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In this seminar we prove the following theorem from [2].

Theorem A : Let T be a bounded linear operator from a Banach space X
into Lp (= Lp[0,1]), 2<p<wo. Then T factors through /&p if and only if
T is compact when considered as an operator into L2.
The "only if" part is an immediate consequence of the fact
that every operator from lp to 22 is compact when p>2 (cf. Proposition
2.C.3 in [7]). The "if" part generalizes an earlier result of Johnson-
Odell [5] which says that if X is a subspace of Lp (p>2) which does
not contain an isomorphic copy of Ez,
it is an easy consequence of the results in [6] that the restriction to

then X embeds into Ep’ because

such an X of the injection from Lp into L2 is compact.

Proof of Theorem A : We factor T through a space of the feorm

Y= (z(H ,[.] ))2 , where each space (H ,|.| ) is finite dimensional.
n n n n

p
We will observe that the spaces (Hn,l.ln) are uniformly isomorphic to

uni formly complemented subspaces of Lp’ and hence Y is isomorphic to
a complemented subspaces of ﬁp. (Of course, this implies that Y is
isomorphic to ﬂp by a result of Pelczynski's [8], but we don't need
this fact, since it is clear that if T factors through a complemented
subspace of Zp’ then T factors through Zp-)

The spaces (Hn) are E?zfj? ro be a blocking of the Haar basis

for Lp. That is, Hn: Span(hi)i:k(n)

for Lp and 1=k(1)<k(2)<... is a suitably chosen secuence of positive

, where (hi) is the Haar basis

integers. The operators A: X-Y and B: Y—*Lp which factor T are defined
in the natural way : for x€ X with Tx= 3% Y (ynE Hn), we define
@© - © .

AX = (yn)n=1 - For y €H_ with (yn)n:1e Y, we define B(yn) =y € Lp.
Obviously we have BA=T, but of course we have to show that A and B are
bounded if the (Hn,l.ln) sequence is appropriately defined.

It is convenient to define l'ln on all of Lp. For appropriate
values of Mn’ 15;M1<1M2<;M3< N I'ln is defined by

[£] = max(M_ £l , |Ifll )
n n 2 P

where
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1
(f £ty Pat) /P

1
lell, = (f TecelZan 2 o g
Jy P 0

have their usual meaning. It is evident that each ,"n is ecuivalent
to H.Hp on Lp, but as MnT © the constant of equivalence tends to infi-
nity.

We break the proof that T factors through Y if (Hn) and (Mn)

are defined appropriately into three steps.

Step One. There is a constant K= K(p) such that (Hn,l.ln) is

K-isomorphic to a K-complemented subspace of Lp.

Of course, this means that Y is isomorphic to a complemented
subspace of Lp no matter how Mn is defincd.

Step one is easy, given a result of Rosenthal's [9]. Rosenthal
proved that there is a constant A =A(p) so that for any sequence
2,...) of positive numbers the space Xp,w is K—isomorphii)to a
A-complemented subspace of L . Here X is the completion of R (or

p ,
| defined by
w

w = (w1,w

(o]
€ ) under the norm

|2 wf)1/2 s (.Z lailp)1/p)

|(a.)]| = max((Z o,
1 w 1
i=1

It is easy to see that (Hn,l.ln) is isometric to a norm 2 complemented
subsrace of Xp for some w. Indeed, since each element of Hn is a step
9

function and dim B <e, there is a sequence (even finite) of disjoint

intervals (A;) so that B _cspan(y, ). Let
i

N =
o=

w. = (meas A.)
i i

2

Cllxg 11 7l 1)

P

and set f, = (meas Ai)-1/p x, (so that Hfiﬂp: 1). Then for any choice
i E
(mi) of scalars,

9 () 2]
s a, fi'n = max(Mn(Z a; w;)1/“ . (2 fdilp)1/p) 3

i.e., span X is, in the l.ln norm, isometric to X when
. b
i

W= (an1,an2,...). Thus, by Rosenthal's theorem, we can complete the
proof of step one by observing that (Hn,l.ln) is norm 2 complemented in

(Lp""n) and hence in span Xp o But the orthogonal projection P onto
i

. . | . Rl .
Hn satisfies JP 1 and (since the Paar functions are a monotone, ortho-

I, -
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gonal basis for Lp) [Pl <2, hence IP| <2 by the definition of IR

Step Two. B has norm < 5 provided that, given H ,H,,...,H , M

n n+2
is chosen sufficiently large.

Suppose that the blocking (Hn) of the Haar functions and num-
bers.(Mn) are given-/We want to compute that for ynE Hn,
1
[ | p P . . . .
Iz ynﬂprS(Z lyn'n) , as long as each Mn+2 is big relative to the
modulus of uniform integrability of H1+ e Hn.

Let M={n: |y | =20 Hyan}- Certainly ||z ynupfgnnzM yn“p+

ZM Hyn“p:sn gM yan-+(Z lyn|§)1/p , so we need check only that
nec n

B py1/p ' . py1/p
(%) Hzﬁ%m Yool = 2(z Iy ID) , H;2—1Eﬁ Yonolly = 2(2 Iy ID)

For ng M we have that MnHynH2S lynlnséznuynnp, so that

1

lly N7 Hyan< 2" M " . Now if 2" M;1'is very small, this means that y_

is essentially supported on a set of very small measure, hence if y is

a fairly flat function in Lp, then Hy+—ynH§Z HyHg+ Hynng Thus if

Mn+2 is chosen big relative to the modulus of uniform integrability of

H +...+H , then | ¢ “p)1/p
n 2n¢ p

1 and

Yool xC x|y
M 2n''p ongM 2n

HE::::: y H = ( HY Hp)1/p 3 in particular, we can guarantee
2n-1"p 2n-1llp
2n-1¢M 2n-1¢ZM
that (¥*) holds.
Recalling that the blocking H_= span(h,)<(m+1)-1
C g a g n_ p i i:k(n)

by the increasing sequence 1=k(1)<k(2)<..., we state

is defined

Steg Three. A has norm < KHTH (where K = Kp is a constant which

depends only on p) provided that, given M (n>1),

k(n) is sufficiently big relative to M-

Let HSH2 be the norm of operator S when considered as an

operator into L Let Rn be the orthogonal projection from L_ onto

2° 2
span(hi)oio_n in L2. Our hypothesis that T is compact as an operator

into L2 implies that HRnTHo'*O as n-®. Suppose now that
e o)

" ; -n -1 .

R (Tl <27" M IT|| for n=2,3,... For x€ X with Tx= n?1 Yo (Y €8 ).

we need to show

Iaxl = £ ly [PYYP e kimy x|
n=
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Let M= {n: lynln: Hy Since the Haar system forms an

| ).
n'p
unconditional basis for Lp and Lp has cotype p, there is a constant

0<A =A(p) so that

12 3, 227" (2 v 1D P

thus
Cz ly, HYP o Cx Iy JIDYPn iz v o= n frx] o= 2 (i) flx
néM n néM n-p n=1 nep
Observing that 1€ M (since M = 1), we have that
(z Iy IHDYP < 5wy, = £ M|z yl|, =
ngM n n ngM n''“nt2 ngM nt L k'2

= MRy gy DXl = ] ]
Thus

[ee]
1
Cz Iy IHYP o Goen) o) x|
n n :

n=1

as desired.
Of course, to complete the proof that T factors through ﬁp )

we only have to make the obvious observation that the sufficient condi-

tions in steps two and three for the boundedness of B and A are not

mutually exclusive.

We conclude this seminar by giving acounter example to a conjec-
ture made in [2]. Recall that a Banach space X is said to be of type

p-Banach-Saks (where 1< p<®) provided there is a constant A so that

[ee]
every normalized weakly null sequence in X has a subsequence {xn}n—1

which satisfies for n-= 1,2,...

|

i

™S
]
-
IN

In [ 2] we conjectured (in a stronger form) that every operator from Lp
(2<p<®) into a space which is of type p-Banach-Saks factors through Lp.
This conjectured had been verified in [3) in case T has closed range.

The counter example X can be taken to be the dual of a space

%
(say, X ) which is the gq-convexification (1/p+ 1/q = 1) of the space
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constructed in [4]. (In fact, one could use the simpler space from _11.)

#*
X is a reflexive space which is g-convex relative to its natural basis,

the unit vector basis {én}w . The space ﬁc does not embed into Xm, but

s n=1
X has the following property for each n=1,2,...
n o
2 W
If {yi};«l are disjointly supported unit vectors in X and
= N
3 - & @ . . oN 12 . 5 a . )
(%) and yi&‘span( k)k:n+l for i< 1;;; , then {yi’i:1 is 2-equivalent
to the unit vector basis for Lq .

Property (%) implies that the basis {én}::1 for X admits a
lower zr estimate for all r>q ; consequently, the formal identity map
I: ﬂ2—~X is a bounded operator. Now X is p-concave relative to the unit
vector basis and no subsequence of this basis can be equivalent to the
unit vector basis for 2p, so a routine gliding hump argument shows that

2

subspace, there is also an operator from Lp into X which does not factor

through £ .
& 1Y

I cannot factor through Lp' Since £_ embeds into Lp as a complemented

Finally, to verify that X is of type p-Banach-Saks, it is enough
to observe that if {xi}T:1 are disjointly supported unit vectors in X,
X, € span(éi)T; for k=1,2,..., then for every n, we have from (%)
that

k+1

2n

oh
H z xiH < n+ “E xi“ < n+2.2n/p < 3.2n/p .

i=1 i=n+1
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