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Sufficiently rich sets of stopping times.
measurable cluster points and submartinggles

by A. Bellow*

Let (Q,Y,P) be a fixed probability space. We denote by N the set of

positive integers; N = N U 1+-I. We shall assume in what follows that:

(5: ) n n C- N is an increasing sequence of sub-a-fields of 5:, 

? C ? for m  n and we.let

that 
00 

is the a-field spanned by V 1 n. "201320132013~ ~ 201320132013 20132013201320132013201320132013 

A mapping 6: - 9 is called a stopping time (relative to (? ) )n n - N

if {e= n} C 5: n for each n C N. We associate with e the a-field 18 defined by

J 8 is "the a-field of events prior to time 0."
We denote by Tf the set of all stopping times a that are finite a.s.,

that is, such that  +~}) = 1. We denote by T the set of all bounded

stopping times, that is, the set of all stopping times o: - N, assuming only

finitely many values. Clearly T is a proper subset of T . We recall also

that if a, T belong to the relation o  T 
f - a T

Let now S be a subset of T f . For each T 6 T f we define

in particular, for each n C N

For X C Ll = we write
R

*Research supported in part by the National Science Foundation (U.S.A.).
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We say that a sequence (X ) n6 N of elements of L1 is L1-bounded if
n n- 20132013201320132013

if q C ? is a sub-Q-f leld of 5, we denote by E 9 the conditional expectation
operator in L1.

Below whenever we speak of r.v.’s we shall always mean real-valued

random variables.

A sequence (X) c N of r.v.’s is called adapted (relative to (5 ) )nnCN 20132013"20132013 nnCN

if each X 
n 

is ? -measurable. If (X ) is an adapted sequence of r.v.’s andn n n n GN " ’

if T C Tf., then X T denotes the r.v. defined by (X T) (w) = X T (w) (w) if

w C T  +-I, and (X ) (w) = 0 otherwise. Note that X 
T 

is always ? -measurable.
T T T

§1. Sufficiently rich sets of stopping times and measurable cluster

points

We begin with the following definition:

Definition 1. We say that a set S C T f is suf f iciently rich if :

a) For each n C N, S(n) # 0;

b) (Localization) For each finite family stopping times with
JJ

T C S (for j C J) and finite partition of Q, (A, ) , ei with A, C j=,. (for
j J j

j C J), if we set T(W) = T . (w) for w C A. (j C J), then T C S.
J J

Remark. If S C T f is sufficiently rich, then for any a C S,T C S, the

stopping times a v T and a A T belong to S (note that the set ~Q  T } belongs

both to ? and
cr T

Exam les. 1) The sets T and Tf clearly are sufficiently rich.

2) If S c T is sufficiently rich and if S contains the constants, then

S = T.
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3) Let N 
be an ada ted sequence of r.v.’s and be a

Borel set which is recurrent for (X ) C N’ this means that a.s. for w 6 ,
2013201320132013201320132013 n n 6 N 

"

the sequence (X n (w)) n6 N visits the set B infinitely many times. Let S be
n n-

the set of all T C Tf with the property that 6 B}) = 1. Then the set

S is sufficiently rich.

Definition 2. Let (X ) be an adapted sequence of r.v.’s and let
201320132013201320132013201320132013 n n 6 N

S c Tf be a sufficiently rich set of stopping times. We say that a r.v. Y is

a measurable cluster oint of the sequence (X ) ~ N relative to S and we

write Y if : there is a sequence (T ) n n6 N 
with T 

n 
C S(n)

2013201320132013 n n - n nd N n

such that X - Y a. s.

Tn

Remarks. 1) Suppose S = T. In this case every r.v. Y which coincides

a. s. with an ?-measurable one and having the property that a. s. for w C ~,

Y(w) is a cluster value of the sequence (X n (w)) n E’ N’ , belongs to

(see for instance Theorem 1 in [4]). We write 
nn- N nn- N

n 
and we speak of the elements ofM[(X ) as the measurable

nncM nn- 

cluster points of the sequence (X ) p .

2) Let be an adapted sequence of r.v.’s and for each k 6 N let
n n -

P(k) be a measurable property that the process N might satisfy. We
n n- N

assume that: i) For each k C N, the set

lW I the process satisfies P (k) }

belongs to ~k. ii) For almost every w C ~, the process (X ) N satisfies

P(k) for all k large enough, that is, for all k &#x3E; k (here the integer k- w w

may depend on w). Let S be the set of all T 6 Tf satisfying: on the set

{r = k} the process (X ) n n E’N satisfies P (k) . Then the set S is sufficiently

rich and it is easily seen °

n n n -
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§2. The submartingales associated with X, ’ the sequence_(X n)n CN
and the set S

From now on, through the rest of the paper we shall assume that:

(X) EN is an adapted sequence of elements of L1, and S C T is a
nn N 201320132013201320132013201320132013201320132013201320132013201320132013201320132013201320132013201320132013201320132013 f

sufficiently rich set of stopping times such that X 
T 

C Ll for each T C S.
- - - . - ..- - . - -" - --.- - ..- -- . - - - .- . -. - - - - .. ° - L

Our starting point is an idea proposed by Baxter (see [2]; see also

[4]) which we expand as follows:

Proposition 1. Let X ELI. For each n C N define p : § + R + §- -- ------- n n + =...L.

There is then a positive submartingale (relative to (5: ) n nCN of2013201320132013201320132013201320132013201320132013-20132013201320132013201320132013201320132013201320132013201320132013 n n 6 N n n 6 N

course) such that for each n C N

Proof : The fact that

(1) p n n -~ R+ is finitely additive is an immediate consequence of

the "localization" property b) of S. Note also that if we fix

L(n) C S(n) then

(2) p (A) IX - X ( )ldP, for all B ~ 

 T(n)’ n

Properties (1) and (2) imply in particular that un is countably additive and

absolutely continuous with respect to the restriction This yields the
n

existence of S &#x3E; 0 satisfying
n n n-

It is clear that the sequence (Sn)nEN satisfies the submartingale property
relative to (5:) n nC N (for the definition and basic properties of submartingales;

n n (: JN

see for instance Chap. IV in [8]).
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Def inition 3. We call the sequence (Sn)n C Proposition 1 the

submartingale of type (I) associated with X, the sequence (X) and
the set S.

With the notation of Proposition 1 we have:

Corollary 1. The submartingale (S ) is L 1-bounded if and only if

there is a sequence (r(n)) C N 
with T (n) C S(n) such that 

C N 
is

2013201320132013 2013 2013 2013-&#x26;2013201320132013 n 6 N 201320132013 201320132013 201320132013 T (n n 6 N -

Ll-bounded. In particular, this is the case if S contains the constants and

Proof : Immediate consequence of the definition and S .
n n

Corollary 2. Suppose that there is a sequence (T (n) )n C N with- - - - n 6 N -

T (n) C S(n) such that is uniformly integrable. Then the sub-
- - T n 6 N w _ w.w  201320132013-"2013201320132013 201320132013 m -

martingale (S n)n C N is unif ormly integrable. In particular this is the case
. ...._._ n n 6 N _. - __ 

if S contains the constants and if there is a subsequence of (Xn)n CN which- "’ ’ 
..- - n n 6 N -

is uniforml integrable.

Proof: Corollary 2 follows easily from formula (2) (in the proof of

Proposition 1) if we note that

and if we recall that whenever He Ll is uniformly integrable, then the set

is also uniformly integrable (for an elegant treatment of uniform integra-

bility see [7], pp. 16-17).

Corollary 3. Assume that the submartingale (S ) N is L1-bounded.
.___ ____. _ -. - - ... - n n 6 N 

Then: i) For each a C Tf$ S is integrable; ii) if a C T is such that- ---- - f a --°- - f 

5(cr) :/= ø then we also have
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Proof: i) is an immediate consequence of the Ll-boundedness of

the submartingale property.

choose now a 6 S(n) and define
n

Clearly T n C S(n) for each n C N and we have

which proves (3).

Remarks. 1) If a C S, then clearly 0.

2) With the notation of Corollary 3, if a assumes only finitely many

values, i.e. if a C T, then as is easily seen, we actually have equality in (3).

We now show how one can associate a second type of submartingale with X,

the sequence the set S:
n n c N

Proposition 2. Let X For each n C N define y n : 5:n-* R+by2013- "- 2013-20132013 20132013 20132013-"2013 201320132013201320132013 n n T* 2013*

f or A E 5:. There is then a positive submartingale (G ) (relative to
- n n nc

of course) such that for each n C N
n n c N 20132013201320132013201320132013201320132013201320132013

The submartingale (G ) is always Ll-bounded and even uniformly integrable...--- ..-- -. -. - --.- - n 6 N - - -

Proof: We note that (take a = T)



A.7

The existence of the submartingale (G ) E’ N follows by an argument similar
to that used in the proof of Proposition 1. The Ll-boundedness of (G ) n nCN
and even the uniform integrability of (G) E’ N follow from inequality (4)

(see the argument in the proof of Corollary 2 above).

Def inition 4. We call the sequence N 
of Proposition 2 the

submartingale of type (II) associated with X, the sequence (Xn)n E’ N and

the set S.

§3. The main result: Submartingale characterization of measurable

cluster points.

The result is the following:

Theorem 1. Suppose that there is a sequence (-r(n»n with
r(n) C S(n) such that (X is Ll-bounded. Let Y C Ll and let

(Sn)n C N be the submartingale of type (I) associated with Y, the sequence

(Xn)n C- Nand the set S. Then the following assertions are equivalent:

(i) The Y is a measurable cluster point f the sequence (Xn)n C N
relative to S, that is, Y 

(ii) The submartingale (S ) converges to zero a.s.

Proof : (ii) =&#x3E; (i). By assumption Sn -~ 0 in probability. Thus f or

each n C N we can find an integer k(n) &#x3E; n and a set A(n) : 1k(n) such that

By the definition of pk (n) there is then Tn C S(k(n)) such that

It is then clear that Tn C S(n) for all n C N and that XT -~ Y in probability.
n
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°

n nc

(i) =&#x3E; (ii) . ° Let be a sequence S(n) such that

(n) °

By Corollary 1 in Section 2, the submartingale (S ) is L1-bounded
n n 6

and hence by the "Doob a.s. convergence theorem for submartingales" (see for

instance [8] , p. 63) , lim S (w) exists a. s. ; to identify the limit it suffices
n n

to show that for some sequence of stopping times with ak 6 S(k)

we have

(1) 0 in probability.
k

By assumption Y is integrable and Y coincides a.s. with an ? -measurable
r.v. ; hence if we let Yn = then IIY - n jj 1 -~ 0 (see for instance [8] ,

pp. 103-104) . In particular then Yn -X ~ ~ + 0 in probability. Choose now

an increasing sequence of integers (nk) such that

Since Yn k is 5:nk-measurable and n k  (nk) , the set B.(k) =
belongs to 5: ~ (n k) Using Corollary 3 in Section 2 and

(2) above we deduce

and of course P((B(k))c)  1/k. Setting o, = yields (1) and thus- nk

finishes the proof.

Remark. The above theorem gives (under suitable assumptions) a charac-

terization of the integrable elements Y C This extends

Theorem 1 of [4].
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§4. Consequences

From Theorem 1 we easily obtain the following result which generalizes

a theorem of Baxter [2] (see also Theorem 2 of [4]):

Theorem 2. Suppose that there is a sequence (T (n) )  with T (n) E’S(n)

such that (X ) is Ll-bounded. Let Y and Z be integrable elements of
201320132013201320132013 T (n ) n C N 20132013201320132013 20132013 20132013 2013201320132013°20132013201320132013201320132013201320132013

;S ] . Then the submartingale of type (II) associated with X =
n n 6 N -. --.. -. - - - - . - -

Y -z, the seguence,(X n ) nC N and the set S is identically zero and hence

there are sequences (a ’ (k) ) N and (a " (k) ) with a’(k) 6 S (k) ,
2013201320132013 ---- k6 N 20132013 k 6 N 201320132013

6" (k) C S(k) such that

Proof: Let (S ) C N -respectively (T ) E’ N - be the submartingales of- n n 6 N n n C N

type (I) associated with Y, the sequence the set S -respectively
n n -

with Z, the sequence the set S. Let (G ) E’ N be the submartingalEn n - n n 6

of type (II) associated with X = Y - Z, the sequence (Xn)nC N and the set S.
n n- N

Now Sn, Tn, Gn correspond respectively to the set functions p n, vn and yn n n 
" - ’ 

n n n

defined on J . From the obvious inequality follows that
n n- n n

0  G  S + T for each n C N. By Theorem 1 in Section 3, lim S (w) =- n- nn n

lim T ( ) = 0 a.s. We deduce that
n n

I

But (C ) C N is uniformly integrable by Proposition 2 in Section 2; as the

sequence (J* GndP)n E N increases and must converge to zero, we deduce the

desired conclusion: G = 0 a.s. for all n C N.
n

We shall need two more observations which we state in the form of lemmas:

Lemma 1. For each n 6 N we have
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Proof: Easy: Note that for o,T C S, the set A = {cr 2 Tj belongs to

both ? and ? [respectively, for J ,1 C S with T &#x3E; a, the set B =

cr

and then use the "localization"

property b) of S.

Lemma 2. Let Y and Z be elements of Then Y V Z and

Y A Z also belong to me[ 

Proof: Elementary (use again the "localization" property of S).

Using Lemmas 1 and 2 we may easily derive the following corollary of

Theorem 2 which extends the "Generalized Fatou Inequality" of Chacon ([5];

see also [2] and [4]):

Theorem 3 (Generalized Fatou Inequality). Suppose that there is a

sequence (T (n)) with T (n) C S(n) such that (X ) is Ll-bounded2013-2013201320132013 n 6 N 201320132013 201320132013 201320132013 T (n n 6 N - 20132013201320132013

Let Y and Z be integrable elements Then we have for
2013- 20132013 20132013 2013 - n n 6 N - - - ___

each n C N :

or alternatively,

Remarks. 1) For other related results, such as the "amart convergence

theorem" see for instance [4] (see also [1],[6],[3]).

2) Further applications of the above techniques will be given in a

forthcoming paper.

Acknowledgment. I am indebted to J. L. Doob for comments that consider-

ably improved the terminology of this paper.
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