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§ 0. INTRODUCTION

It is trivial that any sequentially continous mapping

between metric spaces is continuous. It is natural to pose the

following question : for what classes of product of metric spaces are the

sequentially continuous mappings (e.g. into metric spaces) continuous ?

At first this problem in a proper way was posed in an extremely interesting

paper of S. Mazur [1J. For about 20 years this paper was the most advanced

in this direction. Mazur had shown that this problem can be reduced to the

investigation of some special topological and set theoretical properties.

After this in the classical review of Keisler and Tarski [2] the Mazur

results were quoted and some concrete questions about sequentially con-

tinuous mappings of 2ð -~2, 2 were given. Now we formulate these

questions.

0.1 Is the existence of sequentially continuous but not ’continuous

mapping 26. ~ 2 equivalent to the Ulam measurability of 161 ?
Cardinal (At satisfying the conditions of 0.1 is called strong-

ly sequential.

0.2 Is the existence of sequentially continuous but not continuous

mapping of 2ð-tE equivalent to real mesurability of (i.e. to the

existence of real valued complete countably additive measure on A).

Cardinal IAI satisfying the condition of 0.2 is called sequen-

tial.

0.3 Let 8 a be the hierarchy of all weakly inacessible cardinals.
Are all the cardinals ,... non-sequential (i.e. any sequen-

... .1 .

tially continuous mapping is continuous).

We’ll give below the review on positive results in this direc-

tion and some of their generalizations.
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§ 1. EXPOSITION OF MAZUR RESULTS.

Now we explain why most of the information about the sequen-

tially continuous mappings between metric spaces is given by sequential

cardinals. The basic result on this reduction were established by Mazur

[1J

Definition 1.l : A mapping f: X-~ Y is called sequentially continuous, if

for every sequence of X,from it follows that

Mazur was the first, who has found (in ~1~) a well-known and

now largely used "representation theorem" generalized later by Gleason,

Isbell and others.

Theorem 1.2 (Mazur [I] ) : Let B be a metric space and (A ) t tET be a

family of second countable Hausdorff spaces and A = T7 A . Let ITI I be a

tE T 
"

non-sequential cardinal and f be a sequentially continuous mapping from

A to B. Then f is continuous and depends on countably many coordinates.

In other words, there is a countable set PC T such that f = fo. p, where
o p

is the projection of A onto T7 A and f is a ,: map from
p tEp 

t 0

n A to B.
p

For the case of a general (not only metric) space B instead of

the property "ITI is not sequential" Mazur introduced a general property
of N-reducibility.

Definition 1.3 : Let ~ be a property of classes of sets satisfying

the following conditions :

a) if has the property then M is sequentially closed

and is a G 6 set in the sequential topology of P(A) ;
b ) if MC P(a) satisfies 31, then for any the set M(1 P(p’ )
1 

also has the property 4 ;
b ) and Mc P(A) satisfies 3JL Then M = [EC A’ : t E M
2 

cP(ð’) satisfies W too.
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1.4 A class of sets satisfying the property is called 4-class.

Definition 1.5 : A set A is ill-reducible, if for any W-class Mc:P(A)

that contains all finite subsets of A, we have 6E M.

An important example of property % is the following. Let C

be a Hausdorff space and H (7 C a closed Gb-set in the sequential topolo-

gy of C. A set Mc P(A) has the property [C,H] if there is a sequentially

continuous mapping T : : P(a ) - C such that M= (E : T(E) E H) .

Lemma 1.G ([1] ) : The property [C,H] satisfies the conditions a) and

b1), b2) of the 1.3. A set A is ~C,H~-reducible if every sequentially
continuous mapping transforming all finite subsets of A into H

transforms the A into H.

The definition 1.5 is important in view of the general theorem

of Mazur C1~.
Let B be a Hausdorff space with the property

(D) the diagonal D of B x B is a G -set i. n the sequential topology of

the product B x B.

Theorem 1.7 : : Let [At}tET be a family of second countable Hausdorff

spaces and A= T7 A . Let f be a sequentially continuous map from A into B
tET 

"

If T is [B x B,DJ-reducible, then f is continuous.

Thus f depends only on countably many coordinates. In other

words, there is a countable set PC T such that f= f 0 - -mpwhere Tc is
o p p

the projection of A onto 1, At and f 
0 

is a continuous map from x A into B.

tE p 
° P

The main result of Mazur concerning ~-reduci bi li ty is the

following.

Theorem 1.8 ([1J) : : The cardinal w o is ~-reducible. If m is 31-reducible

and n  m, then n is 31-reducible. If m : ~n are 91-reducible and n is

W-reducible, then m= ( E m ) is W-reducible. In particular all cardinals
Sn

 81 are SJ-reducible.

The proof uses the so-called Ulam matrix on cardinal a+. In fact
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for , S  a. + there are such {
o

are constructed as follows : for let f be a one-to-one function from

(Ç) [ - 
+ 

. ()} +
tao ; and let us A ={: oc : f(C) = 1 for 

a

It is evident that this definition of A() satisfies all the properties
Tl

of Ulam’s matrix.

Theorem 1.8 of Mazur was generalized in 1970 by the author

using Hajnal’s analogue of Ulam’s matrix for inaccessible cardinals.

Let AC be the class of cardinals that are not weakly inaccessible and SN

the class of singular cardinals a [i.e. a = Z n , where P a and

ny  a cardinal a, we denote by C (a ) the family of closed

and unbounded in a subsets of a in the order topology of a.

Theorem 1.9 [4J : Let a, be inaccessible cardinal and let there exists

a set Aca n SN such that A E C(a) . If any cardinal ~  a is ~-reducible,

then a is ~-reducible.

In particular 0 11021 ... loo ,... are all ~-reducible. The proof

of theorem 1.9 uses generalization of Ulam’s matrix for this inaccessible

cardinal a : there are such

 _. I ’B

A E C (a ) such a T1 S , s E A 3 exists.

In fact it is true more general

Theorem 1.10 : For X c Card, cardinals : contains

a set from M(x) = X ~ M’ (X), and

Ms (X) - U M~ (X) for limit ordinals 6. Let
Es

then all cardinals  ao are -reducible.
o 

Using Jensen’s [5] we obtain assuming the axiom of constructivity

V = L, that :

Corollary 1.11 : (V = L) All the cardinals a  C4 -the first compact
(weakly compact) are W-reducible.
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§ 2. STRONGLY SEQUENTIALLY CARDINALS.

We’ll give a positive answer to the problem of Keisler-Tarski :

whether properties "strongly sequential" and "Ulam measurable" are

equivalent ?

First of all by Mazur’s result 1.7 we have :

Proposition 2.1 : There is a sequentially continuous but not continuous

mapping P(A)- 2 if and only if there is a sequentially continuous mapping

F: P(6) ~ 2 such that

(S2) F(X) = 0 for all finite Xc ð and F(A) = 1.

Such sequentially continuous mappings F: P(/)-2 that satisfy

(S2) are called Mazur’s mappings.

In one direction we have a trivial answer for Keisler-Tarski

questions, because a lot of examples of Mazur’s mappings are given by

measures on ð :

Proposition 2.2 : : (i) Let rðl be an Ulam measurable cardinal, i.e.

there is a (0,1)-valued non-trivial countable additive measure 11: P(A) - 2.
Then 11 is a Mazur map.

(ii) Let IAI be real-measurable cardinal ; then there

is a measure 11: which is a sequentially continuous mapping,

satisfying (S2).

The structure of an arbitrary Mazur’s mapping is not so simple
as in 2.2 -they may be different from measures. For example in 1970

there was an attempt by Noble [9J to solve the Keisler-Tarski problem,
he supposed that for any Mazur’s map (of type 2.1- (S2)) its restriction

is a~Ulam measure. This is wrong. We’ll construct a Mazur’s map no res-

triction of which is Ulam measure :

Proposition 2.3 (assuming the existence of MC-measurable cardinals) :
There are Mazur’s mappings such that no restrictions of them are Ulam

measures.

Proof : Really, let a/ U be an Ulam measurable cardinal and A ( = ~ A ( = (
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ADA-0 and we have 1l¡: P(A. ) -~ 2 : i ^ 1, 2 be the Ulam’s measures. Let

A=A1UA2’ then we define a sequentially continuous 

by putting :

Then o(E) is sequentially continuous as p. i are sequentially continuous

and u is Mazur map, because o(A) = 1 and ~(X) = 0 for finite XcA.

But no restriction of u is a Ulam measure. Let, on the contrary,

suppose that and let (7AB:P(B)-~2 be Ulam measure. So 

Qut

and for any Ec A, We and
- i IL 1

Analogously Thus

= 0 and q(13) = 1. So no restriction of u is a Ulam measure

This example shows that a Mazur’s mapping of P(A) into 2 can

be a "pasting" of measure. We use the reverse idea -of "unsticking"- to

show that all Mazur’s mapping can be obtained by "pasting". We have

positive solution of Keisler-Tarski problem :

Theorem 2.4 : A cardinal a is strongly sequential iff a is Ulam-measura-

ble.

Proof : In one side it is trivi al : i f a ~ U, then by 3-2 a i s strongly

sequential.

Let a be the least strongly sequential cardinal. We’ ll show

below that a 0 U - By 2.1, there is a Mazur’s map q : P (a) - 2-sequentially

continuous mapping satisfying (S2). With the aid we will construct

a countable-additive measure on a. We show some lemmas :

Lemma 1 : Let (7: P(A) - 2 be Mazur’ s mapping. Then there exists such

A cA, that c(A 0 = 1 and
0- o

1) u is monotonic on P(A ) : if Bc Cc A , then and
o - - o

2) from it follows that Bn C-infinite.
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Proof : Let us first show part 1). We must show that there is 
- o-

such that C1(A’) = 1 and u is monotonic on P ( A’ ) , that is from B c C c A’
o 0 - -- 0

and (r(B) = 1 if follows that a(C) = 1.

Assume that there is no such A’ cA. Then we have
201320132013201320132013201320132013 o --

() for any XA, cr(X)= 1 there are such that r(Y) = 1 and

= o.

We use (~*"). ° We put o   and obtain from ( %~ ) , D1cD1cD with a(D2) = 1,
Then we apply ("-) to D2 etc. We get a descending sequence

of subsets of a for which (D ) = 1 : n  00, ((D- ) = 0 : n  o.n nO 2n Jn+i

This is impossible because lim D 2n = lim as lim Dn exists. Then by the
" 2n 2n+l n

n-co n-co n-co

sequential continuity of 0’, 1 = lim u(D ) 2n = lim c~(D ) ~ 0, so 0 = 1.

n-m n-co

Thus (*") is not true and there is A’ c: A, 5(Al 1, with monotonicity
0- 0

of o on P(Ao). The proof of 2) is similar -if 2) is not true, we take

we take convergent subsequence I

- impossible.

Now we describe "unsticking" : how to construct from a given

Mazur’s map and a pair of disjoint sets two new maps.

Let u and Ao satisfy all the requirements of lemma 9..

Lemma 2 : Suppose that E,, E c A , and We define
2013’20132013** 1  *** o 1 2 1 2

two new s.c. mappings

by the following definitions :

Then, either or 

0E 2 
is a Mazur’s map.

Proof : It is clear that both 5 E, 1 0E are seq. continuous since 0 is
2013201320132013 

1 2
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s. c. Secondly, since u

Let us assume that neither 6 nor o satisfies (S2). Then there exist
"1 ~2

f i ni te sects

such that

or the same

From lemma 1 it follows that is infinite.

On the other hand, (V 1 nE ) 2 n (V2UE1)=V1UV2-finite ’ [as -impossible-.

Thus either ~E 
1 

or (7- 
2 

is a Mazur’s map.

Using the idea od "unsticking" we prove the basic :

Lemma 3 : There is a Mazur’s mapping 1.1 : P(/) - 2, a , such that

(3) if E, and and 1l (E’ = 11 (D) = 0, then 11 (E U D) = o.

Proof : We assume, on the contrary, that there are no Mazur’s maps,

sati fyi ng (3 ) . Now let T be an arbitrary Mazur’ s map Y : P ( A ) -~ 2, then we

find A(~ = A c A such that for lp and A , lemma 1 is true and because (3)
~ o- o

is not true, we find Al,A2cAo’ such that

(here(4) is the negation of(3)).

We ~. Then we have disjoint such that

~. Now we apply to the pair

( A0, A0) the lemma 2. So either
0 1

is a Mazur’s map. Let this
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Mazur’ s map be We denote

So, by induction we obtain for every n 0 two sets An, An and a Mazur’s
0 1

satisfying together

lemma 1, ’ and for which we have sets ~
- 

wi th

By the construction ’ I

. so we have

for any

Now we put

From (5) and (6) it follows that
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The sequence is disjoint sinceo n=

So lim An = 0. Next 
1 

is a descending sequence of sets :
- - 

0 n 
-

since

So is monotone and
’ 

n n=l I 
exists. Now

1

Because are disjoint :

By the sequential continuity of cr,

Thus we come to a contradiction with (4). Lemma 3 is proved.

Applying to ~: P(p)-~2 of lemma 3, also lemma 1 we obtain a set

such that

(I) p is a Mazur’s map : ~:P(D)~2 ;
is monotonous on P(D) ;

(iii) for and A, B~ D implies 

(iv) = 1 and A,BSD implies A n B/ ø.

Lemma 4 : A Mazur’s map 1.1 with (i)-(iv) is, in fact, a Ulam measure.
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Proof : p is finitely additive. Really, let A,B~D, If

’F(A) = = 0, then

by (iii ), since B) = 0. If p(A) = 1, , t(B) = 0, then = 1 by (ii ).

The case 1 is impossible by (iv), Ry the sequential continuity

of p it is also countable additive.

Finally 1l is a non-trivial measure as Ti is a Mazur’s map.

Thus I D I = a and a is Ulam measurable, i.e. a h k - the first
o

measurable cardinal. But ko is strongly sequential, i.e. ko &#x3E; a,. So a=k

and theorem 2.4 is completely proved.

By Mazur’s theorem 1.7 and theorem 2.4 we have : :

Corollary 2.5 : : There is a non-continuous, sequentially continuous

mapping from product T7 X. of second countable Hausdorff spaces to 2

iEl
(or any discrete metric space) if and only if III is Ulam measurable.

§ 3. SEQUENTIAL CARDINALS AND ARBITRARY SEQUENTIALLY CONTINUOUS MAPPINGS

OF METRIC SPACES.

The methods of the previous theorem can be applied to arbitrary

sequential cardinals. Recall that a is sequential iff there is a sequen-

tially continuous but not continuous mapping of P(a) into R.

By Mazur’s theorem 1.7 we have

Proposition 3.1 : The cardinal a is sequential iff there exists

(S) a sequentially continuous mapping F : P(A) - a, such that

F(X) = 0 for any finite xc A, but F(A)/0.

Unfortunately we are unable to prove that sequential cardinals

are in fact real measurable, but we prove that they possess a set-theore-

tical property similar to this :

Lw ]
Definition 3.2 : As Keisler-Tarski [2J we denote 

the fact that there is a countably-complete-K I- saturated ideal over a.
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The ideal I is X’1-saturated iff any system (Xi: i E JJ of disjoint elements

not belonging to I : X. : is at most countable, I J I ::- ’-’ 0 -
1 - 0

Example : For a real-valued o-additive measure on P(a), the ideal I

of sets of zero-measure : 1 ~ (Xc:o. : 1l( X) = 0) is countab ly complete and

saturated.

By the methods of the previous theorem we have the following

result of the author [_7] :

Theorem 3.3 If a is a sequential cardinal, then Theorem 3. 3 : If a is a sequential cardinal, then 
1 

.

Solovay [8] has shown that under the V = L-axiom of constructi-

bility, there is no a such that . So by theorem 3.3 all

cardinals are non-sequential under v = L, so all ITI are non-sequential

and by Mazur’s theorem 1.2 we have :

Corollary 3.4 : Under V = L, any sequentially continuous mapping of the

product of any number of Hausdorff second countable spaces into metric

space is continuous.

Keisler-Tarski [2] showed’thát any cardinal a, satisfying
C1J

is larger than small inaccessible cardinals. So by 3.3

any sequential cardinal is larger then small inaccessible. We obtain

thus :

Corollary 3.5 : and

[ 
00 00 -- 

} Then for a  P or a  P I the sequentially conti-
nuous mapping of product of a separable metric spaces to an arbitrary

... 
^’ o .

metric space is continuous. If 2 == . or even 2 op ,P1’ then Keisler-
o i 

iWi]
Tarski [2] have shown that all cardinals a, satisfying are

Ulam measurable. Thds by 3.3 all sequential cardinals a have

o
and so are Ulam measurable. In other words, if 

sequentially is equivalent to the Ulam measurability.
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1. VARIOUS GENERALI ZATIUNS.

It i still unknown whether wi thout any additional assumptions,

sequentiabi lity of cardinals is equivalent to real measurabi lity, we

ha%L. proved only that the sequent,iabl . lit,y of a. implies ’ " I - I

(i.e. the existence of countably completeB-B 1 -saturated ideal). Un the

tther hand the real-measurabi .. lity )f a also . nmplies .’ ,a other hand the real-measurability of a also implies 
(since real measurability sequentially of ideal or sets measure zero

° 

r l~ 

But the converse is not true : from does not

follow the real measurability of a. In fact Martin and Solvay have shown

. , 

, 

[wi]
t,hat under Martin’s axiom A there can be cardi nals a, ’ l,a C1 ,

which are not real measurable.

Nevertheless, assuming Martin’s axiom A, for sequential cardi-

nals, we can give a complete answer to the Keisler-Tarski problem.

Instead of Martin’s axiom A we use it’s consequence proved by Martin-

Solovay [9J -so-called "strong Baire category theorem" :

,&#x3E;..A
SBCT : The intersection of  2 

0 
dense open substets of R is dense.

Theorem 4.1 (Assuming SBCT) : A cardinal a is sequential iff a is real-

measurable iif a is Ulam measurable.

The coincidence of the real measurability and of the Ulam mea-

surabi lity a.ssumi ng SBCT~ was proved by Martin-Solovay [9].
So theorem 3.3 is weak and in the particular case 4.1 is good.

Problem : It is completely unknown whether non U-reducibility for the

arbitrary V satisfying a), b ) , b2) is equivalent to real measurability.

It is even unknown if an analogue of 3.3 holds for general non

~-reducibility. However for a special % we can obtain an analogue of 3.3.

Let us recall the property a) of 21 :

a) if X is a class of subsets of A satisfying 9J, then x is sequen-

tially closed and a G -set in the sequential topology of P(A), i.e.
’ 

CO 
b - ’

P(A)B~= U Xn, where the Xn are sequentially closed.
n=1 

We replace a) by .

a’) if X is a class of subsets of A satisfying ill, then X is sequen-
co

1jallv and P(A)BX= :1 1 X , where the X are sequentially closed
n=l 

n
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and-G6- sets themselves in the sequential topology of P(A).

Theorem 4.2 : If sati sf i es a’ ) , b1)’ b? ) , then the non M-reducibility

of a implies [

We have given the review of the results on the sequentially

continuous mapping. These problems can have different applications. They

are interesting in the analysis of sequential topology of various spaces

and first of all to the analysis of the sequential topology of Tychonoff

products. The presented results find already their application in the

investigations of uniform spaces. Among the applications of the results

are Huzek papers. 
’

However there are many problems with the Tychonoff powers of

~, IN We have such a problem :

Problem : Is the existence of a sequentially continuous, but not conti-

nuous mapping of IRA in R equivalent to the sequentiability of IAI ? to

the real measurability of 

We only know that by Mazur’s theorem 1.2 from the non-sequentia-

bility of (At it follows that any sequentially continuous mapping IR A- IR
is continuous.

But the converse is unknown : let any s. c. map be conti-

nuous. Must be non-sequential or not ?
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