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IV.1

§ 0. INTRODUCTION

It is trivial that any sequentially continous mapping
between metric spaces is continuous. It is natural to pose the
following question : for what classes of product of metric spaces are the
sequentially continuous mappings (e.g. into metric spaces) continuous ?
At first this problem in a proper way was posed in an extremely interesting
paper of S. Mazur [1]. For about 20 years this paper was the most advanced
in this direction. Mazur had shown that this problem can be reduced to the
investigation of some special topological and set theoretical properties.
After this in the classical review of Keisler and Tarski [2] the Mazur
results were quoted and some concrete questions about sequentially con-

A

tinuous mappings of 2A—.2, 27> R were given. Now we formulate theése

questions.

0.1 Is the existence of sequentially continuous but not continuous
mapping 2A-*2 equivalent to the Ulam measurability of [al ?
Cardinal [al satisfying the conditions of 0.1 is called strong-

ly sequential.

0.2 Is the existence of sequentially continuous but not continuous
mapping of 2A-all equivalent to real mesurability of [Al (i.e. to the
existence of real valued complete countably additive measure on A).

Cardinal [al satisfying the condition of 0.2 is called sequen-
tial.

0.3 Let ea be the hierarchy of all weakly inacessible cardinals.

Are all theé cardinals |A|<fee ,ee y+++ non-sequential (i.e. any sequen-
1 7p
1

tially continuous mapping 2° - R is continuous).

We'll give below the review on positive results in this direc-

tion and some of their generalizations.
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§ 1. EXPOSITION OF MAZUR RESULTS.

Now we explain why most of the information about the sequen-
tially continuous mappings between metric spaces is given by sequential

cardinals. The basic result on this reduction were established by Mazur

(1]

Definition 1.1 : A mapping f: X-Y is called sequentially continuous, if

for every sequence {xn}n of X,from lim X =X it follows that

n—o

€w
lim f(x_)=f(x ).
n 0
n—o
Mazur was the first, who has found (in [1]) a well-known and
now largely used '"representation theorem" generalized later by Gleason,

Isbell and others.

Theorem 1.2 (Mazur [1]) : Let B be a metric space and {At}tGT be a

Let IT| be a

family of second countable Hausdorff spaces and A= T[] A
teT
non-sequential cardinal and f be a sequentially continuous mapping from

t .

A to B. Then f is continuous and depends on countably many coordinates.
In other words, there is a countable set Pc T such that f= fo. np, where

and fo is a contipr:t .~ map from

Ep is the projection of A onto TT At

tep
n A to B.
P

For the case of a general (not only metric) space B instead of
the property "IT| is not sequential" Mazur introduced a general property

of U-reducibility.

Definition 1.3 : Let U be a property of classes of sets satisfying

the following conditions :
a) if McP(A) has the property U, then M is sequentially closed
and is a G& set in the sequential topology of P(A) ;
b1) if Mc P(A) satisfies U, then for any A'c A the set MO P(A')
also has the property U ;
b2) let ¢: A= A' and Mc P(p) satisfies %U. Then M(p= {Eca': (P-i(E)E M}_C_

cP(A') satisfies U too.
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1.4 A class of sets satisfying the property U is called U-class.

Definition 1.5 : A set A is YU-reducible, if for any U-class MEZP(A)

that contains all finite subsets of A, we have A€ M.

An important example of property U is the following. Let C
be a Hausdorff space and HcC a closed Gb—set in the sequential topolo-
gy of C. A set Mc P(A) has the property [C,H] if there is a sequentially
continuous mapping ¥ : P(p) -»C such that M= {E: ¥Y(E) € H}.

Lemma 1.6 ([1]) : The property [C,H] satisfies the conditions a) and
b1), b2) of the 1.3. A set A is [C,H]-reducible if every sequentially
continuous mapping P(A) - C transforming all finite subsets of A into H

transforms the A into H.

The definition 1.5 is important in view of the general theorem
of Mazur [1].
Let B be a Hausdorff space with the property

(D) the diagonal D of BxB is a G.-set in the sequential topology of

o)
the product B x B.

Theorem 1.7 : Let {At}

spaces and A = Tj- A
teT
If T is [BxB,D]-reducible, then f is continuous.

tET be a family of second countable Hausdorff

Let f be a sequentially continuous map from Ainto B.

-

Thus f depends only on countably many coordinates. In other
‘ words, there is a countable set Pc T such that f = fo. np where np is

the projection of A onto [ A
tep
The main result of Mazur concerning U-reducibility is the

¢ and fo is a continuous map from npAintoIL

following.

Theorem 1.8 ([1]) : The cardinal w, is U-reducible. If m is U-reducible

and n<m, then n is YU-reducible. If m. : €< n are U-reducible and n is

Y-reducible, then m=( £ m_)" is ¥U-reducible. In particular all cardinals
g€<n 5

< 91 are U-reducible.

The proof uses the so-called Ulam matrix on cardinal . In fact,
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(¢)

for aZw s €<oc+ and N< a there are such {A : N<al, that

ll
0 AU =at s cca’ ana Al nalEl g ca, (4 These sets
<o !
are constructed as follows : for §<(x+ let f_. be a one-to-one function from

€ to o and let us A%g):{gzg<§<a+:fF(C):'T]} for {<a' and N<a.

It is evident that this definition of A%g)

satisfies all the properties
of Ulam's matrix.

Theorem 1.8 of Mazur was generalized in 1970 by the author
using Hajnal's analogue of Ulam's matrix for inaccessible cardinals.
Let AC be the class of cardinals that are not weakly inaccessible and SN

the class of singular cardinals o [i.e. a= ¥ n , where B<a and
y<B
nY<Za:-y< B].For a cardinal a we denote by C(a) the family of closed

and unbounded in a subsets of a in the order topology of a.

Theorem 1.9 [4] : Let a be inaccessible cardinal and let there exists

a set Aca SN such that A€ C(a). If any cardinal B<a is ¥U-reducible,

then a is Y-reducible.

In particular 91,92,...,96 e+« are all U-reducible. The proof
1

of theorem 1.9 uses generalization of Ulam's matrix for this inaccessible

cardinal a : there are such {A%g): n<<§}, gc A that U A(g)u (E+1)=A

and A8 nal8) _ g for £ 4 A. Tt hown i Pi(g)] ‘hat £
M N = or § y E,0€ E | was shown in tha or
AcaNSN, A€ C(a) such a matrix {A,ng : N<E , E€ A} exists.

In fact it is true more general

Theorem 1.10 : For Xc Card, M'(X) = {B-regular cardinals : XN B contains
a set from C(g)}, MY (X) =xum (x), M1 (x) = M (ME(X)) ana

Mﬁ(x)= U Mg(X) for limit ordinals 6. Let
£<5

w+-1__ w _—
o, = min(M ° (xC)\M °(xC))

then all cardinals < a  are U-reducible.

Using Jensen's [5] we obtain assuming the axiom of constructivity

V=L, that

Corollary 1.11 : (V=L) All the cardinals a<iCo -the first compact

(weakly compact) are U-reducible.
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§ 2. STRONGLY SEQUENTIALLY CARDINALS.

We'll give a positive answer to the problem of Keisler-Tarski
whether properties "strongly sequential" and '"Ulam measurable'" are
equivalent ?

First of all by Mazur's result 1.7 we have

Proposition 2.1 : There is a sequentially continuous but not continuous

mapping P(p) - 2 if and only if there is a sequentially continuous mapping
F: P(A) - 2 such that
2

(s%) F(X) =0 for all finite Xc A and F(A) = 1.

Such sequentially continuous mappings F: P(A) - 2 that satisfy

(52) are called Mazur's mappings.
In one direction we have a trivial answer for Keisler-Tarski
questions, because a lot of examples of Mazur's mappings are given by

measures on A

Proposition 2.2 : (i) Let |Al be an Ulam measurable cardinal, i.e.

there is a {0,1}-valued non-trivial countable additive measure p: P(a) - 2.
Then p is a Mazur map.

(ii) Let |Al be real-measurable cardinal ; then there
is a measure p: P(pA) - R which is a sequentially continuous mapping,

satisfying (52).

The structure of an arbitrary Mazur's mapping is not so simple
as in 2.2 -they may be different from measures. For example in 1970
there was an attempt by Noble [9] to solve the Keisler-Tarski problem,
he supposed that for any Mazur's map (of type 2.1-—(82)) its restriction
is a Ulam measure. This is wrong. We'll construct a Mazur's map no res-

triction of which is Ulam measure :

Proposition 2.3 (assuming the existence of MC-measurable cardinals)

There are Mazur's mappings such that no restrictions of them are Ulam

measures.

Proof : Really, let aZU be an Ulam measurable cardinal and |A1|: |A2|:(
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A1r1A2::¢ and we have By P(Ai)-.2 : i=1,2 be the Ulam's measures. Let
A=A, UA,, then we define a sequentially continuous mapping - : P(A) -2
by putting

for EC A=A UA,,

o(E) = min{p (ENA,), uz(EﬂAz)} .

Then o(E) is sequentially continuous as B, are sequentially continuous
and o is Mazur map, because c(A) =1 and o(X)=0 for finite Xc A.

But no restriction of o is a Ulam measure. Let, on the contrary,
suppose that BC A and let o AB: P(B) -2 be Ulam measure. So o(B) = 1.
But

B = (BﬂA1)U(BﬂA2) ,

and for any Ec A, G(E)sui(EﬂAi). We put E=BN A, and

o(BN Al) < uz(Bﬂ AN A2) < uz(ﬂ) = 0. Analogously o(BN A2) = 0. Thus

o(BF]A1)= O(BF1A2)= 0 and o(B) = 1. So no restriction of o is a Ulam measure
This example shows that a Mazur's mapping of P(A) into 2 can

be a "pasting" of measure. We use the reverse idea -of "unsticking"- to

show that all Mazur's mapping can be obtained by '"pasting'. We have

positive solution of Keisler-Tarski problem

Theorem 2.4 : A cardinal a is strongly sequential iff a is Ulam-measura-

ble.

Proof : 1In one side it is trivial : if a2 U, then by 2.2 o is strongly
sequential.

Let o be the least strongly sequential cardinal. We'll show
below that a g U. By 2.1, there is a Mazur's map o: P(a) - 2-sequentially
continuous mapping satisfying (Sz). With the aid of o we will construct

a countable-additive measure on a. We show some lemmas :

Lemma 1 : Let o: P(A) -2 be Mazur's mapping. Then there exists such
A CA, that o(Ao)z 1 and
1) o is monotonic on P(Ao) s if B_C_CEAO’ then o(B) < o(C) and

2) from o(B)=0o(C)=1 it follows that BN C-infinite.
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Proof : Let us first show part 1). We must show that there is Aég;A
such that 5(Aé): 1 and ¢ is monotonic on P(Aé), that is from BCCcA!
and o(B) =1 if follows that o(C) = 1.

Assume that there is no such AAEEA' Then we have

(#) for any Xc A, o(X) =1 there are such YCZc X that o(Y) =1 and
O’(Z):O.

We use (¥*). We put DO: A and obtain from (%), D _cD EEDO with G(Dz): 1,

1 1
G(Dl)z 0. Then we apply (¥) to D, etc. We get a descending sequence

“ i = . = . < -
{Dn}n:O of subsets of a for which 0(D2n) 1: n< o, O(D2n+1) 0:n<w

This is impossible because lim D2 =1lim D
n—-w n n—-w
sequential continuity of o, 1= 1lim O(D2n): lim O(D2n+1)::0, so 0=1.

n—o n—o

Thus (*) is not true and there is AAEEA’ O(Aé): 1, with monotonicity

as lim D exists. Then by the
n O

2n+1

of ¢ on P(Aé). The proof of 2) is similar -if 2) is not true, we take
' ] — 3 1] —_ - —_ 3 3
AOEA, o(Ao)_l, with A_,A EAO, o(Al)_o(Az)_l, AlﬂA2 finite, then

1’72
(e = = -fi i e e e A
Agoh = Ay, o(AZ) =0(A,) =1, A;NA,-Finite, A A, <

2n+1'7°2 2n-1’
O'(A2n+1)= O’(A2n) =1, A +1{’]A2n:En-f1n1te. Then {A2D\En} are disjoint,

2n
so lim {A2 \E } =0 ; we take convergent subsequence {En }—»Em y;then
n-o non k
lim A, =1im {A, \E_ JUE =@GUlimE_ . So 1=1im o(A, )=1im o(E_)=0
2nk Ko 2nk n, n, n 2nk n,

- impossible.
Now we describe "unsticking'" : how to construct from a given
Mazur's map and a pair of disjoint sets two new maps.

Let o and AO satisfy all the requirements of lemma 1.

Lemma 2 : Suppose that E,, E_CA , E1(1E2::ﬂ and U(E1LJE2): 1. We define

1° "2="9
two new s.c. mappings

(E1) (E2)
0E2 :P(Eg)—-——>2 3 aE1 :P(El)—-—;>2

by the following definitions :

(E2)
for V1C:E1 s GE1 (Vl) = o(VlLJEz) ;
(E,)
for V_cCE o] 1 (V,)) = o(V_UE.)
2 2 E2 2 2 1
Then, either ¢ or ¢ is a Mazur's map.
E, — "E
1 2
Proof : It is clear that both Op » O are seq. continuous since o is

1 2
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s.c. Secondly, since o(E1LJE2): 1,
g (E1) = op (hz) = o(E1LJE2) -1
1 2
Let us assume that neither o nor OF satisfies (82). Then there exist

E

finite sets

1="1 2="2
such that g (Vl) = op (V2) = 1
1 2
or the same
Je3t _ . _
(3%3¢) d(V1UE2) =1 3 o(V2UE1) =1 .

From lemma 1 it follows that (VlLJE2)r](V2LJE1) is infinite.
On the other hand, (V1F1E2)r](V2LJE1)::V1LJV2—f1n1te [as ViEEEi] -impossible-.

Thus either o or o is a Mazur's map.
El E2

Using the idea od "unsticking'" we prove the basic :

Lemma 3 : There is a Mazur's mapping p: P(A) - 2, Ial =a, such that
(3) if E, DcA and END=# and w(E) = u(D) =0, then p(EUD) =0.

Proof : We assume, on the contrary, that there are no Mazur's maps,
satifying (3). Now let ® be an arbitrary Mazur's map ¢ : P(A) - 2, then we
find A° = AOEEA such that for ¢ and Ao’ lemma 1 is true and because (3)

©

is not true, we find Al’A g;AO, such that

2

@(A1)=¢(A)=O, ALNA =6

2 172
(4)

(o}

but P(A UA) =1 , A o

1A A

(here (4) is the negation of (3)).

o
1
G(Ag)= G(A?)= 0, G(AgLJA2)= 1, Ag()A2:=¢. Now we apply to the pair

We set'@oz o. Then we have disjoint Ag,A EEAO such that

* (A3) (A%)
(Aﬁ,A?) the lemma 2. So either o o or g is a Mazur's map. Let this
A A
o 1



Iv.9

Mazur's map be o o0 ¢ P(A;))HZ. We denote o _ by .

44 A

Next we apply(4) to @1 . Then we obtain Ag: AOQP EA(; satisfying
1
1 o

1
lemma 1 and Ao, A1§A2

1 1
such that AoﬂA1_ﬁ) 5
1 1 1
wl(Ao) =@ (A) =0 , ¢1(AOUA1) =1 .

So, by induction we obtain for every n>0 two sets AE, Ar; and a Mazur's

n (A5) _
mapping LPn+1 : P(Al) -2, (Pn+1: (Qpn)An and A2_C_A1 satisfying together
1
with @ lemma 1, and for which we have sets A" 1, A™*1 yith
n+1 o 1
n+1 n+1 n n n+1 n+1
ACTUAT T CA AL 5 AT T NAYT = f
(5)
n+1 n+1 n+1 n+1
q)n+1(Ao ) = (pn+](A1 ) =0 3 Lpn+1(Ao UAl ) =1 .
(A7)
By the construction ¢ = (9 ) ... so we have
n+1 n . .n
A
1
o ~.n
6) @n+1(E) = G(EUAOU UAO)
n
for any EEA2 .
1M +1, .n+1 R |
Now we put Ev=A"""U u Al andE':An*LjIUE"z(An UA JU U A .
n 1 i-0 © n o n o 1 ic0 °©

From (5) and (6) it follows that
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(7) O(E;) =0 3 G(Eg) =1 :n=1,2,... .

- njyo . o . . n_,m m m
The sequence {Ao}n:1 is disjoint since AoiiAl for n>m and A1(]Ao_.ﬂ.

So lim Ag::ﬂ. Next {Eﬁ}: is a descending seqguence of sets

n—o

=1

Ea§3E£+1: n=1,2,... . In fact
n+1 .
n+2 n+2 i
(8) El,q = A "UATTU U A=
i=0
n+2 n+2 n+1 n i n+1 n+1 n i
:Ao UA1 UAo U u AOEA1 UaA U u AO:E'
- i=0 e Y i=0
. n+2 n+2 n+1
since Ao UA1 EAl .
So {E'}Oo is monotone and lim E' exists. Now
n'n=1 now B
' n_ "
(9) E' M =B o,
n n n n-1 i, ,n n n-1 i
1 —_ | - - " 3 3
really, En—i\Ao_ aéQ}JA1)kJigo Ao\ﬂgj.AlLJigo AO..En_1 since different
Ad are disjoint.
o N
Because {A are disjoint :
o' n=1
X . ny, .. - . n _ .. -
(10) lim (En—i\Ao) = lim En_l\llm A0 = lim En—l ,
n—o n—o n—o n—o
or (11) lim E" = lim E' .
n n
n—o n—o
By the sequential continuity of o,
(12) 0 = 1lim o(E") = 1im o(E') = 1 .
n—o n n—o n

Thus we come to a contradiction with 4). Lemma 3 is proved.
Applying to p: P(A) =2 of lemma 3, also lemma 1 we obtain a set
such that
(i) w is a Mazur's map : n: P(D)-2
(ii) v is monotonous on P(D) ;
(iii) wu(A)=n(B) =0 for ANB=f and A, BCD implies w(AUB) =0 ;
(iv) p(A)=p(B)=1 and A,BcD implies ANBZ@.

Lemma 4 : A Mazur's map P with (i)-(iv) is, in fact, a Ulam measure.
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Proof : 1w is finitely additive. Really, let A,BCD, ANB=g. If
'U,(A) = }L(B) = 0, then

n(AUB) = p(A) + u(B)

by (iii), since p(AUB)=0. If p(A)=1, n(B) =0, then p(AyUB)=1 by (ii).
The case p(A) = u(B) =1 is impossible by (iv). By the sequential continuity

of 1w it is also countable additive.

Finally p is a non-trivial measure as . is a Mazur's map-

Thus |D|=0o and a is Ulam measurable, i.e. a;zko - the first
measurable cardinal. But ko is strongly sequential, i.e. ko;za- So a = k0
and theorem 2.4 is completely proved.

By Mazur's theorem 1.7 and theorem 2.4 we have :

Corollary 2.5 : There is a non-continuous, sequentially continuous

mapping from product TI X. of second countable Hausdorff spaces to 2
i€l
(or any discrete metric space) if and only if [1] is Ulam measurable.

§ 3. SEQUENTIAL CARDINALS AND ARBITRARY SEQUENTIALLY CONTINUOUS MAPPINGS
OF METRIC SPACES.

The methods of the previous theorem can be applied to arbitrary
sequential cardinals. Recall that a is sequential iff there is a sequen-
tially continuous but not continuous mapping of P(a) into R.

By Mazur's theorem 1.7 we have

Proposition 3.1 : The cardinal o is sequential iff there exists

(S) a sequentially continuous mapping F: P(A) - R, |A|l =a, such that
F(X) =0 for any finite XC A, but F(A) £ 0.

Unfortunately we are unable to prove that sequential cardinals
are in fact real measurable, but we prove that they possess a set-theore-
tical property similar to this

Lwl]

Definition 3.2 : As Keisler-Tarski [2] we denote Dcl,a]géCl

the fact that there is a countably-complete-¥X -saturated ideal over a.

1
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The ideal I is x1—saturated iff any system {Xi: i€dJd} of disjoint elements
not belonging to T : {Xi: i€<J}§IWa)\I— is at most countable, |J]| < {).

Example : For a real-valued oc-additive measure 1 on P(a), the ideal I
of sets of zero-measure : T={XcCoa: p(X)-= 0} is countably complete and

X1—saturated.

By the methods of the previous theorem we have the following
result of the author [7]
[w,]

Theorem 3.3 : If a is a sequential cardinal, then Dvl,ajg(d .

Solovay [8] has shown that under the V = L-axiom of constructi-
r
lw,]
bility, there is no a such that 5*1’a]€(ﬁ,1 . So by theorem 3.3 all

cardinals are non-sequential under V=L, so all [T] are non-sequential

and by Mazur's theorem 1.2 we have

Corollary 3.4 : Under V=1L, any sequentially continuous mapping of the

product of any number of Hausdorff second countable spaces into metric

space is continuous.

Keisler-Tarski [2] showed that any cardinal o, satisfying
(w,]
1

Gml,a]ch is larger than small inaccessible cardinals. So by 3.3
any sequential cardinal is larger then small inaccessible. We obtain

thus

Corollary 3.5 : Let MJ(X)= U M>(X)\E, and let P =minfa: o€ M (AC)},
o
ECORD
P1::min{a:(xf (M")®(AC)}. Then for a<p or a<p, the sequentially conti-

nuous mapping of product of a separable metric spaces to an arbitrary

),) &-\

metric space is continuous. If 2 °. 1 or even 2 0<ipo,p1, then Keisler-
o [w,]
Tarski [2] have shown that all cardinals a, satisfying D‘1NXJECH'1 are

Ulam measurable. Thus by 3.3 all sequential cardinals o have

(w,] X

[»l,a]g01 1 and so are Ulam measurable. In other words, if 2 °< Pl,

sequentially is equivalent to the Ulam measurability.
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§ 4. VARIOUS GENERALIZATTONS.

[t is still unknown whether without any additional assumptions,
sequentiability of cardinals is equivalent to real measurability. We
have proved only that the sequentiability of « implies [ﬂl,a]g;C1w1
(i.e. the existence of countably complete'*l—saturated ideal). On the
other hand the real-measurability of a also implies EQl,aJQECEmI
{since real measurability = sequentially of ideal or sets measure zero
is ”1_saturated). [wlj

But the converse is not true : from P01,a]g}ll does not

follow the real measurability of a. In fact Martin and Solvay have shown
(w,]
1

L9] that under Martin's axiom A there can be cardinals a, [:)‘<‘1,oc]gC1 )
which are not real measurable.

Nevertheless, assuming Martin's axiom A, for sequential cardi-
nals, we can give a complete answer to the Keisler-Tarski problem.
Instead of Martin's axiom A we use it's consequence proved by Martin-

Solovay [ 9] -so-called "strong Baire category theorem"

A
SBCT : The intersection of < 2 ° dense open substets of R is dense.

Theorem 4.1 (Assuming SBCT) : A cardinal a is sequential iff o is real-

measurable iif a is Ulam measurable.

The coincidence of the real measurability and of the Ulam mea-
surability assuming SBCT was proved by Martin-Solovay [9].

So theorem 3.3 is weak and in the particular case 4.1 is good.

Problem : It is completely unknown whether non U-reducibility for the
arbitrary ¥ satisfying a), bl)’ b2) is equivalent to real measurability.
It is even unknown if an analogue of 3.3 holds for general non
U-reducibility. However for a special U we can obtain an analogue of 3.3.
Let us recall the property a) of U
a) if X is a class of subsets of A satisfying U, then X is sequen-

tially closed and a Gﬁ—set in the seauential topology of P(A), i.e.
@
P(ANX = U Xn, where the Xn are sequentially closed.
n=1
We replace a) by

a') if X is a class of subsets of A satisfying U, then X is sequen-
tialiv c¢losed and POANN\X= 1! Xn, where the Xn are sequentially closed
n=1
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and Gb-sets themselves in the sequential topology of P(A).

Theorem 4.2 : If U satisfies a'), b1), b
[w,]
of o implies [v\],a]gcl .

), then the non YU-reducibility

2

We have given the review of the results on the sequentially
continuous mapping. These problems can have different applications. They
are interesting in the analysis of sequential topology of various spaces
and first of all to the analysis of the sequential topology of Tychonoff
products. The presented results find already their application in the
investigations of uniform spaces. Among the applications of the results
are Huzek papers.

However there are many problems with the Tychonoff powers of

R, N, ... . We ‘have such a problem

Problem : 1Is the existence of a sequentially continuous, but not conti-

A

nuous mapping of R~ in R equivalent to the sequentiability of [al 2 to

the real measurability of al 2

We only know that by Mazur's theorem 1.2 from the non-sequentia-
bility of Ial it follows that any sequentially continuous mapping RA-—H2
is continuous.

But the converse is unknown : let any s.é. map RA—JR be conti-

nuous. Must |Al be non-sequential or not ?
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