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INTRODUCTION

Iet X %be a Banach space all of whose subspaces have the approximation property.
A consequence of a recent result of Szankowski [19] (cf. also Theorem l.g.6. in
[16]) is that X is of type p for all p < 2 and of cotype q for all q > 2.
In terms of inequalities, this means that for each 1 < p <2 < g < » there are
constants O < Aq < Bp < » so that -

(%) .Aq(z\‘?‘iuq)l/q < Aveiage HZ + xi” < Bp(ﬂ)xi!ip)l/P

holds for all finite sequences {xi} of vectors in X. If Aq-l and Bp
remain bounded as p ~2 , q »2 ; i.e., if (*) holds for p =2 = q , then X
is isomorphic to a Hilbert space by a result of Kwapien [1l]. Szankowski's
result thus gave support to the conjecture that X must be isomorphic to a

Hilbert space.

In this note we give a simple criterion which guarantees that every subspace of
every quotient of a given space has the approximaticn property - even a much
stronger property called the uniform projection approximation property (u.p.a.p.,
in short). The interest in such a criterion stems from the fact that there are
Banach spaces which satisfy it and are not isomorphic to Hilbert spaces. One

suck example; namely, ( % 2 )2 for appropriately chosen k ~ ® and p ~»2 ;
n=1 *n

has already appeared as Example l.g.7 in [1A] with essentially our original proof
that every subspace has the u.p.a.p. -It takes some additional work to check that
every subspace of every quotient has the u.p.a.p., so we briefly comment on this
kind of space at the beginning of section 2. However, the emphasis in section 2
is on a more interesting class of examples which do not contain isomorphic copies
of 12 and which show that the characterization of Hilbert space given by

Lindenstrauss and Tzafriri [13] cannot be improved. Moreover, these examples have
the property that every subspace of every quotient has a Schauder basis.

We use standard Banach space theory notation, as may be found in [15] and [16].
Let us just mention that BE is the closed unit ball of the Banach space E.

This seminar will appear in the same form in the proceedings of a conference

held in Bonn in October, 1979.
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1. CRITERION FOR THE U.P.A.P.

A Banach space X 1is said to have the uniform appoximation property -u.a.p.-
(respectively, uniform projection approximation property - u.p.a.p.) provided

there is 2 uniformity function £ I¢+ > I2+ and a constant K < « so that for
every finite dimensional subspace E of X , there is an operator (respectively,
projection) T on X so that |IT||<K, Te=e for all e ¢E, and

dim TX < f(dim E).

The u.a.p., introduced in [18], is a stronger and quantitative version of the
bounded approximation property. There are some interesting classes of spaces
~ which possess even the u.p.a.p., such as Lp spaces [18] and reflexive Orlicz

spaces [14t]. Heinrich [6], (7] used ultraproduct techniques to check that the
u.a.p. is a self-dual property. From this result and the technique in [9] it
follows easily (see Proposition 1.1) that the u.p.a.p. is also self-dual.

The main result of [13] is that if X is a Banach which has the u.p.a.p. with
uniformity function f(n) = n (or, equivalently, f(n) = n + m for some constant
m), then X 1is isomorphic to a Hilbert space. In section 2 we whow that for any

function g: W' > RY for which O < g(n) = n > =, there is a Banach space X

such that every subspace of every quotient of X and X* has the u.p.a.p. with
uniformity function g , and yet £2 is not isomorphic to a subspace of any

quotient of X.

Proposition 1.1. A Banach space X has the u.p.a.p. if and only if X%* has the
u.p.a.p.
Proof: dssume that X has the u.p.a.p. Then by [7], X* has the u.a.p., so we

can suppose that X (respectively, X*) has the u.p.a.p. (respectively, u.a.p.)
with the same uniformity function f and for a certain constant K < o,

Now suppose E <X, G € X*¥, dim E = dim G = n. We use the technique of [9] to

construct a projection P on X so that P\G = IG s el depends only on K,

and dim PX 1is a function only of n . To do this, choose an operator T on X¥
so that TlG = IG ’ HTH < K, and dim TX* < f(n) . By the version of the principle

of local reflexivity proved in [9], we can assume that T = S¥ for some operator
S on X. Now choose a projection Q on X so that Qx = x for x ¢ EUSX,

2
lQh < X , end dim X < £/n + f(n)). Using the identities ¢ = Q and QS =S,
one easily checks that P =S + Q - SQ is a projection onto QX Since SP =S,
it also follows that P*\G = IG'

Conversely, if X* has the u.p.a.p., then so does X**¥ by the first part of the
proof, hence X does also by the original version [12] (or see Lemma l.e.f. in
[15]) of the principle of local reflexivity. O

We come now to the definition which yields a criterion for all subspaces of a
given space to have the u.p.a.p.
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Definition 1.2. Given a Banach space X , positive integers n and m, and a
constan:t K , we say that X satisfies C(n,m,K) provided that there is an
n-codimensional subspace Y of X so that every subspace E of Y with

dim E < m 1is the range of a projection P from X witk HPH <K.

Proposition 1.32. Suppose X satisfies C(n,m,X) and Z is a subspace of X.

Iz F 1is & subspace of 7 with dim F <m- 5n , then there is a subspace G of

Z so that F <G, dim G < dim F + 5n , and G 1is the range of a projection R
from 2z with |R|l <LK + 3.

Proof: We make use of the following well-known (see, e.g., p. 112 in [16]) fact:

Fact 1.k: ILet Q: X > W be a quotient mapping and suppose E 1is a subspace of
W with dim E = n. Then there is a subspace G of X with dim G <5% so
that BE = 3QBG SE.

Let Y be an n-codimensional subspace of X which satisfies the conditions in
the definition of C(n,m,K). Let Q: Z > Z/ZM¥ be the quotient mapping and

select a subspace G of Z with dim G < 5n so that

Byjzmy < 3qB, -

By replacing G with G + F, we can assume that F < G (but now we know only

that dim ¢ <S5 + dim F < m) . By the C(n,m,K) condition on X , there is a
projection P from Z (even from X) onto G NY with [Pl < kK. The
restriction of Q to (I- P)G 1is one-to-one and onto, since ker Q NG =G N Y,
and thus

-1
=
S = (9)(1-p)g

is well-defined. Now

-p|t “Lip_py-t =37 Lyt
B(1.p) 2 TPl T0B, 237 1-El"08, ) o2 3T (ReL) By/z Ny

so that ||s!l < 3(k+1) and R = SQ + P 1is a projection from Z onto G with
=3 < 3(K+1) + K = 4K + 3. a

Next we mention a property which is closely related to C(+) but is easier to
check and work with.

Definition 1.5: Given a Banach space X ., positive integers n and m ., and a
constant K, we say that X satisfies H(n.m.K) provided that there is an
n-codimensional subspace Y of X so that every subspace E of Y with
dim E<m Ei K-Euclidean; i.e., is K-isomorphic to a Hilbert space.
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If X satisfies H(n,m,K) and is of type 2 with constant ) , then by Maurey's

extension theorem [17] X also satisfies C(n,m,AK). On the other hand, if X
satisfies C(n,m,K) then Theorem 6.7 of [4] yields that there is a constant

M= M(K) so that X satisfies H(n,m,M). Now the main examples in section 2

are type 2 spaces, so that C(+) and H(+) are essentially equivalent properties
for them. However, in order to investigate guotients of our examples we need to
dualize the C(+) property. The substance of Proposition 1.8 is that the H(*)

property dualizes and implies the C(+) property even for spaces which are not of
type 2.

Recall that a subspace Y of X 1is said to be \-norming over a subspace Z of
X* provided

2l < X sup (z(y): vy ¢ BY]
for each z e¢ Z . This is equivalent to saying that the natural restriction
.mapping R from Z to Y¥ (defined by (Rz)y = z(y) for z ¢ Z, y ¢ Y) is

a A-isomorphism, or that the natural evaluation mapping T: Y+Z*¥ (defined by
(Ty)z = z(y) for y €Y, z ¢ Z) satisfies

weak * cf TB, 2 l-lBZ* :

(The weak* closure can of course be eliminated if Y is reflexive, or if

. -1 . .
dim Z < ® and A is replaced by any strictly smaller number. )

Lemma 1.6: Suppose Y is a subspace of X,Z is a subspace of X¥, and Y is

A-norming over Z. If every 5n-dimensional subspace of Y 1is K-Euclidean,
then every subspace E of Z with dimE <n is 3AK-Euclidean and 3XK-
complemented in X*.

Proof: Given E €2 with dim E < n, define Q: X - E¥ by (Qx)e = e(x).
Since Y 1is: A-norming over Z and dim E < e, the restriction of Q to Y
is a quotient mapping up to constant A . Therefore, by Fact 1.4, there is a

subspace G of Y with dim Gi_Sn so that

B = 9 05

Thus E* , whence also E , is 3AK-Euclidean.
The complementation follows from the next lemma:

Lemma 1.7: Suppose that G 1is a K-Euclidean subspace of X and G is
A\-norming over a subspace E of X*. Then E 1is \K-complemented in X*.

Proof: Define T:X* - G¥ by Tx¥* = x*‘G. Then TE has an inverse , S, with
US“ < X\ . Since G¥ 1is K-Euclidean. there is a projection P from G* onto
TE with |IP|| < K. Hence Q = SPT is a projection from X¥ onto E . G
Proposition 1.8: Suppose that X satisfies H(n,m,K) and m> Sk. Then X*

satisfies H(5n,k,l2 K) and C(in.k,IE K).
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Proof: In view of Lemma 1.6, we only need to observe that if Y is an

n-codimensional subspace of X , then Y is L-norming over some 5n-codimensional
subspace of X*. This is a consequence 'of Fact 1l.4. To see this, let Q be
the quotient mapping from X onto X/Y , and choose a subspace E of X with

dim E < 5" so that

3Q By 2 Byy -

We claim that Y is L-norming over E*. Indeed, if f ¢ E* s llell > 1 , and

X € BX with f(x) > 1, then we can choose e ¢ 3BE so that Qe = Qx . Thus
X -ech BY and f(x-e) = f(x) > 1. C

2. THE EXAMPLES

Since property H(n,m,K) is clearly a hereditary property, Propositions 1.8 and
1.3 imply that if m(n) is sufficiently large relative to n and there is a
constant K so that X satisfies H(n,m(n),K) for infinitely many n , then
every subspace of every quotient of X and X* has the u.p.a.p. The space

o k
X=(3% %)
n=1 pn 2

has this property if pn +- 2 and kn - o are chosen appropriately. The only
restriction is that, having chosen P; ki for 1< i< n, the pi's for i>n

must be chosen sufficiently close to 2 so that every subspace E of

© n
( ¢ 12 )2 with dimE=m=m( T ki)
i=n+l Pi i=1

is 2-Fuclidean. If, having chosen Pl # 2 , one chooses kn+l so that

-l -l
d@fmi fml)_kp' -pml\>n
2 A o T Tn+l

n+l

then the resulting space
o k
Xx=(Z£"
n=1 pn 2

is not isomorphic to /. . (See p.l12 in [1/] for one way of carrying out this

2
construction. )
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By the results of [10] , every subspace of every quotient of such a space X is
isomorphic to a space of the form (I En)2 with dim En < ® for every n. In

particular, every subspace of every quotient of such an X has an unconditional
decomposition into finite dimensional subspaces. However not every subspace of
a space of the form

@ k'1
X=(2T2) with p | 2
n=1£pn 2 n

can have an unconditional basis unless X is isomorphic to z? . Indeed, in
-k

[3] (or see [2]) it is shown that there is a subspace E, of %pn with
n

dim E_ = [kn/e] so that

1/2-1/p k k
gLE >cn Poea(et, M,
n - P, 2

where ¢ > O 1is an absolute constant and gfE is the Gordon-Lewis constant of
E (see[2]). From [5] it follows that(’EEIl) cannot have an unconditional basis

2
if

1/2-1/p
sup n T w H
n

that is, if X 1is not isomorrhic to 12.

By using Kwapien's characterization of Hilbert space [1l] and the same reasoning
as above, one obtains the following:

Proposition 2.1: Suppose that {Xn}:;l is a sequence of Banach spaces. none of
which is isomorphic to a Hilbert space. Xn has type pn and cotype q, with
constant K (K independent of n) , and aq, - P, * O as n > =, Then there are
finite dimensional subspaces En of Xn so that every subspace of every quotient

of (ZEn)2 has the u.p.a.p., but (ZEn)2 is not isomorphic to 4, .

We turn now to a more interesting class of examples.

Example 2.2: There is a constant M < ® so that if g(n) is a positive integer
valued function for which = < g(n) t ®, then there is a Banach space X = X(g)
which has the following properties.

(2.3) X has a monotonely unconditional tasis [en):Ll.
(2.4) X is of tyvpe 2 and of cotype q _for all q > 2.

(2.5) 22 is not isomorphic to a subspace of a gquotient of X .

(2.6) let Y Dbe any subsvace of a gquotient of X or X¥. If F _is a subsvace
m

of Y with dim F = m . there are ECF =G € with dimE >m - g(m) ,
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dim G <m + g’m) , so that E is M-Euclidean and both E and G are
M-complemented in Z.

(2.7) Every subspace of every quotient of X has a Schauder basis.

Proof: X = X(g) 1is the 2-convexification (see p.53 of [14]) of the space
spanned by a suitable subsequence of the basis constructed in [8]. The con-
struction of this space is given in Example 5.3 of [4]. X can be described as
the completion of the space Xo of finitely non-zero seguences of scalars under

a certain norm HiH . The unit vectors form a monotonely unconditional basis
basis for ¥X. For a certain increasing sequence [kn}sil
which depends on g , the norm H-“ satisfies property (2.8) below; in fact,

of positive integers

sl is the unique norm on X, which satisfies (2.8). (For x ¢ X, and

Acm?t , let Ax denote the sequence which agrees with x for coordinates in
A and is O elsewhere.)

k
1
(2.8) Il = max (il ,2 sup(_‘/:anAix\\z)l/g] ,
o} 1= k

where the sup is over all n and all pairwise disjoint sequences {Ai}ifl of

subsets of ]y+ for which

k

n
U A, ¢ (n+ J)
i=1

<)
1 j:l *

It follows from [8] (see section 4 of [1]) that g, does not embed into X. X

is 2-convex with constant 1 since it is the Z-convexification of the space con-
k
structed in [8]. It is also clear that if [xi}if are disjointly supported

-]
s in spanf{e.]. then .
vector pan{ i4onel

k k k
n n n

2,1/2 Lone
fl“"i“ )7 < ‘.‘,i;z:lxiﬂ < <i§l\p<ill )

-

(2.9) (

i

Thus if kn t o sufficiently quickly, (X,U-H) will satisfy a lower z(;estimate

for every q > 2 ; that is, HE:cin > c(iﬂ&iﬂq)l/q for all disjoint vectors [xi}

in X and some constant c¢ = c(q) > O. Thus (see section 1.f of [1A]) X has
type 2 and cotype gq for all g> 2 .

To see that (2.5) 1is true it is enough to observe that 22 does not embed into
X*. Indeed, if 42 embeds into a quotient Y of X , then 22 is complemented
in Y because Y 1is of type 2(cf.[17]); hence I2 is isomorphic to a quotient
of X , whence to a subspace of X¥ . But X 1is reflexive (since (2.9) precludes

its containing a copy of <, or zl , S0 that James' theorem applies; cf. Theorem

l.c.12 in [15]) so X* has a 2-concave basis. Now if £2 embeds into X% , then

some block tasis of the 2-concave basis for X#* 1s equivalent to the unit vector

basis for 92 and thus (see, e.g., the argument for Theorem 2.1 in [18]) spans 2
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complemented subspace. This would imply that 4,

b embeds into X¥* = X , which

is false.
We now turn to the proof of (2.5).

From the argument for Theorem 2.1 of [18] (see Proposition 3 of [14] for a sketch
of the proof in the generality we need) it follows that if H is an n-dimensional
subspace of a space which has a monotonely unconditional basis, then H is
2-isomorphic to a subspace spanned by. 4(n) disjointly supported vectors, where
#(n) derends only on n . (4n) is in fact of order < n2n .) Therefore, if

H is a subspace of the subspace of X spanned by {e.]°° dim H= s and

i’i=n+1"’
s) < k , then by (2.9) H 1is 4-FEuclidean. This means that for arbitrary d
X satisfies H(n,dn,h) if kg is sufficiently large. Thus by Proposition 1.8

.and obvious duality arguments we have:

There is a constant K so that for any sequence dn t © there is a
sequence kn t © so that if Y 1is a subspace of a quotient of X or X*

(2.10) (where X = X(kn) satisfies (2.8)), then for each n = 1,2,..., Y
satisfies H(n,dn,K) and C(n,dn,K) for the same n-codimensional subspace
Yn of Y.

Suppose now that for each n = 1,2,..., Y satisfies H(n,dn,K) and C(n,dn,K)

for the same n-codimensional subspace Yn of Y. Iet F be any m-dimensional

subspace of Y and suppose that n satisfies

(2.11) m < dn .
If also
(2.12) n < g(m)

then E=F N T fulfills the conditions in (2.4) for M= K .
On the other hand, if
(2.13) m<d -5

then by Proposition 1.3 there is a subspace G of Y so that F <G,

dim G < m + 5n , and G is LK + 3 - complemented in Y . This G fulfills the
conditions in (2.6) for M = LK + 3 as long as

(2.14) 5" < g(m).

This completes the proof of (2.56), tecause for any sequence g(m) t ® we can select
dn t ® so that for every m there is an n for which (2.11)-(2.1k) are satisfied.

To prove (2.7), we use the technique of [9]. By the proof of (2.6), we can assume
that the space X has the property that there is a constant M so that if Z is
any subspace of a quotient of X or of X¥ , then for all n = 1,2,... we have:

(2.15) 7z satisfies H(n,3°"%,M)

If E 1s a sutspace of Z then there is a projection P on Z so
that Pe = e for e ¢E, [P <M, and dim Pz < 1.0l dim E.

~ b4

(2.16)
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Let Y be a subspace of a quotient of X, and for n = 1.2,... let Yn be a

. . 1 X
codimensional n subspace of Y as in the definition of H(n,3n+ ,M). We will
use (2.15) and (2.16) to construct a sequence {Pn}:Ll of projections on Y to

satisfy the following conditions for all 1 <nm< =®:

(2.17) BpPp = Pmin(n,m)
(-]
(2.18) LJPnY is dense in Y
n=1
(2.19) dim P Y < 3"
(2.20) HPnH < 2M+ e
(2.21) (1 - Pn)Y <Y

Conditions (2.17)-(2.20) are standard conditions which guarantee that
En = (Pn - Pn-l)Y (where Po = Q) forms a finite dimensional decomposition for

Y with dim E <37 . Now (2.21) implies that E_, is M-Euclidean by (2.15).
s
n+l .

Therefore we can select a sequence (yi}i=sn+l in En+l (where s, = 0 and

Sy = dim El + E2 +...+En for n > 1) which is M-equivalent to an orthonormal

sequence in a Hilbert space. The sequence (yi];il is thus a basis for Y .

It remains to construct the sequence (P ]m Let {xi}ILI be dense in Y with

n'n=1"

x, = 0. Choose f ¢Y. with ir]l = 1, and v e Y with llyl| = i€l =£(y) , and

1 1
set Pl = ®y. Yl has codimension one in Y , so span{f} = Yi or ker f ='Yl
and hence (I - Pl)X S Y,. Thus (2.17) and (2.19)-(2.21) are satisfied for

n=1l=m and le=xl.

Having constructed Py,...,P, to satisfy (2.17) and (2.19)-(2.21) for all

l1<nm<&%k and Px, =x, for 1<1<n<Kk, we construct P as follows:
- - n'i i - -7 = k+l

By (2.16) and the reflexivity of Y , there is a projection P on Y so that

P*g = g for g ¢ Y;;l L)PﬁY* , |ipll <M, and dim P Y < l.Ol(k+3k). Again by

(2.15), there is a projection Q on Y so that Qv =y for y ¢ PYLJPkYLJ(xk+l]

lall < M, and

1]

k k+1

dim QY < 1.01[1.01(k+3%) + 3% + 1] < 3

IN

Set 3k+l = Q + P - PQ. Using the identities @ Pk+l = Pk+l s Pk+lQ = Q , and
Pi+l = Pk+1 , we have that Pk+l is a projection onto QY , and thus

Pk+1Pm = Pm for m < k+1 , and Pk+lxi = xi for 1< X4 < k+1. Since

P§+l P*¥ = P*¥ |, we have that P¥f=f for fce PgYLJY;+l . Therefore )
PP, =F for m<kel and (I-p ) Y <Y, . Finally, e, Mo e

so (2.17) and {2.19)-(2.21) are satisfied for 1 < n,m < k +1 , and ani = X, for

1< A <n< k+ 1.
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It is clear that the constructed sequence [Pn]:-l satisfies (P.17) - (2.21). [0

Remarks: 1. We do not know whether the X of FExample 7.7 can be constructed
so that each of its subspaces has an unconditional basis.

2. We do not know whether there is a space with a symmetric basis
(other than 2?) or a non-reflexive space such that every subspace has the

approximation property. If the space 7 1is not isomorphic to 4. but satisfies
C(n, dn’ K) for infinitely many n and some dn t o, then certainly Z cannot

have a symmetric or even subsymmetric basis, and Z must be super-reflexive.
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