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The purpose of this talk is to present a new isomorphic inva-

riant of a finite dimensional normed space, so called "volume ratio"

(introduced We set

where BE is the unit ball of an n-dimensional real normed space E,

16 -the ellipsoid of maximal volume contained in BE (so called "John’s

ellipsoid of E) and vol A stands for volume of a set A.

It follows directly from the definition that

where E and F are normed spaces of the same dimension, d -the Banach-Mazur

distance.

To explain the motivation for introducing such an invariant

let us mention the following :

Theorem 1 (Kashin There is a universal constant C such that,

given n, there exist two n-dimensional subspaces E1’ E of L , ortho-

gonal (in ),2) satisfying 
1 2 2n

2n

Theorem 1 solved some problems from the approximation theory

and was used later (see [3J) to construct an n-dimensional space, whose

constant of local unconditional structure is of order Vn (the largest

possible). However, Kashin’s original proof was very complicated.

A simple proof of Th. 1 appeared in L7]. It depends essentially on the

following two observations.

Proposition 2 :

Proposition 3 : Let C and 8 1 be positive constants. Then, for any

normed space E with vr(E)  C and positive integer "most of"

k-dimensional subspaces F of E satisfy
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where C’ depends only on C and 8. More precisely : if G = G(k,n) is the

Grassmann manifold of k-dimensional subspaces of E, p -a normalized

invariant measure on G, generated by the John’s ellipsoid. Then

Deducing Th. 1 from Prop. 2 and Prop. 3 is immediate, one

1-

must only remember that the map (the orthogonal complement of F),

acting on G(n,2n), is measure-preserving.

Proof of Prop. 2 : By direct computation. 8

Proof of Prop. 3 : Let E= (Rn, II . II ) . We may assume that the John’s

ellipsoid of E is equal to the Eucli dean unit ball Denote

by m the normalized Haar measure on S n-l . Then 

2

(one gets the equality by representing vol A as J XA and passing to~ 

Rn 
A

polar coordinates).

Given r E (0, 1) define Ilxll  ri - Then one gets

from (4) that

On the other hand, we have

where m is the normalized Haar measure on . The last two
r r

formulae show that

in other words, for "most of" FE G we have
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We show that every such F is "close" to ), 2 in the Banach-Mazur
k

sense, thus proving Prop. 3.

Indeed, since, for g iven x o E S F and 6 !!1o F 29

the previous estimate shows (remember that that is an

r/2-net metric) for S F ’ provided r = r(0 ,C) is small enough

(precisely, if r (2 30+1 C)I/(1-0) . Fix such r. Then,for any ydS-,
there is a y SF’BA r (i.e. such that Ily - y ~ r/2. Since
(by BnCBE) Ilxl12::&#x3E;llxll for all x~E, we have also Ily-yoll;;. Therefore

So, by homogeneity,

for all y E F. Hence d(F,ik) $; 2r = 2 
This ends the proof of Prop. 3.

In the sequel, we shall frequently use the following concepts.

We say that (e.) is an unconditional basis of a B-space E provided
1

We say that a B-space E is of cotype q (q &#x3E; 2) if there is a constant K

such that, for every finite sequence xi,X 21*’* E E, we have

where (r.) is the sequence of Rademacher functions. The smallest such
I

constant K is called the cotype q constant of E and denoted by K q (E).

It was proved in L4] that given K there exist C, 8&#x3E; 0 such

that, for every finite dimensional E with K, one can find a sub-
- 

2
space of E, say F, with dim F=k&#x3E;edimE and 2 and

, , . 1
Prop. 3 strengthen this result in the special case E=x1. This raises

n
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the following problems :

Problem 4 : Given 8 E (0, 1), does every normed space E contain a’ 

o

le dim E]-dimensional subspace F with d(k dim , I F)  C , where C depends1 m r

only on K2(E) ?

Problem 5 : Does there exist a function C(.) such that vr(E)_ C(K2(E))
for every E ?

Of course a positive solution of Problem 5 implies a positive

solution of Problem 4. We have two partial results in this direction.

Theorem 6 [8] : Let E be a finite dimensional space, (e.) -its basis.Then i

Then

where C is a universal constant..

Theorem 7 [8J : There is a universal constant C such that

Recall that i,n n is the tensor product j,2@£2 equipped with then n n n

largest tensor norm (in other words : the space of nuclear operators on

 ). It is known that ubc(w,) is of order Vn for every basis (w.) of
n

2^ 2 2A 2while where K does not depend on n.
n n 2 n n

Theorem 7 can be generalized to a large class of tensor pro-

ducts and unitary ideals. In particular, a unitary ideal 91 on 12has
n

"small" volume ratio if the associated n-dimension symmetric space 

has (in the case of Th. 7 we have 1,21=£ ; see e.g. [5J for definitions).w n

Now I present a sketch of the proof of Th. 6. We shall need

two lemmas.

Lemma A : Let be a B-space of cotype 2 with an unconditional

basis (e.). Then there exists a norm -~ such that
a) ubc(ei) llxll for x E E

(C is an absolute constant).
( -1 B
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r) the dual norm 11-11 on E is 2-convex ; in other words a functional

defined b x _ ( i 11(1) 2 -)"L is a basic sequencedefined by J = - J J " ) is a basic sequence

J J J

E dual to (e.)) is a norm (then, of course, unconditional).
J

Lemma A is well known (see e.g. [1]).

Lemma B : Let (F,11.11) be an n-dimensional normed space, (f. ) -its basis

with 1. Then there exists a sequence of positive numbers

suctt that, for all ~.,~p?--.,~ ~R,

Proof of lemma B : Some variants of lemma B are known in a more general

setting of B-lattices. I present a proof, which is essentially due to

T.K. Carne.

Consider f : defined by f(£ bi f.
iL .11.1 .11

11 1

be a point, where f attains its maximum. Of course one can choose Q to

satisfy 2 0 for i = 1,2,...,n. Clearly pj) = 1 ; this implies immediately

the right hand inequality of (5), because ubc(fi)= 1. By the same reason,
1

to prove the left hand inequality of (5) it is enough to show that the

functional ~P: Z X, ~. À.. is of norm at most 1.
. 1 i i n . i
i 1

It is easy to see that W is the only functional satisfying

(i) ~(P)= 1, ~

and (ii)

But it is clear that the functional * separating disjoint (by definition

of P) and convex sets BE and Q (i.e. ~(Q) &#x3E; 1) satisfies (i)

and (ii) ; hence (P= * and (P(BE  1, in other words IIYII  1. This proves

lemma B.

Now we shall derive th. 6 from lemmas A and B.

Clearly, by lemma A and (1), it is enough to prove that if

(E,II.II(1» satisfies conditions (b) and (c) of lemma A, then vr(E) C,
where C is a universal constant. On the other hand, this estimate will

immediately follow from existence of a sequence (ak) such that
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for all Indeed, defining an ellipsoid

we gent Hence

by proposition 2.

To consider its dual version

Of course it is enough to prove (3) for nonnegative sequences (yk) only.
- r- 

’ k

Substituting one gets

Now existence of (~k) satisfying follows immediately

from condition (c) of lemma A (i.e. the fact that the term in the centre

of (""°F ) is equal to for some unconditional norm jtt.ttt)
and lemma B.

Let us introduce another invariant :

where E is a Banach space, not necessarily of finite dimension. Using

some methods from [4J, one can easily derive from Prop. 3 the following

Theorem 8 : If then E is of cotype 2+e f or 

In general 6 cannot be omitted. 8

Finally I am going to present :

Theorem 9 : There exists a function (0,1) such that for any

k-dimensional subspace E of i n we have
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2013201320132013_-
Remark : Our proof gives e3 e.

Recentiy Figiel and Johnson- proved th. 9 wi th C(e)=:B0/2. *

Proof of’ theorem 9 , Since d(E,- 2 d(E 2), it is enough to prove (+)
;; k

with E replaced by E .

To say that E is a subspace of i 00 is the same as to say that
v n
;;

.the unit ball of E has at most 2n extreme points, say x,,x 21***9xn 1 

i-

-x1,-x2’’’.’-x . Let e- be an ellipsoid contained in the unit ball of E .
n ,

We must show that, for some i, ’k E. Thus the proof reduces
1

to the following fact :

Let B= abs conv(y.). n dR k and let the Euclidean unit ball
i 1=1

be contained in B. Then max C(k/n).
1 "

To see the above consider all sets of the f’orm

BA- abs conv(y.). I IE: _A’ , A(Tl,2,.-.,nJ, card A = k.

Clearly U BA = B. Choose A so that vol BA is maximal. Then

A 

On the other hand

Combining these two estimates one gets

Hence

This ends the proof of theorem 9.

Let us mention finally some easy observations, which may indi-

cate another application of concepts introduced here. Namely, we have



XXV . 8

where e = dim E/(dim E + dim F) and E(D 2F is a direct sum of E and F in

the sense of ),2 2 
*

One can hope that this may help in investigating complemented

suabpaces of a normed space.
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