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IX.1

The purpose of these notes is to present certain results

which will appear in a joint paper with W.B. Johnson, B. Maurey and

G. Schechtman L4].
The starting point is a characterization of symmetric basic

sequences of finite length in a Banach lattice of type 2. Instead

of stating this theorem in the framework of Banach lattices of type

2 we prefer to use the equivalent context of Banach lattices which,

are 2-convex and q-convex for some 
’ 

We recall that a Banach lattice Z is said to be r-convex

for if there exists a constant such that, for every

choice of in Z,
1 1=

respectively

° The smallest possible value taken by M is denoted by M (r) (Z) and is
called the r-convexity constant of Z. The dual notion of r-concavity

is defined by replacing the sign £ with ~ and requiring that M &#x3E; 0.

Again, ~ the smallest possible value for M 1 is denoted by M (r) (Z) and

is called the r-concavity constant of Z.

These notions were essentially introduced in [3] but most

of their basic properties were described in [6] (see also [8]). The

equivalence between the notion of type 2 for a lattice, on one hand,

and that of 2-convexity together with some q --concavity, on the other,

follows easily from a generalization, due to B. Maurey [8], of the

classical inequality of Khintchine. The actual value of q in this

equivalence is of no importance ; what really counts is to ensure

that the lattice does not contain uniformly isomorphic copies of In

for all n.

We also recall that a sequence [z.} 1 is called K-symmetric1 I:

provided that, for every permutation 71 of the integers and every choice

of ,lm1
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Theorem 1 : Let X be a Banach lattice which is 2-convex and 2m-concave

for some integer m. Then, for every K~ 1, there exists a constant

D~ so that, for every normalized K-symmetric basic sequence

in X and every choice of scalars 9 we have
1 i=1 1 1=

where and E means summation over all n! permutations 7 
’

T1: n

of the first n integers. The notation A ~ B is used instead of writing

The constant D depends only on K, ’ m, ’ M(0) (X) and M (2m) (X).

Proof : Let 111-111 be a K-equivalent new norm on the linear span

of such that, endowed with the new norm, fx n" 

i i= 
" 

i i= i i=

is 1-symmetric and still normalized. Clearly, the 2-convexity constant

M(2)(U) of U endowed with 111.111 depends only on K and the type 2-constant

of X. Moreover, if E means summation over all the cyclic ’permutations
o 

’

of tl,2,...,nl then, for every choice of (a.)..,i 1=

This of course proves that, for some constant and every choice of

The above inequality is the only part in the proof of Theorem 1

which actually requires the assumption that X is 2-convex. For the remain-

der of the proof it would suffice to assume that X is B-convex (i.e.

that it has some non-trivial type).
We also notice, for every permutation n of the first integers,
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j I
Hence, by averaging in the sense of kni over all possible n, it follows

2m

that

This proves one side of the inequality. The proof of the other

inequality is still quite elementary but technically more difficult. Let

[a.} 1 be a fixed sequence of scalars. Then, for every permutation n
i i=1

of 11,2,...,nJ, it follows, by using Khintchine’s inequality and the

2m-concavity of X, that 
,

Hence, by expanding the inner sum to the m-th power (here is where we

use that m is an integer) and by averaging in the sense over all
2m

possible n, we get that

where

and
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The expression S1 can be estimated as follows :

We assume now (without loss of generality) that n satisfies n/2 &#x3E; m. In

this case n-m+1 &#x3E; n/2 and therefore we get that

where A is the Khintchine coefficient in L 1 (0,1).
To evaluate the expression S2 we first fix 12m and

m1,...,m£ and put

,

Then, by applying H81der’s inequality in the lattice I ni (X) (see e.g.
-1 

2m

and the vectors

we get that

But )- m and thus at least one of the integers m . , j = 1,2,-..~, say

M1’ is strictly larger than 1. Therefore, by estimating the norm in

follows that



IX.5

Using the estimate for S1 we get that

Hence, if the maximum is not attained at the first term then, by using

the estimate obtained for S2, it follows that, for some constant
InB 2’

Consequently,

from which, by applying another variant of Htllder’s inequality (see e.g.

[6]) for the vectors , i = 1,2,...,n defined by

This completes the proof since, as is easily checked,

The importance of Theorem 1 can be illustrated by presenting

some of its applications. For example, in the particular case when

x= L p (0,1) for p &#x3E; 2 Theorem 1 can be restated in the following simpli-

fied form.

Theorem 2 : For every p &#x3E; 2 and K ~ 1 there exists a constant D= D(p,K)
such that, for every normalized K-symmetric basic sequence in

i i I
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L p (0,1) and every choice of scalars

where

Proof : This is an immediate consequence of the inequality

together with the fact that, for p &#x3E; 2, L P (0,1) is of cotype p which

implies that

Theorem 2 already shows that symmetric basic sequences in

L p (0,1), p&#x3E;2 have a very special form. While in the infinite dimen-

sional case they must be equivalent to the unit vector basis of either

tp or t2 (cf. [5J) it follows from Theorem 2 that, in the finite dimen-

sional case, they generate what, in the terminology of H.P. Rosenthal

[10J, is called an X p -space. The results of H.P. Rosenthal from the

above mentioned paper show e.g. that each such space is isomorphic to

a complemented subspace of L P (0,1) (with the isomorphism and projection

constants independent of the dimension of the subspace).
Theorem 2 can be also used to establish a series of results

on the uniqueness of some symmetric structures. One such application

is related to the well-known fact that each of the spaces 2 , 
P

has,up to equivalence, a unique symmetric basis. D.R. Lewis asked, in

connection with this fact, whether a similar result holds also for.the

,p-spaces, n= 1,2,... To give a precise meaning to the notion of uni-
p

queness for symmetric bases in finite dimensional spaces we introduce

the following definition.

Definition 3 : Let 3 be a family of finite-dimensional Banach spaces

each of which has a normalized 1-symmetric basis. We say that each

element of llfl has a unique symmetric basis if there exists a function

D(K), K &#x3E; 1, so that whenever a space FE ð has a normalized K-symmetric

basis then ff n_ is D(K)-equivalent to the 1-symmetric basis1 1= 1 1=
of F.
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In order to state the result on the uniqueness of symmetric

bases of finite length we also need the following very simple known

fact.

Proposition 4 : Let be a K-symmetric normalized basis of a
, i-i

Proof : The right hand side inequality is easily proved by using the

formal identity map from Y onto , n (use the 2-convexity of (y In 12 i i=1

as in the proof of Theorem 1 and the fact that Y is of type 2 with

constant equal to the Khintchine constant B ). Conversely, if T is an
. p 1 n

invertible operator from Y into L (0,1)’so that JITIJ.IIT- 2 2

then, by transforming the vectors into a K-equivalent sequence
i i=1

of symmetrically exchangeable random variables in a

sequence of n random variables whose joint distribution in Rn is in-

variant under permutations or changes of signs), we conclude that

, We leave the details to the reader. 0

Theorem 5 : i ) Each member of the fami ly q 
p 

of all subspaces of

L 
p 
(0,I), p &#x3E; 2, which have a normalized I-symmetric . basis, has a unique

symmetric basis.

ii) Each member of the family 1 S; P s: 00 has

a unique symmetric basis.

Proof : Part (i) is an immediate consequence of Theorem 2. If {x.}? 1- i i=l

is an arbitrary normalized K-symmetric basis of an X E Q , p&#x3E;2 then,
. 

- p

a priori; the expression , appearing when we apply

Theorem 2 for (x 3n , depends on the particular K-symmetric basis
1 1=

used. However, in view of Proposition 4, wn is essentially equal to

i.e. we get the same value for w (up to a constant which2 n

depends only on K and p) no matter which normalized K-symmetric basis

of X has been used.

Part (ii) for is an obvious corollary of (i) while

for p = 1 and this fact has been proved in [7]. o
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Remark : By using a more complicated argument it is possible to show

that, in fact, even each member of the family U 3 
p 

has a unique sym-
p

metric basis i.e. that the constants appearing in the proof of Part (ii)

of Theorem 5 can be chosen as to be independent of p. Whether a similar

assertion is true also for U Q 
p 

is not known. Actually, it is easily

seen that a positive answer to this question would be equivalent to

the fact that each member of the family of 11 finite dimensional

spaces with a 1-symmetric basis has a unique symmetric basis. Although,

as mentioned above, this problem is still open, some results of a posi-
tive nature were proved in [4]. It was shown there that, for given

q  2 and each member of the class G of all finite dimensional

Banach spaces with a normalized 1-symmetric basis which has q-concavity

constant  M, has a unique symmetric basis.

Theorem 2 has additional applications to some questions con-

cerning rearrangement invariant (r.i.) function spaces. If we restrict

ourselves to countably generated measure spaces without atoms then

we have to consider only the cases of r.i. function spaces on [0,1J
or on An r.i. function space X on an interval I, where I is

either [0,1] or will be a Banach lattice of measurable functions

on I (endowed with the pointwise order) which, for simplicity, is

supposed to satisfy the following two conditions.

(i) The integrable simple functions on I belong to X and form

a dense set there.

(ii) The function X 0 1 has norm one.
Besides the class of L 

p 
(0,I) and the best

known class of r.i. function spaces is that of Orlicz function spaces.

For instance, it is known (cf. ~1~) that any L p (0,1), 1s;p2 contains
a large class of Orlicz function spaces as well as other r.i. function

spaces on ~0,1J or on For p &#x3E; 2 the situation is however comple-

tely different, as is shown by the following result.

Theorem 6 : Assume that an r.i. function space X on an interval I,

where I is [0,1J or is isomorphic to a subspace of L 
P 
(0,1),

p &#x3E; 2. Then, up to an equivalent norm, X is equal to L p (I), L2 (1) or

to L P (I)(1L2(I), the last possibility being distinct only in the case

when 
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Proof : Consider first the case 1=~0,1] and let T be an isomorphism
from X into L p (0,1, n p &#x3E; 2. For every integer n the sequence

* 

rt

is K-symmetric in L P (0,1) with
Therefore, once this sequence is normalized we are in a position to

apply Theorem 2. It follows that there exists a constant inde-

pendent of n, so that, for every step function T of the form

where For a fixed T this formula is clearly .

valid even when n is replaced by any other integer m&#x3E;n. Hence, we may

as well put a = lim inf an instead of an (observe that, by setting ’If-= 1

n

in the above formula, we get a C for all n) and conclude that

for any step function IF as above. Since the set of these step functions

is dense in X it follows that

for all f E X. Consequently, if a = 0 then X=L 2(0,1) while for a. &#x3E; 0 we

have that X= L P (0,1), up to an equivalent norm.

The case I= [0,(0) can be deduced from that of I = [0, 1] .

Indeed, observe first that, for every integer n, the restriction of X

to the interval [0,n] can be contracted to an r.i. function space on

[0,1]. It follows that there exist (3 and y n such that, for every

fE X which is supported by the interval [0,n].

and, again, for a fixed f, the numbers p and y n can be replaced by

respectively Hence, for any I’E X,
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The and y = 0 lead to X = respectively

X= L while when both and y are strictly positive we get that,

up to an equivalent renorming, That L p (0,oo)QL ~ (0,~)
is actually isomorphic to a subspace of L p (0,1) for every p &#x3E; 2 can

be seen by considering the subspace of L (which is

clearly isomorphic to L P (0,1)) consisting of those pairs (f,g) for

which f = g.

Corollary 7 : (i) The space L P (0,1), lpoo has a unique represen-
tation as an r.i. function space on ~0,,1~.

(ii) The space L has two distinct

representations as an r.i. function space on ~0,~), namely L p (0,00)

Assertion (i) is a direct consequence of Theorem 6 for

For p = 1 and the uniqueness was essentially proved

in [9] ; the proof being based on [7]. The same argument also shows

that and have each a unique representation as an r.i.

function space on 

The space appearing in the statement (ii),
is the dual of L where I/p+ I/q= I. The proof of (ii )

follows also from Theorem 6 and the fact that, e.g. when p&#x3E; 2,

is isomorphic to L This latter fact can be

proved by using the decomposition method provided we know that L 
P 
(0,00)

contains a complemented copy of To check this fact

one can use either Poisson processes as in [4] or the fact, due to

H.P. Rosenthal [10], that X p -spaces are isomorphic to complemented
subspace of L 

p 
(O,co) , for all p &#x3E; 2. This suffices since 

is clearly a complemented subspace of any ultrapower of the subspaces

n2n
generated by Ix 

(i-1)2 _ n,i2 _ n) 
n= 1,2,... and each such subspace

is an X p -space (and their ultrapowers are complemented in some L 

Assertion (i) of Corollary 7 is actually valid for a larger

class of r.i. function spaces on [0,I]. In [4] Section 5 it is shown,

for example, that any q  2 concave r.i. function space on [0,I] has
a unique representation as an r.i. space on [0,I]. Without the assump-

tion of q  2 concavity this result is not true in general. A 2-concave

r.i. function space on [0,1] with uncountably many mutually non-equi-
valent representations as an r.i. function space on [0,1] was constructed
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in [4] Section 10. In fact, such an example can be built for every

1 p  2 as to have, in addition, the property that, on one hand, it

embeds isomorphically in L P (0,1) and, on the other, it contains a

complemented copy of L P (0,1).
We conclude with two more applications of Theorem 1.

Theorem 8 : Suppose that a Banach lattice X is isomorphic to a sub-

space of a Banach lattice Y which is of type 2 and, in addition, satis-

fies an upper r&#x3E;2 estimate (i.e. for some

constant and for every sequence of pairwise disjoint vectors

1 
in Y). Then either X itself satisfies an upper r-estimate or

1 i=1

 2 is disjointly finitely representable in X.

In the case when Y= Lr(0,1), r &#x3E; 2 the theorem was originally

proved in [2]. The statement is quite simple in this part,icular case.

Corollary 9 : : Suppose that a Banach lattice X is linearly isomorphic to

a subspace of Lr(0,1), r&#x3E;2. Then either X is linearly isomorphic and

order equivalent to an Lr(v)-space for a suitable v or ~2 is disjointly
finitely representable in X.

A Banach lattice X as above clearly satisfies a lower r-estimate

for disjoint elements (since Lr(0,1) is of cotype r). On the other hand,

i f IZ2is not disjointly finitely representable in X, then by Theorem 8,

X satisfies also an upper r-estimate. Thus, by [ 9], it is linearly

isomorphic and order equivalent to an Lr(v)-space.

The other application of Theorem 1 is a variant of Theorem 8

which is valid in the special case when X is an r.i. function space on

Theorem 10 : Suppose that an r.i. function space X is isomorphic to

a subspace of a Banach lattice Y which is of type 2 and r &#x3E; 2 convex.

Then either X itself is r-convex or X= L2(0,1), up to an equivalent

renorming.

Since the proof of the Theorems 8 and 10 use the same basic
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ideas we shall present here only that of Theorem 10. Both proofs rely

on the following observation.

Lemma 11 : Let be an arbitrary sequence of vectors in an1 1= 
n

r-convex Banach lattice Y and let q r. Let 111.111 be a norm on R

defined by

Then, Rn endowed with the norm III. III forms an r-convex Banach lattice

whose r-convexity constant is £ M"(Y).

Proof : Since q &#x3E; r, it clearly suffices to show that Rn endowed with
the norm

is r-convex with r-convexity constant

k= 1,2,...,m is a sequence of vectors in Rn then

Proof of Theorem 10 : As already observed above, one can find an integer

m so that Y is 2m-concave. Let T be an isomorphism from X into Y and

fix n. By applying Theorem 1 to the IITII . liT-in -symmetric sequence
in Y we conclude the existence of a constant

independent of n so that, for every step funct i on f E X of the form

If, for every integer n,
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where M is a constant exceeding both the r-convexity and 2m-concavity

constants of Y then, for every step function f as above (with n arbitrary),
we have

On the other hand, (+) shows that also

This proves that, in this case, X is equal to L2(o,1), up to an equi-

valent renorming.

Suppose now that there exists an integer k so that

Then, as easily verified, when we evaluate the norm of
- I

, n ~ k by using the formula (+)

then the maximum is attained by the first term i.e.

By Lemma 11 the expression

defines a lattice norm on 2 whose r-convexity constant does not
exceed M. Hence

for every which means that if



IX. 14

an arbitrary step function entirely supported by the interval
- 1-

then, for 1

L - 7 - , 
-

functions

This means that if we evaluate the norm in X of entirely supported by
the interval [O,2-k) by using the formula (+) then the maximum is

always attained in the first term. Thus, by Lemma 11, the restriction

of X to ~0,2 k) is r-convex and so is all of X. 0
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