SÉMINAIRE D'ANALYSE FONCTIONNELLE ÉCOLE POLYTECHNIQUE

J. T. LAPRESTÉ

Sur une propriété des suites asymptotiquement inconditionnelles

Séminaire d'analyse fonctionnelle (Polytechnique) (1978-1979), exp. n° 30, p. 1-8 http://www.numdam.org/item?id=SAF 1978-1979 A26 0>

© Séminaire d'analyse fonctionnelle (École Polytechnique), 1978-1979, tous droits réservés.

L'accès aux archives du séminaire d'analyse fonctionnelle implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

ÉCOLE POLYTECHNIQUE

CENTRE DE MATHÉMATIQUES

PLATEAU DE PALAISEAU 91128 PALAISEAU CEDEX
Téléphone: 941.82.00 - Poste N°
Télex: ECOLEX 691 596 F

S E M I N A I R E

1978-1979

SUR_UNE_PROPRIETE_DES

SUITES ASYMPTOTIQUEMENT INCONDITIONNELLES

J.T. LAPRESTE

(Université de Clermont-Ferrand)

		•
,		

On démontre dans cet exposé que de toute suite normalisée convergeant faiblement vers 0, d'un espace de Banach, on peut extraire une sous-suite "presque inconditionnelle" et on utilise ce résultat pour obtenir en termes de modèmes étalés (cf. [B]) une caractérisation des espaces de Banach dont le dual a la propriété de Banach-Saks.

On se propose de montrer que si $(\mathbf{x}_n)_{n\in\mathbb{N}}$ est une suite seminormalisée tendant faiblement vers 0 d'un espace de Banach E, si $\epsilon>0$ et d $\in\mathbb{N}$ sont donnés, on peut trouver une partie infinie \mathbf{N}_0 de \mathbb{N} telle que la suite $(\mathbf{x}_n)_{n\in\mathbb{N}_0}$ soit basique et que pour chaque partie A à d éléments de \mathbb{N}_0 la projection naturelle de $[(\mathbf{x}_n)_{n\in\mathbb{N}_0}]$ sur $[(\mathbf{x}_n)_{n\in\mathbb{N}_0}]$ soit de norme inférieure à 1+ ϵ .

La clé de la démonstration est le lemme suivant dû à Bourgain :

Lemme : Soit $(x_i)_{i \in \mathbb{N}}$ une suite tendant faiblement vers 0 dans un espace de Banach E. Pour tout réel $\epsilon > 0$ et tout entier D, il existe un ensemble fini $S \subset \mathbb{N}$ tel que pour tout D-uple $(y_k)_{k \leq D}$ d'éléments de la boule unité du dual E' de E, il existe $p \in S$ avec :

$$\sup_{1 \le k \le D} |y_k(x_p)| \le \varepsilon .$$

 $\frac{D\text{\'e}monstration}{\log \text{ie} \ \sigma(E',E)} \text{ : Soit } B_{E'} \text{ la boule unit\'e de } E' \text{ (compacte pour la topologie } \sigma(E',E)) \text{ et sur } B_{E'}^D \text{ consid\'erons la suite de fonctions : }$

$$f_i: B_{E'}^D \longrightarrow \mathbb{R}^+: (y_k)_{k \leq D} \longrightarrow \sum_{k=1}^D |x_i(y_k)|$$
.

Considérons $K_i = \{f_i \ge \epsilon\} \cap B_{E'}^D$, c'est un compact et on a évidemment $\cap K_i = \emptyset$ ce qui implique le résultat.

 $\label{eq:decomposition} \mbox{De ce lemme, on d\'eduit dans un premier temps la proposition} \\ \mbox{suivante} :$

Proposition 1: Soient $d \in \mathbb{N}$, $(x_i)_{i \in \mathbb{N}}$ une suite convergeant faible-

[•] $0 < \delta < \inf_{i \in \mathbb{N}} \|\mathbf{x}_i\| \le \sup_{i \in \mathbb{N}} \|\mathbf{x}_i\| \le \gamma < +\infty$.

ment vers 0 d'un espace de Banach E et $(F_A)_{A \in [N]_d}$ une famille de parties finies de la boule unité du dual E' de E .

Si il existe un entier D, tel que pour tout $A \in [N]_d$, card $F_A \le D$, alors pour tout $\epsilon > 0$ donné, on peut trouver $N_o \in [N]$, $N_o = (p_i)_{i \in I\!\!N}$ (où la suite p_i est rangée dans l'ordre croissant) tel que :

$$\operatorname{si} A \in \lfloor N_o \rfloor_d$$
 , $\operatorname{si} p_k \in N_o \backslash A$,

on a :

$$|y(x_{p_k})| \leq \frac{\varepsilon}{2^k} .$$

<u>Démonstration</u>: La preuve se déroule par récurrence sur l'entier d. Commençons par établir le résultat pour d=1.

1 Amorce de la récurrence : d = 1.

Soit donc $(F_i)_{i\in \mathbb{N}}$, une famille de sous-ensembles de B_E , indexée par les entiers (en fait, les parties de \mathbb{N} à un élément) telle que :

$$\sup_{i \in I\!\!N} \; (\text{card } F_i) \; \leq \; D \; < \; +\infty \quad .$$

Pour ϵ donné, à l'aide du lemme, on peut trouver un ensemble fini d'indices S_1 tel que \forall $j \in I\!\!N$ \exists $p(j) \in S_1$ avec $\sup_{y \in F_j} |y(x_{p(j)})| \leq \frac{\epsilon}{2}$.

Evidemment il existe un même indice p_1 de S_1 qui convient pour une infinité d'éléments de $I\!N$. Soit donc N_1 l'ensemble infinité des entiers just tement supérieurs à p_1 tels que :

$$\sup_{y \in F_{,i}} |y(x_{p_1})| \le \frac{\varepsilon}{2} .$$

A présent comme F est fini et que la suite $(x_i)_{i\in I\!\!N}$ converge vers 0 faiblement, on peut extraire de N₁ une sous-suite N'₁ = $(n_q^1)_{q\in I\!\!N}$, telle que :

$$\forall q \in \mathbb{N}$$

$$\sup_{y \in F_{p_1}} |y(x_{n_q^1})| \leq \frac{\epsilon}{2^{q+1}} .$$

A chaque fois que nous écrirons M = (m $_i$) $_{i\in I\!N}$ ($[\![N]\!]$, on supposer a m $_1$ < m $_2$ <

Dans ce qui suit $[N]_d$ désignera l'ensemble des parties de N à d éléments et [N] l'ensemble des parties infinies de N.

Supposons qu'au rang k on ait construit des entiers $\begin{array}{lll} p_1 \leq p_2 \leq \ldots \leq p_k & \text{et des parties infinies de } \mathbb{N} \text{ , } (N_i')_{i \leq k} & (N_i' = (n_q^i)_{q \in \mathbb{N}} \text{ , } \\ q & \text{est le rang de } n_q^i & \text{dans } N_i' \text{) décroissantes pour l'inclusion avec} \\ p_i \in N_{i-1}' \setminus N_i' & i = 1, \ldots, k & (N_i' = \mathbb{N}) \text{ ; et tels que } : \end{array}$

$$(\alpha) \quad \forall \quad i \leq k \quad \forall \quad j \in N_i' \qquad \qquad \sup_{\mathbf{y} \in F_j} |\mathbf{y}(\mathbf{x}_{\mathbf{p}_i})| \leq \frac{\epsilon}{2^i} ,$$

alors en réitérant le procédé initial à l'ensemble N', il est facile de trouver un entier $\mathbf{p}_{k+1} \in \mathbf{N}_k'$ et une partie infinie \mathbf{N}_{k+1} de N' tels que :

et d'en extraire une nouvelle sous-suite $N'_{k+1} = (n_q^{k+1})_{q \in I\!\!N}$ telle que :

En définitive, on a trouvé un ensemble infini d'entiers ${}^{N}_{o}=(p_{i})_{i\in {\rm I\! N}} \ \ \text{tel que si on considère un de ses éléments} \ p_{k_{o}}, \ \text{on a} \ : \ p_{i}$

si
$$j \le k_0$$
: $\sup_{y \in F_{p_k}} |y(x_{p_j})| \le \frac{\varepsilon}{2^j}$, car $p_{k_0} \in N'_j$;

$$si j > k_0 : \sup_{\mathbf{y} \in F_{\mathbf{p}_{k_0}}} |\mathbf{y}(\mathbf{x}_{\mathbf{p}_j})| \le \frac{\varepsilon}{2^j} , \quad car p_j \in N_{k_0}'$$

et l'entier $j-k_0$ est certainement inférieur au rang de p_j dans N'_k .

2 Achevons la récurrence en supposant la construction effectuée au rang d et en passant au rang d + 1.

Soit donc $(F_A)_{A\in [I\!N]_{d+1}}$ une famille de parties de B_E , avec sup (card F_A) \leq D < + ∞ .

$$\sup_{\mathbf{y}\in \mathbf{F}_{\mathbf{A}}}|\mathbf{y}(\mathbf{x}_{\mathbf{p}(\mathbf{A})})| \leq \frac{\varepsilon}{2}.$$

- Tout d'abord, il est facile, à l'aide du théorème de Ramsey [R], de trouver une sous-suite N_1 de IN telle que le même indice $p_1 \in S_1$ convienne pour tous les d+1-uples d'éléments de N_1 et on peut évidemment supposer que les éléments de N_1 sont tous strictement plus grands que p_1 .
- A présent, à chaque $A \in [N_1]_d$, on peut associer l'ensemble $A_{p_1} = A \cup \{p_1\} \in [N_1 \cup \{p_1\}]_{d+1} ; \text{ on peut selon l'hypothèse de récurrence trouver une partie infinie } N_1' \text{ de } N_1, \text{ telle que } :$ si $N_1' = (n_q^1)_{q \in I\!\!N}$ et si $n_q^1 \in N_1' \setminus A$ alors :

$$\sup_{y \in F_{A_{p_1}}} |y(x_1)| \le \frac{\varepsilon}{2^q} .$$

- Enfin une récurrence en tout point analogue à celle effectuée dans la première partie de la preuve permet d'obtenir une suite d'entiers $N_o = (p_i)_{i \in I\!\!N}$ et des parties infinies de $I\!\!N: (N_i')_{i \in I\!\!N}$ $(N_i' = (n_q^i)_{q \in I\!\!N})$ décroissantes pour l'inclusion avec : $\forall i p_i \in N_{i-1}' \setminus N_i'$ et :

$$(\alpha) \quad \forall \quad i \quad \forall \quad A \in \left[\begin{array}{c} N_i' \end{array} \right]_{d+1} \qquad \sup_{\mathbf{y} \in F_A} \quad \left| \begin{array}{c} \mathbf{y}(\mathbf{x}_{p_i}) \end{array} \right| \leq \frac{\epsilon}{2^i} \quad ,$$

$$(\beta) \quad \forall \quad i \quad \forall \quad B \in [N'_i]_d \quad \forall \quad n_q^i \in N'_i \setminus B \qquad \sup_{y \in F_{B_{p_i}}} |y(x_i)| \leq \frac{\varepsilon}{2^{i+q}}$$

Pour terminer, soit $A \in [N_o]_{d+1}$ et $y \in F_A$. Soit p_k le premier élément de A et $B = A \setminus \{p_k\}$:

- si $j \le k_o$ $|y(x_p)| \le \frac{\epsilon}{2^j}$, puisque $A \in [N'_j]_{d+1}$,

- si $j > k_o$ et $p_j \in N_o \setminus A$, alors $p_j \in N_{k_o}' \setminus B$ et donc : $|y(x_{p_j})| \le \frac{\varepsilon}{2^j}$, puisque $j-k_o$ est certainement inférieur au rang de p_j dans N_{k_o}' . \square

On en déduit immédiatement :

Proposition 2: Soit $(x_i)_{i \in \mathbb{N}}$ une suite basique, semi-normalisée, convergeant faiblement vers 0, d'un espace de Banach E. Pour tout entier d et pour tout $\epsilon > 0$, il existe une sous-suite \mathbb{N}_0 des entiers,

telle que si $A \in [N_0]_d$ et si P_A désigne l'application linéaire :

$$P_{A} : [(x_{i})_{i \in N_{0}}] \longrightarrow [(x_{i})_{i \in A}],$$

$$\sum_{i \in N_{0}} a_{i} x_{i} \longrightarrow \sum_{i \in A} a_{i} x_{i},$$

on ait

$$\Psi A \in [N_0]_d$$
 $\|P_A\| \leq 1 + \varepsilon$.

$$(1 + \varepsilon')(1 + \frac{2k\varepsilon'}{\delta}) \leq 1 + \varepsilon$$
.

Il existe alors un entier D et une famille $(F_A)_{A\in \left[\ I\!N\ \right]_d}$ de parties finies de B_E , avec :

2 La partie F_A de B_E , norme à ϵ '-près l'espace $[(x_i)_{i\in A}]$, ou en d'autres termes :

$$\mathbf{y} \cdot \mathbf{x} \in [(\mathbf{x}_i)_{i \in A}] \ni \mathbf{y} \in \mathbf{F}_A \qquad \|\mathbf{x}\| \le (1 + \epsilon')|\mathbf{y}(\mathbf{x})|$$
.

Par la proposition 1, on peut trouver $N_o \in [N]$, $N_o = (p_j)_{j \in IN}$ telle que si $A \in [N_o]_d$ et $p_k \in N_o/A$ alors :

$$\Psi y \in F_{A}$$
 $|y(x_{p_{k}})| \leq \frac{\varepsilon'}{2^{k}}$.

On a successivement, si $(a_i) \in \mathbb{R}^{(IN)}$:

$$\begin{split} \|\sum_{i \in A} a_i x_i\| &\leq (1+\epsilon') |y(\sum_{i \in A} a_i x_i)|, \quad \text{pour un } y \in F_A, \\ &\leq (1+\epsilon') (\|\sum_{i \in N_o} a_i x_i\| + |y(\sum_{i \in N_o \setminus A} a_i x_i)|), \\ &\leq (1+\epsilon') (\|\sum_{i \in N_o} a_i x_i\| + \sum_{i \in N_o \setminus A} \frac{|a_i |\epsilon'|}{2^i}), \\ &\leq (1+\epsilon') (1+\frac{2k\epsilon'}{\delta}) \|\sum_{i \in N_o} a_i x_i\|, \end{split}$$

car la basicité de $(x_i)_{i\in {\rm I\! N}}$ implique :

$$\forall i \in N_o$$
 $|a_i| \le \frac{2k}{\delta} \|\sum_{i \in N_o} a_i x_i\|$.

En définitive, on a :

$$\left\| \sum_{i \in A} a_i x_i \right\| \leq (1+\varepsilon) \left\| \sum_{i \in N_0} a_i x_i \right\|.$$

Le programme annoncé est donc rempli, cependant on peut se demander si les résultats précédents subsistent sous d'autres hypothèses sur la suite $(x_i)_{i\in I\!\!N}$, que la convergence faible vers 0.

Considérons par exemple l'énoncé suivant qui est sensiblement plus faible que la conclusion du corollaire précédent :

 $\begin{array}{lll} & & & \\ & & \\ & & \\ \end{array} \begin{array}{lll} & & \\ &$

Il est clair que si la condition (*) est vérifiée, tout modèle étalé ullet sur $(x_i^!)_{i\in I\!\!N}$ aura une suite fondamentale inconditionnelle de constante inférieure ou égale à M. On conjecture le résultat suivant :

Conjecture : Si $(x_i)_{i \in \mathbb{N}}$ est une suite bornée d'un espace de Banach admettant un modèle étalé non trivial ayant une suite fondamentale K-inconditionnelle, alors $(x_i)_{i \in \mathbb{N}}$ vérifie (*) pour \forall M > K.

De ce qui précède il est facile de déduire le résultat suivant qui avait été conjecturé dans [GL].

Proposition 3 : Si E est réflexif ou séparable, alors E' a ^l ₁ pour modèle étalé si et seulement si un quotient de E a c pour modèle étalé.

On renvoie à [B] ou [GL] pour la définition d'un modèle étalé.

Rappelons (cf. [B] et [GL]) sans entrer dans les détails qu'avoir c_o (resp. ℓ_1) pour modèle étalé de E signifie qu'il existe une suite de vecteurs $(x_n)_{n\in {\rm I\! N}}$ de E et une constante M>O telles que pour tout entier k, tout système de k vecteurs choisis parmi les $(x_n)_{n\geq k}$ soit M-équivalent à la base canonique de ℓ_∞^k (resp. ℓ_1^k).

<u>Démonstration de la proposition 3</u> : Nous nous contenterons de démontrer la partie nécessaire, et renvoyons à [GL] pour la réciproque.

Soit donc $(y_n)_{n\in\mathbb{N}}$ une suite étalant ℓ_1 dans E'. Si (y_n) possède une sous-suite équivalente à la base canonique de ℓ_1 , par hypothèse E est séparable, un résultat classique ([LT] p. 104) affirme alors que E a un quotient isomorphe à c_0 ...

Sinon (y_n) admet une sous-suite de Cauchy faible (y_n') ; la suite $z_n = y_{2n}' - y_{2n+1}'$ est alors faiblement convergente vers 0; on peut donc en extraire une sous-suite (z_n') vérifiant les conclusions du Corollaire * 1 et qui soit également w -basique (cf. [LT] p. 10), c'est-à-dire qu'il existe un quotient de E muni d'une base $(x_n)_{n\in\mathbb{N}}$ telle que :

$$\Psi$$
 $(m,n) \in \mathbb{N}^2$ $\mathbf{z}_n'(\mathbf{x}_m) = \delta_{mn}$ et $[(\mathbf{x}_n)]' = [(\mathbf{z}_n')]$.

Donc à présent, on sait qu'il existe deux constantes M_1 et M_2 telles que si $\mathsf{k} < \mathsf{n}_1 < \ldots < \mathsf{n}_k$ la famille (z'_n) est M_1 -équivalente à la base canonique de ℓ^k_1 et l'espace $[(\mathsf{z}'_n)]$ est M_2 complémenté dans $[(\mathsf{z}'_n)_{n \in \mathbb{N}}]$ par la projection naturelle. Cela implique que (x_n) est $\mathsf{M}_1 \cdot \mathsf{M}_2$ -équivalente à la base canonique de ℓ^k_∞ , ce qui achève la preuve . \square

Corollaire 2 : Un espace de Banach E a la propriété de Banach-Saks si et seulement si E est réflexif et aucun quotient de E' n'a c pour modèle étalé.

 $\frac{\text{D\'emonstration}}{\text{si et seulement s'il est r\'eflexif et n'a pas }^{\ell}_{1} \text{ pour mod\`ele \'etal\'e.}}$

[•] Une considération plus attentive des modèles étalés permettrait de remplacer \mathbf{M}_1 et \mathbf{M}_2 par 1 + $\mathbf{\epsilon}_k$ où $\mathbf{\epsilon}_k$ décroît vers 0 avec k.

BIBLIOGRAPHIE

- [B] B. Beauzamy: Banach-Saks property and spreading models, à paraître dans Maths. Scand.
- [GL] S. Guerre et J.T. Lapresté : Quelques propriétés des modèles étalés sur les espaces de Banach, preprint.
- [LT] J. Lindenstrauss et L. Tzafriri : Classical Banach spaces I, Springer Verlag.
- F.P. Ramsey: On a problem of formal logic, Proc. London Math. Soc. (2) 30 (1929), 264-286.

. _ _ _ _ _