some space Hl(G) « To obtain
more information about =z , we next apply a differencé-quogient procedure to the
equation (1.6) as follows : let G be any Lipschitz function with compact
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support in G + Then there is an hy > 0O and e D' with IBQ ¢ G such that
the support of the function &(x - heY) cD! for all h with O <|n] < hy
and each Y, 1 <y<v, e, being the unit vector in the x! direction.
For a fixed Yy and h, O < |n| <1hO s let us define

g (=) = 5[50 = he)) = )], 7,0 = b he ) - 2(0] .

If g, is inserted in (L.6), if next the integral is written as a sum of two
integrals one for each term in Ch , if then the obvious change of variables is
made in the integrel involving C(x - heY) , and if finally the integrals are

recombined, one obtains

/G[ail &) Ap(x) + g(x) By ()] ax =0 ’

where

(1.7) Ag(x) = fpa[x + heY , 2(x + hey) , Plx + heY)] - fpan , 2(x) 5, p(X)] ,

p(x) ={p () 5 eee , p (D}, px) =2 & )

Bh being the corresponding difference of fz o Uming the integral form of the

theorem of the mean, we may write

)
A;(x) = Sii agﬁ(x) Zh,ﬁ(x) + bg(x) &h(x) + eg(x) R
y
B (x) = ai o) 7, () + 4,60 2,0 + £, () ,
(L.8)
agﬁ(x) = /Ol fpapp[x + 'bheY , z(x) + taz , p(x) + tap) dt ,

Az = z(x + heY) - z(x) , Bp, = pe(x + hBY) - pe(x)

for almost every =x j of course the other coefficients are giwen by correspon—
ding formulas. Since we have the solution, e may regard the coefficients as
known and we see that Zy asatisfies an equation of the form (Lel) 5 but of
course the coefficients are known only to be measurable and, in the general
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cases considered in the Notes [‘7], are not even known to be bounded. However,

in case f T"has degree 2k at infinity", i. e. setisfies

Kk  voi142°42 0<umgM, k31
g

(1.9) WS - K Lflx,2z,p W

and the other inequalities in equation (3.1) of the Notes [7], it is possible,
by using interior boundedness properties something like those proved in § 3, to
show that we may let h -0 and conclude tnat the derivatives W = z _ and the
function U =72 (see (1.9)) e E.(D) for each D with D <G and that

the derivatives pY satisfy the differentiated equations

/D Vk'j'{z C,oc(z 2P Py, + B Py * Vl/2 e*Y)
' o

‘3 Ys
+C(anpa+dp +Vl/2fY) Aax=0, Y=1, 406,V ,
(1.10) o Ys Y
Vk-l aap =71 H anl ba = Vk-]' ca =7 3
Papﬁ Py2
vl g - £ 3 Vk—l/Z RV ; Vk..l/2' ot _ p . ;
paxY zX

and the coefficients a%P R b2 s c¢ s 4, e %Y s and £Y are all bounded and
measurable and satisfy

m%?i$ E aaﬁ(x)?\?\, m>0 ,
a=l a, =l ¢
(1.11)
STE™P? + M2+ M? + ) <f .

By setting C =V"° W, (¥ Lipschitz with compact support in D ) in equations
(1.10) (this € dis not Iipschitz but technical lemmas allow its use) and summing
with respect to y , it can be shown thot the function U = Vk/ 2 mentioned

above has the following propesty :

A
There is a number A, 1 <A <2, such that the function W =U satisfies

the differentiel inequality

(1.12) A [Eq,’a(gaaﬁw,ﬁ + W) + q)(gca L )] dx g O
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for all ¢ e Lipc(G) with ¥(x} >0, Lipc(G) denoting the set of Lipschitz
functions having compact support in G .

This inequality is interesting, because if all functions are smooth, it is

equivalent to the inequality

/G 4[25.36(2 2P W’ﬁ-l- W) - % W,a +dd)]dax >0

for all ¢y > 0 from which one concludes that

(1.13) Zgi-a- (Z A baW) - et u a ¥ a) =0 .
4 ’

p

In case a’f = %P (the Kronecker delta) and b* =c% =4 =0 s (Lel3) implies
that W is sub-harmonice. In § 4, it is shown (not quite in all detail) using

the method of MOSER [8] that U is bounded on each domain D with D ¢ G + This
implies that 2z is Lipschitz and that all the py are bounded on such D . Then
since V 1is bounded, we see that the equations (1.10) assume the form (l.1) j

in fact, we may absorb the terms b~ pY and de into e~ and f , repectivelye
For such equations, we show in § 5 (not incomplete detail) that the solutions

p, are Hdlder contimaous on interior domains. Then, if the second derivatives

of f are H8lder contimuous, the coefficients in (L.10) are Hélder continuous
and this implies that the derivatives p are Hdlder contimuous, so that the
second derivatives of 2z are Hélder continuous (in the case Vv =2 , this result
has been known a long time (see [1]). Higher differentiability can be deduced

by repeating the difference-~quotient procedure and using the other theorems.

Some of the techniques used in studying the equations (l.1) are useful even the
coefficients are smoothe For example one of the simplest ways of proving the
existence of the solutions of the equntion.(1£3) is to show first the existence
of the solutions of the corresponding equations (l.l), using the result of § 2,
and then applying the difference~quotient procedure illustrated above together
with the interior boundedness theerem of § 3 to show that the second derivatives
of u are in IZ(D) . Then the H8lder continuity theorems of § 5 show that the
first derivatives of u are Hélder contimuous ond the classical results show

that the second derivatives zree.

We are presenting these results before this seminar with the hope that the
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solutions will satisfy some or all of the axioms of abstract potential theory.
We believe, however, that the theorems which are necessary for this purpose have

not all been provede

2+ The existence theory.

We shall consider the equations (l.l) in which the coefficients aOLB ’ p® )

¢, and a satisfy (L.11) but we shell allow e  and f to be in L, ; the
domain G will always be boundeds We shall not assume that ¢® =1p* or that
aﬁa‘= aap 3 this makes no difference in the proofs and is useful in studing
certain non-linear equations of the form

Y 5 a
L-——ax(X,Z,VZ):B(X,Z,VZ) ’
o=l ox

which have the same form as the Euler equations for the integral (L.4) except
that we do not assume that A% = fp and hence don't assume that

a _ B a
aA. /alb = 6A /bpa .
We are looking for a solution u of (Ls1) which "has given boundary valuest.

This has, orlglnally, to be interpreted (since we have abandoned continuity in

using the spaces Hé ) to mean thet u -u*e HQO(G) , u® being a given func-

tion Eé(G) and EéO(G) denoting the closure in Hé(G) of the set Lipschitz
functions with compact support in G . This implies that u € HQ(G) and so has
finite Dirichlet integrale Smoothness on the interior and at the boundary is
considered later, but we shall not present any such results hereo. But solutions
of (L.1) will be shown in § 3 and § 4  to have boundedness properties on interior

domains even if they are not in Hz over the whole domain G .

It is clear that our problem may be reduced, by setting U =1u - v (u*
given), to that where our desired solution H;O(G) ; the resulting terms invol-
ving u¥ can be absorbed into the non-homogeneous terms e and f . Moreover,
for well-known reasons, we shall modify (L.1) by allowing the functions u , v,

, and f to be conplex~valued (keeplnb the others real), replacing v by
its conjugate v ’ and adding the term Xuv in the integral (A comnlex) This
last has the effect, in the smooth case , of replacing the equation (L.3) by
Iu-Au=¢, where In and ¢ denotethe left and right sides of that equation.
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We now define

B(u , v) = Bl(u , V) + Bz(u , V) 3 Clu , v) = /G w dx

ey T attug e
B’z(u , V) = /G [E (ba;’au - u’a :r-) + du-\-r.] dx 3
L(V) ==/, (ge“?r"a-f?)dx .

We shall assume that u and v € HéO(G) and shall use as inner product, the ex~
precssion

(242) ((u,y V)= /Ggu’a ;,a dx .

This is legitimate since we have (see the Notes [(7h.

IEMMA 2.1 (Poincaré's inequality)e - If G c B(xO s R) , then

(243) fo lal? ax s G2R) Jy 2 lu I ax we Bo@)

here B(x, , R) denotes the ball with center X, and radius R.

Tn terms of this notation our altered equations (lel) become

(244) Blu,v) + %, v) =L , ve H; (@) ;
0

that (2.4) holds for 211 v in HZO(G) if it does for 21l v € Lip, (G) is
evident from the fact that Iip, (G) is dense in HZO(G)

We first prove :

THEOREM 2.le = There is a real number ’b guch that
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nflf <ReB(w, w , B (u, V)< ulll ol
(2.5) I I T o i i ey 1 G ¥

1B, (w , Wl ¢ (@2) ¥ + A cu, w)

where “u“ and ”u“o denote the norms in éO(G) and IQ(G) , respectively
ve may take }"O = M(1 + 2¥/m) .

Proofse = If we write u = u, + :i.u2 , the first inequality follows from (1.11),

since

ReBl (u » U-) = /G a%ﬁ aap(ul’a ul,p + uz’a 112,ﬁ) dax .

The second and third inequalities are mmedlate consequences of (l.ll) and the
Schwarz inequality (and the fact that tZ B v’a] (Z ‘ba|2 L/2 (2- [v l )1/2
etce)s The fourth follows by setting v =u in the th::.rd 1nequallty and using
the Cauchy 1nequa11ty

2lMlly -« lhll ) < elldl? + & L IWE, e = mu '

THEOREM 2.2 (Lemma of Lax and iilgram) [2]s. =~ Suppose, in a Hilbert space % ,

Bo(u , V) is linear in u for each v and conjugate linear in v for each

u and suppose

(2.6) (1) | IBO(u , V)| & M all o Iivll
(11) By Wl Bmy I, m >0 .

Suppase the trarnsformation T, is defined by the condition

(2.7) Bo(u , V) = (’.I.‘O u, V) .
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Then T, and T'él are operatsrs with bounds M, and m'l'1 , Tespectivelye.

Proofs ~ It is clear that T, is a linear operator with bound I, . From (R.6)
(11) and (247), we see that

m lalf < 1B,y W] =@y e, wl gl « izl

so that

HTO u“ 2oy HuH .

It follows easily that the range of TO is closede If the range were not the
whole space, there would be a v such that Bo(u , V) = (TO u, v) =0 for
every u + But, by setting u =v , it follows from (ii) thet v = 0 o Thus

T, 1is & bounded operator with norm < m'l"l .

TEEOREM 243« = Suppose the transformation U is defined on H;O(G) by the
condition that

(2.8) Clu, v) = ((u, v))éo , v e HéO(G) .

Then U 1is a completely continuous operatora

Proofe = That U is an operator follows from Poincaré's inequality (lemma 2.1)

since

ull = sup (U2, V) = owp Sy W axg 2 B Il se Wl =1

Next, suppose wu - u (locale convergence) in H;O(G) « Then u, ~u (strongly)
in L, ([7], theorem 1,10 (d)) and

s, - wll = sup /; (o, -w) Faxs2™ 2 Rl ol = ull, -0

so that U 1is compacte
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THEOREM 2e4¢ = If A 1is not in a set C, which has no limit points in the
plane, the equation (2.4) has a unique solution u in H;'O(G) for each given
e and f in 12((}) « If A eC, there are solutions of (2.4) in which u #0
and e =f =0, but the manifold of these is finite dimensionals If A, is

— —

defined as in theorem 2.1, then no real mmber A > A, isin C.

Proofe = Let us define 7\0 as in theorem 2.1 and By by

(2.9) Bo(u , V) =Blu, v) + 7\0 Clu, v)

and define T, by (Re7)« Then, equation (2.4) is equivalent to

(2.10) Tou+ (A= 7\0) Uu =w, where ((w, v)) =L({v) ’

L being a linear functional. Moreover, from theorem 2.1, it follows that 3
satisfies the conditions of the lemma of Iax and Milgram with mo= n/2 .
Accordingly T, has a bounded inverse so (2.10) is equivalent to

-l
u-t-(?»-?\O)TO Uu'I‘alw .

Since T'(;l U dis compact, the theorem follows from the Riesz theory of linear

operatorse
As an immediate onsequence of the theorems of this section and Poincaré's ines

guality we obtain the following theoren

THEOREM 2.5.(Local existence and uniqueness theorem)s = There is an Ry>0,
depending only on m and M s8uch that if O <R RO and G C B(xo , R) ,

then A =0 is not in the set C of theorem 2.4 and, in fact if u is the

solution of (2.4), then

(2.11) lhall, < 4u7t (llell, + Bllll) .

3« Firstinterior boundedness and approximation theorems.

. . . . a a a
In this section, we continue to assume that the coefficients a P s b ,cC

and d satisfy (1.11) and that G is bounded and G C B(XO s R) .
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THEOREM 3.1 (Interior bmmdedness in l‘é Ye = Supoose that u, e and
fel, (@) and that u e H (D) for each D with D c G and satisfies (1.1) for
each v € HZO(G) which vanlshes in G = D for some D c G » Then there is a
constant C depending only on m and M (and R) such that

Gy Il < ors g + el + elelig), st

being the distance from D to 3G (the boundary of G )e

Notationse = |Wa| >0, iVulz =2 |u alz 3 ”Vullo p denotes the I, norm
—_— ’
of |[vu| over D . @

ol
Proofs ~ Let us define n(x) =1 on D, nx) =1~ 28~ da(x , D) for
(x , D) (the dlstance of x from D) g 8/ , and n(x) = 0 otherwise
and let us define

v=nl, U=nu

and substitute that v in our equation (l.l) as altered to (2.4) with A =0
and take the real parte Then U € H;O(G) and we have

‘x'fz-l;-a- .1-1' a =0 _ =~ u
& n( s & n:“ ) n:ﬁ B n»ﬁ

and our equation becomes

- T - Of Py - T - ap
(3.2) 0 =ReB(U, U) + Re [;2[a (”,a uU,ﬁ Uy Mg u) - a NqM p U

a - o o o -
+ne U _ + ub U + ue =~ C Tu + nUf | dx
n o & 'ﬂ’a n,an n:a n Y]
Using theorem 2.1 for U and relations like
122%P ¢ ) <u@o P2 @y A2
P Vgl < M P o

and then the Cauchy inequality to eliminate the terms involving the U , in the
’
remaining integral, we see that
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03 (a) lf - O + 6, 8 Ilf -, leif-cg 87 Ihll, . slldl,

from which the theorem follows easily.

THEOREM 3.2 (Approximation theorem). = Suppose that the coefficients aﬁﬁ ’

bz s cg s and dn satisfy (L.11) for each n on G and converge almost every-

where on G to a%P ’ b* ’ ¥ s 2and d , reSpectlvely, and suppose that e, ¢
and f —f in LZ(G) . Suppose that w -u in HZ(G) and that u isa

solution of (l'l)n for each n « Then u is a solution of (l.l).

Notatione = — denotes weak convergences

1
Proofe - For each v € HZO(G) , we see that

apg — a a=— a
an »apv bov =»Db v _ 4 etce »
n a n Nl

in L, (6) ( » denotes strong or ordinary convergence) so that

B.(un s V) » Blu, v) , C(un y V) » Clu, v) , and Ln(v) > L(v) .

4, Interior boundednesse.

Suppose that a function u € Hé[B(xO , R)] « Then there is a lemma of SOBOILEV
([9, [7]) which states that u € L, [B(x, , R)] and that

@) Uy my 1861 ax/? <0 g gy Lvel® - 8% T e
1 £s £Y(v=2) if v>2, s>1 if y=2 ;

in the case wv=2 , u still need not be boundede The function U , mentioned in
§1, el (G) and to Hé(D) for each D with D c G . If U also satisfies
the conditions near (l 12), then ° e IQ(D) and it turns out that we can
conclude that U° e HZ(A) for each A with A c D . Indeed, it is possible to

prove the following lemma s
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IEMMA 4.1. - Suppose that U is real, U(x) > 1 , and satisfies the underlined
conditions near and including (1.12) and, in addition that

w="U%¢ IQ[B(XO s, R+ a)l

for some <t > 1 where we assume that B(xy, R+a) c G and O0<agR . Then
e 2
= HZ[B(XO s R)J and

/ 2 2 2 2
(4+2) B(x,R) lval”™ ax g6 = a /B(XO,R-a) wodx, 62

where C; depends only on v , m , M, and A

Proofe = A technmical lemma allows us to substitute

2 2-A 2T
\l) =" U2 U?_,
in (1.12), U;  being the truncated function, defined by
(443) Up(x) =U(x) if U)EL, Ulx) =0 if Ux 3L

and 1 being defined by n(x) =1 on Blx; , R) , equal to a."l(lx - XO} -R)

for RL |x ~ XOI KR+ a and O otherwise. Since UL o = O almost everywhere
H

on E , the set where U(x) > L , we see that

2 laA 2T2 A 2T
y ,=n U U"i [(2 =A) U’a-l- (Rt - 2) UL’OL]+2rm’aU2 Ui

’

the inequality (l.12) becomes (again using VU =0 omn B ) .

(44) [ I PR (2 = A) V0.0 0 4 (2 = A) TbaTU = A7) + arr

+ (2’5 - 2) (XVUL,a.VU

d - ‘c-z T
L+ U baV0) + 200055 W (AanvU + b0)} ax = 0

where we have abbreviated 2 U a Py B to VUeao VU , bt U o o DbeVU, etc.
? ’ 2
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Using the bounds for the coefficients and the inequalities of Cauchy and Schwarz

as usual, we conclude that

(45)  Jyt BT WP 4 (2 - 1) |wpl®] ax

2 202 2 2.2 22
L0 /G['cn Ui UA+[VT]1 UZU?_. ] ax .
If we now set wy = qU'Uz-l , we find (again using VU =0 on Ep ) that

-1 1l .
(4.6) V= UUE Vn + qbz (VU + (T ~1) VUL] .

It follows from (4.5) and (4.6) thet

(4.7) /B Wlez dx £ 0y '52 B(XO,R+a) (n2 + W"\‘z) UZ Uzl,t-z dx °

(xo ,R+a)

Since U'e IQEB(XO R+ a)] , we may let L - « %o obtain our result.

THEOREM 4,l. = Suppose U scatisfies the hypotheses of lemma 4.l with T =1
Then U is bounded on each domain D € G and

, 2 -y 2
(448) |U(x)|“ < Ca B(xo,a) v " dy , x e Blxy, R) s
0<agR, Blxyg,R+a)cG, v>2 o,

wvhere C depends only oo v, m , ¥, and A.

Remarke - If y =2, U is still bounded on interior domzins but the ine-
quality in (4.8) must be replaced by

(4.8') 1U(X)l2 < C(e) a_v-E/B‘(xo,Rm) v F ey, v=2 .

This result is not good enough to obtain the results in the next sectione. How=

ever, the writer proved the results in the next section in the case Vv = 2 for
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more general systems of equations many years ago [3), [4]. A simplified version of

this old work appears in [6], chapter 4. So in the next section, we assume 7V >Z2e

Proof. = Let um define

n

g -n
s=v/(=2), wy=U, w =0, anB(xo,R+2 a) , WnZ/B

2
W dx
1

Using the lerma we conclude in turn that w, = w(s) € IQ(B ), w € 2( B) ,

W = wl el (BZ) s W, € HZ(B ), etc. Then, using the inequalities (4.1) and (4.2)

with T = sn"' and a replaced by 271 5 , we obtain the recurrence relation

n

L/s _ 2s . /s 2 =2 2 ‘
W = {/Bn v ax}/" g Co /Bn(lvwn-ll + R wn_l) dx

< 20,0, 7 4™ /) | v ax=K KU,
n
K, =20, C; s 2P, K =48 .
From this recurrence relation for eack n , we conclude that
wl/s,n\< 1% "91 Wy PR W, o= (L - S..l)-l =y, P _ o2 .

The theorem follows by letting n - o«

5. H8lder continuity of the solutionse.

Tn this section we shall assume that Vv>2 (see the remark after theorem 4.1)

and shall restrict ourselves to the special equations
- o B _
(5:1) Jg 2(5 8% u g =T u o) ax=/q O0 . e Vu-Co . W) ax=0

(52) /G [VC(a e Vu+8) +Clc s Vu+ £f)] dx =0 .
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It was pointed out in the introdvction that the type (542) with e and f
bounded is sufficient for the application to the calculus of variations. The

general equations (l.l) have been treated in [5. by a scmewhat longer method.

We need the following two generalizations of Poincaré's inequality s

"IEMME 5.ls - There are constarts C; (v) and 02(v 5 ¢) such that

2 2 2 . _
/B(XO,R) lul® axg ¢, R /B(XO’R) Vul® ax if /B(XO’R) wdx = 0
2 2 2 .
/B(XO,R) |u|® axg< G, R /B(XO,R) lvul* ax if |S| > ¢|B(xy » R)| ;, e>0,

L -
for all u e H?[B(xO s R)] ; here S5 is the set of x where u(x) = 0 and

|s| is its measure.

Proof. - It is sufficient to prove these for R =1 and X

second, the first is proved similarly. Suppose the second is falses Then there

= 0 . We prove the

exists a sequence {un} with Hun“l (the full norm in l-é ) =1 such that
lSnI > c|B(0, 1)] and

(5.3) Too,y Wil &x> 0 Jygo,uy IPuyl*ax

We may assume that u - u in hé ([7], theorem 1.10 b) so that v, ~ in
L, ([7], theorem lIlO d)e From (5.3) we conclude thet Vun-r 0 in L, , so
that u - u in H; « Then u must be a constant d ([7], theorem L.1) #0
since U“l = 1 . But then

. 2 . . 2 . 2
0 = lim /B(O,l) lun ~u|” ax> lim /S lun - ul® dx> lim d lSnl
n>o0 00 n

which is a contradiction.

1 —
Definition. - A function v e H, (D) for eech D with Dc G is a sub-
solution of (5.1) if and only if
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J, .29y + GoaW) dx g O foreach §e Lip (6) , &(x) >0 .

Remarks. = This condition is formelly equivalent to the condition

IEMifs 5¢24 = Supnose that

(1) F is non-negative and convex on the interval (0 ’ ™) s

(i1) H==~ o F is convex on that interval,

(iii1) w is a non-negative solution of (5.1) on G,

(iv) v{x) = Flu(x)] , and
(v) v e IQ(G) .

Then v is a sub=solution of (5.1) on G and

L lwl? axgca™ Jo| if DG, GcBx ,R)

where C depends only on v, m, M, and R and Ga is the set of x in G
such that B(x , a) c G .

Proofe =~ First, we assume that

Hect?(0,w , -1$3WE - (s> 0)

and that H" is bounded on (0 , ) « Then F € 02[0 s® ,and F, F', and
F!' are bounded there with Fm"(u) > [F'(u)]2 « Let us set =q2 F'(u) in equa-
tion (5.1), where n is defined as usual. It follows that
2 2
0= /!2‘: [2NVneae™ + N~ F(u) VueasTu + n° covv]dx

3/(} [nz(Vv.a.Vv + CoW) + 2nVnea.W) dx ,

since F" > (F')2 e Finally
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(5.4) Jyn? lovl? axg o [y @° ¢+ nl®) ax

from which the inequality follows easily.

In the general case, H is convex with =< H(u) <0 on (0, o o It is
easy to see that H can be approximated from below by functions Hn having the
properties in the preceding paragreph. It follows that the functions vn(x) - v(x)
from below and hence strongly in LQ(G) . Clearly, also, V, —v in H%(D) for
each D with D c G, on account of the inequality (544) which holds for each n .

The inequality holds in the limit by lower-semicontinuitye

THEOREM 5.l (Harnack type). - Suppose that

(i) u is a non-negative solution of (5.1) on Byp = B(XO , 2R) and

(i1) the set S where u(x) >1 has measure >/°11B2Rl » ¢ > 0. Then

u.(x)302>0 for x e By

where c, depends only on v, m, M, and c; .

Proof. - There is a k , 1 <k<2, suwch that |Byp = Ble = (1/2)c, leRl .
Then |S n Ble > (1) \BkRI . Iet us define TF(u) = max[~ log(u + €) , 0] ,
where 0< g <1 . It is easy to see that F satisfies the hypotheses of lemma

5.14 Consequently

/e

|Vvl2 dx £ Gy Rv""2 where v(x) = Flu(x)] «
Since v(x) =0 on S and ‘lS n BkR\ > (cl/Z)lBle , it follows from lemua 5.1
that
2 v
Jo v axgC R .

Ber

The theorem follows from this and theorem 4el.

Notationes - u € CO(C-) if and only if u satisfies a uniform Hélder condition
with exponent p on G 3 u € CS(G) if and only if u e CS (D) for each D
with D € G
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THEOREM 5.2. = Suppose u is & solution of (5.1) on G . Then u e CO}’l (q)
0

where O<p, <1 and p, depends only on v , m, and H.

B

lore precisely

lux) - ulxg)| < 6B~ (|x - XOI/R)pO , xe€B(xy,R) ,

where

0]

L= llully pes 5

B(xg , R+0) cG, T=v2, d<R ,

and C depends only on v , m , and M.,

Proof. = It is sufficient to prove the inequality. It follows from theorem 4.l
that |

lu(z) | € Co 15T , x € By = B(xo , R) .

Let us define m*
and let us choose m (unique) so that |S7| < lBR‘ /2, S
sets of points x € By for which u(x) >T@ and u(x) <m , respectively.

and M* as the essential inf and sup of u(x) on BR

* and S” being the

If nf << it , the functions [11* = u(x) /05 =7 and [u(x) = n*]/@ - n%)

satisfy the hypotheses of theorem 5.1 on BR with ¢, = 1/2 + It follows that

m < u(x) M, for xe€ By Y where

m =H-h@-n", ¥ =E+hM" -, h=l-c <1 ,
¢, being the constant of theorem 5.1 with ¢, = 1/2 o« The same results hold if
- _ — _ ok .
m=m or m=M or bothe

ffow, let us define

o(r) = [ess sup u(x)] = [ess inf u(x)] for xe B, T

A
j=s)
.

We conclude from the preceding paragraph that
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¢(@™R) < 1" s, =20, 18 °, n=1,2, 0 »
Thus
log ¢(r) < log S = log h + (a + 1) log h < log(S/n) - (log h)/(log 2) log(R/r) ,

if n log 2 & log(R/r) < (n+ 1) log2 .

From this it follows that

e(r) < pt S(r/R)pO , by < = log h/log 2 .

THEOREM 5.3 - There are constants Ry > 0 and C wvhich depend only on Vv,
m, and M , such that

. T=l+p
||Vu“§’r$ cL(z/R) 0, 0<rgR, L= HVqu’R , T=v/2 ,

for each R, O<RZLR; , and each solution of (5.1) with HVqu R < 4+ x,
————————— — ,

Proof. - Evidently we mey supposc that the average value of u =0 « From

lemma 5.1, we conclude that

b psom

From theorem 52, we then obtain
~ , H
(5.5 lu() = ulxl < Zlllg (/27 (I - ol /)

?‘”'C"HO MO
<z, IR lx - x| © 5  Ix - x|l B2 .

We define n as usuzl with a , G, and D replaced by r, B(xg » 2r) and
B(xy » T) » respectively, and put

(5.5 C) =n° [ux) -ulx)l , =xeBlxg, ), O<rgRA
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in (5+1)« We obtain

o=/, qz[Vu.a.Vu + c(u - uO) Tu o+ 2n(u - uO) Vrea.vu] dx .
uzr

The theorem follows easily by using (5.5) and the inequalities of Cauchy and
Schwarze

" THECREM 5.4. - Suppose that u € Hé(G) and is a solution of (5.2) there,

where f is bounded &nd e € L2(G) and satisfies

CRO I lol? ax < P /R) ™,

0<pu<py, 0£rSRLR, for every B(XO,R)CG

By

condition of the form

being the number in theorem 2.5. Then u € C}?(G) and, in fact, satisfies a

(548) Syt ey V0l i € /) =202H

(xger

for all Xy T and R as above.

Proof. = Let V be the potential of f . It is well known that V is of class
1
C* with |9V(x)] < Cp max|f(x)| with |B(O, p)| = |G| « &lso

+
/vfdx:-—va,a Vg

so equation (5.2) is equivalent to anodther such with £ =0 and e replaced by
e = VV , which satisfies a condition (5.7) with a different 'L . loreover, by
vertue of a old theorem of the writer ([7], theorem 1.12) it is sufficient to

-

prove (5.8) for some K .

Since we have assumed that R LR, , we conclude from theorem <. 5 that u=U+H
on By = B(XO , R) , where U is the solutlon of (5.2) which e HZO(B ) and H
is the solution of (5.1) such that H -u € Hzo(BR) , and we also conclude that



(5.9)  IFully < g llelly < z,llell, ,  WHlp < 2 llvdlp < 2, [l ,

where we have chosen a fixed ball B(XO , R) ¢ G and will denote the L, norm

of § on B = B(xO , T) by prllr . Then it follows from theorem 5.3 that
Teml
ol < cllwlly, e/ .

I\Tow, let us define ¢(s) = -l sup HVUHSS for all e which satisfy (5.7) with
replaced by L, R replaced by SR, U being the solution of (562)
HJZ'O( . Wext, choose an orbitrary e which satisfies (5.7) ( L; replaced
by L ). We may write U =Uy + Hy on By where Uy is the solution of (5.2)

€ 1-120( ) o Obviously e satisfies

2 2 .+ 2
[y lel® ax g (PR M /s)" ™", ogrgs
r

Thus, using the ideas of (5.9) and the definition of 1 , we conclude that
7=l -
pudlg € 2, LR, IvE]lg g zllvilg < 2, To(s/R) .

Now, suppose that O < r < S <R . Then

Tl 4+
woll,_ ¢ g+ Ivmgll_ ¢ ZE/R) ™ o(e/s) + 2, Te/R) (e/8) 0 .

Since e is arbitrary, we conclude (setting s =r/R, t =8S/R) that
’&.1+HO

(5:10) o(s) €™ o(s/t) + 2, 9(t) (a/t) .

Obviously ¢ is monotone and cp(l) g Z1 o So let us choose o, 0< o<1,
Then, obviously

(p(s)\< Sq s.C'H}’L, ogsgl, 8,572

1

Using (5.10) with & <sgo and t =0 s, we obtain



(5011) CP(S)\< S]. S

M=t

T=lip , where S, = So(l + 23 Wy, w=o0 .

4 2

Since S, 3 Sy, (5.11) holds for o & s 1 + Using (5.10) with o & s 0
and t =0 s, we conclude that

-1 4 A 2
(p(s)\<S231: +"L, OSS\<1’82=SO(1+Z3W)(1+ZBW) .

By repeating the argument, we obtain

2 4
<sgl, S= So(l + Z3 w(l + 2, w)H(l + Z3 W Jees

3

from which the theorem follows immediately.
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