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A Banach space, X , is said té have the Radon-Nikodym property: (RNP)
if, for every measure u:(S » £) + X having finite total variation on
the 0O - algebra , T , and being absolutely continuous with respect to
a scalar measure ) , there is a Bochner integrable f:S » X such that

for every E€r, u(E) = f fd ). J. von Neumann [13] (see also [3])
E
showed that Hilbert spaces have (RNP) . Clarkson [5] showed that uniformly

o}
property. Dunford and Morse [9] showed that spaces having boundedly

convex spaces and 11 have (RNP), but that c. and L1([O, 1]) fail the

complete bases have the property (see §1, below). Following these lines,
and the work of Dunford, Pettis and Phillips, by 1940 the following result
was known: If X 1is reflexive, or a separable dual space, then X

has the Radon-Nikodym property. Section 1 here is devoted to the current
status of these characterizations.

Tn 1967, Rieffel [15] gave a geometric condition on a space X which
is sufficient for X to have the RNP. If A 1is a subset of a Banach
space X , then A 1is dentable if for every e > O , there exists x € A
such that x £co (A \ Se(x)) [here co(B) is the convex hull of B,
co(B) 1its closure and Se(x) is the ball of radius ¢ about x]. The
space X 1is dentable if every bounded subset of X 1is dentable. Rieffel
showed that dentable spaces have the RNP. In fact, spaces with the RNP

are dentable, and even more, as we shall see in the second section of
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this exposition.

For the most part, I shall present only sketches of proofs. I
wish to thank all of my friends who are allowing me to mention their
results which have not yet been published, in particular, Professors
James, Stegall, Lindenstrauss, Phelps, Huff, Pelczynski, Figiel and
Johnson. I also owe special thanks to J. Diestel for his historical
exposition of the RNP [8]. |
§ 1. Spaces which embed into separaﬁle conjugates.

In this section we are interested in pursuing the extensions of
the theorems of von Neumann, Birkhoff and Dunford-Morse mentioned above,
with the hope of finding a characterization of spaces with the RNP in
terms of certain embeddings. Toward this end, we mention the following
result of Uhl's [17] which says that the RNP is a separably determined
property. Theorem: A B - space X has the RNP if and only if each
separable subspace of X has the RNP.

A geometric proof of thts result was recently giver by Maynard [12],
and will be sketched in the next section. The main extension of the
results above is also due to Uhl [17). Theorem: A space X has the
RNP if every separable subspace of X embeds in a separable dual space.

It is now possible to prove this result from the (easy) Dunford-Morse
argument. Recall that a biorthogonal system (yi , gi) is said to be a

boundedly complete basis for Y if it is a basis and if the boundedness

-}

n=l implies the convergence of the series

n
of a sequence ( g 8 ¥y )
i=l

Te X . It is well known that a space with boundedly complete basis

is isomorphic to a dual space.
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Proof of theorem: First we differentiate suitable y:(S , £) » Y with

boundedly complete basis. This is the Dunford-Morse proof: Notice that
for n=1, 2, ... , the scalar measures un(E) = gnQJ(E)) are finite
and absolutely continuous with respect to )\ . Hence, for each n there
is a scalar function f : S >R such that for E €T, pn(E) = f £ odan.
E
n
Now define a sequence of functions h : S +Yby h /) = v £ ()y, .
n n K=l k k

Since (yh) is a basis, there is a constant XK > 1 such that, for E € ¢,

o :
f
"JE h_d A = ”kfl pn(E) ka <X |(E)]| . Using the fact that (v,) is

boundedly complete, and the dominated convergence theorem, one sees that
h(e) = lim hn(°) (A - a.e.) 1is the desired derivetive of .

To complete the proof, we need the following result [7]: If W embeds
into a separable dual spaee, then W embeds into a space with boundedly
complete basis. This result if not difficult, but a proof would require
too much space for this exposition. This completes the proof.

There is some evidence that the above condition is both necessary
and sufficient. First we observe the following: If Z 1is a separable
subspace of X* , then there is a separable subspace Y of X ~such that
Z is isometric to a subspace of Y* « Simply choose a sequence (yn) in
the ball of X such that for z €2, [zl = sup z(v ) and let Y = Eﬁaﬁ(yn) .

Recall that X is said to be weakly compactly generated (WCG) (1] if there

is a weakly compact set K c X such that X = span K .

¥*
Lemma: If X is WCG , then every separable subspace of X* embeds in

a separable dual.

Proof: We show that if Y c X 1is separable, then Y* is separable.
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First notice that Y* is a quotient of X§ , and hence is WCG . Let
* ¥ —
Ki be weakly compact < Y such that Y = span Kl « Since Kl is
* ¥* .
weakly compact, the topologies o(Y , ¥Y) md oY , Y ) agree on
Ki , and, by separability of Y , both are separable. Hence span K1 is
* W

o(Y, Y ) (therefore || +|) separable.

This lemma shows that weakly compactly genereted conjugate spaces
have the RNP . Using a similar argument with an appeal to the Bishop-Phelps
theorem [4], one can show that if X has 2 Fréchet differentiable norm,

*
then every separable subspace of X embeds into a separable dual.
The complete answer to the question cf what dual spaces have the

RNP has been obtained recently by Stegall [16]: X has the RNP if and

only if each separable subspace of X* embeds into a separable dual. The

device used to prove this is Stegall's

Theorem: If X is separable and x* is non-separable, then for each

¢ > 0 , there is a weak homeomorph, p , of the Cantor set in the sphere
*

of X and a sequence (xn,i) c X with "xn,i

T ¢+ X+C(a) is the canonical evaluation operator, then

| <1 + ¢ such that if

n
w 2-1
b) T |l -1 | < ¢, vwhere (Ani)

n=0 10 nd o Ay s ’

m2n-1
n=0 , 1=0

is the canonical generating system for the _orel sets in 4 .

It is relatively easy to see that such a ) cannot exist in & space
with the RNP .

The major problem left open, then, is: If X has the RNP , does
each separable subspace of X embed in a separable dual? In view of

Stegall's results, this can be restated as: If X is separable and has

the RNP , does X embed into a dual space which has the RNP?
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§ 2. Geometric characterizations of spaces with the RNP.

In [15), Rieffel showed that X has the RNP if X 4is a dentable
space. Maynard [12] showed that the result becomes necessary and
sufficient if "dentable'" is replaced by "s-dentable." A set A 1is

said to be s-dentable if for each ¢ > O there is x € A such that

xfo(A\sS (x)) . Here ofB) = {1zlxi b. | A 20,52 =1,0b €B)

so that in general, co(B) c 0(B) cco (B) . A space X 1is s-dentable
if each bounded subset of X 1is s-dehtable.

Maynard observed that a set is s-dentable if and only if each of
its countable subsets is s-dentable. Thus, since he also showed that
X has the RNP if and only if X is s-dentable, we see that Uhl's theorem
in the previous section follows.

In [6] it is shown that a space is dentable if and only if it is
s-dentable. To prove this, we need the foliowing lemma of Rieffel's [15]
whose proof is straightforward.

Lemma: If co A is dentable, then A 1is dentable.

Using Maynard's and Rieffel's theorem, we can now prove
Theorem [6]: X has the RNP if and only if X is dentable.
Proof: The implication "dentability implies RNP" is Rieffel's theorem.
For the other direction, suppose that X 1is not a dentable space, and
that A 1is a bounded, non-dentable subset of X . Let x € X such that
x + A and -x -A are separated. Then, 1 C =co(x + A , -x -A) ,
C 1is closed, convex, symmetric, and if C 18 dentable, the same must
be true of the set {x + A} U {-x-A} » by Rieffel's lemma. It is easy

to see that this forces x + A or -x-A <o be dentable, which is absurd.
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Hence, C 1is non-dentable. Now let B be the unit ball of X and
U=B+C. Let ¢>0 such that for x €¢C, x € EB(C\Se(x)) , and

let u=b+c €B+C . Then, ¢ € EE(C\Se(c)) , 80

ueco ((b+¢C) \Se(b +c¢)) Cco ((B + ) \se(u)) , So that B +C

is non-dentable. Again using Rieffel's lemma, U is non-dentable.

U is a convex body in X , so its gauge p 1is a norm on X equivalent

to the original. Thus, we may assume that the unit ball B of X is
non-dentable. Let ¢ > O such that: |x]] <1 implies that x € EE(B\Se(x)).
Let |jx|| <1 - f . Then there is ) > O such that |jr» x| <1,

lJx = A x| > £ and !lx+yx|>F. Thus, xe¢ co(B\EZ?ETET) . If

>1-£, then S x) ¢S (= S0 that r € co(B\S .
1> | >1-p¢, e/h( ) c(“;c-“) ’ I € co(B\ c/h(x))
For small ¢ , O is an interior point of E3(B\Sc/h(x)), so the entire
segment [O , ﬂiﬂ ) is in the interior of that set. In particular,

X € co(B°\Sc/h(x)), where B° denotes the interior of the unit ball.
Thus, the interior of the ball is non-s-dentable, so the space X 1is
non-s-dentable. The other direction is trivial, and we have shown that
X 1is dentable if and only if X 1is s-dentable. Using Maynard's theorem,
the proof is complete. '

It must be noted that the previous theorem has recently been proved
by R. Huff [10] directly using an improvement of Maynard's argument. I
shall not sketch that proof here in order to have space for the next
remarkable result of R. R. Phelps.

A Banach space X 1is said to have the Krein-Milman property if every

non-empty, closed, bounded, convex subset A c X 1is the closed convex
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hull of its extreme points. Lindenstrauss [11] showed that z1 has
the Krein-Milman proverty, and has recently noted that his argument
together with the embedability of separable duals into spaces with
boundedly complete basis (above) can be used to prove the beautiful

theorem of Bessaga and Pelczynski [2]: If X embeds in a separable

dual, then X has the Krein-Milman property. Thi:s has led several

people to ask what the relation between the Krein-Milman and Radon-Nikodym
properties is (e.g. [8]). One difficulty here is the fact that it is
apparently unknown whether or not the Krein-Milman property is separably
determined. Recently, Lindenstrauss has ghown that the RNP implies the
Krein-Milman property. A proof of this will appear in [14]. Now we
shall outline the proof of this stronger result of Phelps [1k4].
Theorem: A space X has the RNP if and only if every nonempty, closed,
bounded, convex subset of X is the closed convex hull of its strongly
exposed points.

Before we prove this, we need some definitions and a lemma. For

a convex set A , say that x is a denting point of A 1if for every

e>0, x¢£ EE(A\Se(x)) . The point is strongly exposed if there is a
functional f and & number a such that {u|f(u) =a} NA = {#} and
if (y,) €A has f(y ) >a implies that lly - x| >0 . We shall
call a set of the form {f(u) >B} NA a slice of A if there is

z € A with f(z) > B . The next lemma contains the characterizations
of denting points and strongly exposed points used in the proof of the
theorem. Part (d ) is due to E. Bishop who communicated the result

in a more general form to R. Phelps in 1967.
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Lemma: Let A be a closed, bounded, convex and nonempty in the Banach
spaece X .« Then

a) A 1is dentable if and only if for every ¢ > O there is a
slice 8 of A having diameter less than ¢ .

A peint x €A 1is

b) a denting point of A if for all € > O there is a slice S
of A,dlam S < e, with x €8’ = {u|f(u) >a},

c) a strongly exposed point if there is a functional g and a
sequence B~ of numbers such that diam({g(u) > Bn} NA) »0 and
such that x € {g(u) > B,} for each n .

d) The set A has a strongly exposed point if there is a sequence
of slices S of A with diam S +O0, Sy 41 C:Sn and such that the
determining functionals g, (for Sn) are a norm-Cauchy sequence.

Proof: We shall prove only (a). The proofs of (b) and (c) are also

easy, but the proof of (d) is more delicate, and will appear in [14] .

Suppose A is dentable. Let ¢ >0 and x € A such that x ¢ EE(A\Se(x)) .
Then there is a functional f and o such that f£(x) > a > sup{f(u)|u €
EE(A\Sc(x))} . The slice {f(u) >a} nA is contained in Sc(x) , and
therefore has diameter less than 2 ¢ . The other direction is also
inmediate.

Proof of theorem: We shall prove first that each closed, bounded, convex,

nonempty set A in a dentable space has a denting point. The rest of
the proof follows by careful use of a lemms of Bishop and Phelps [U4]
together with parts (c) and (d) >f the above lemma. We use parts (a)

and (b) of the lemma. According to (b), given a slice S, of A and
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e >0 we need to find a slice 82 of A, S2csl,withdiam 32<e.

Suppose that S, = {f(u) >0} NA and let z €S, with f£(z) >0.

Let D = {f(u) =0} NA. If T =¢ , therz is nothing to prove due

to part (a) of the lemma, so assume D # @ . For each X €D , define

an involution of the space X through {f(1) = 0} by Tx(‘y)‘ =y - g( (z - x).
N z

Then, it is easy to see that {Tx} is a norm bounded set (say by M) .

X €D
Consider the set X = ES{SIU U{T,S, |x €D}} « It is bounded, closed, convex

and nonempty, hence by (a) of the lemma, hes a slice ¥ of diameter less

than & , where & < min{e , ﬁc_ » £(z)1 . St vose that ¥ = {g(u) >}l nkK.

If T ND#@ , then for some x €D , eittar the segent [z,x] or

[x, Tx z] is in 5 , but both s gments havz2 length greater than & which
is impossible. Next, for some 'r € Sl or w ¢ sz"l for‘gome X €D,
we have sup g(u) > g(w) > B . In the firs: case, let S, =1z N S, » and

u€k N
in the second, let S, = (T x(z‘,)) NS, « It is easy tc verify the desired

properties, completing the proof of the existence of denting f:qj,nts.

In order to f\‘(ind strongly exposed poinis, we show tnat each slice,
\a s '
g = {f(x) >0} n AVa slice S, = {g(x) >B} NA with diam S, <.¢ and

If - gl| < €. To see this, let K = co(S , A B n{f(x} = 0}) , where 1
is large and B denotes the bal_ of the space. By the first part of -

the proof, there is a slice S, of K of diameter < & which misses

2

A BN {f(x) = 0} . With 52={g(x)_>_s}nK,let 5, =S, NS .

Normalizing g and f , the Bishop-Phelps lemma [4.] shows that for
suitable choices of & and A, diam Sl <€ and I|If -¢gl|<e . The
existence of strongly exposed points follows from (c) and (d) of the

lenma above.



In examining the relationship, then, between the Krein-Milman and
Radon-Nikodym properties, the following problems remain open: 1l. If X
has the XMP, does X have the RNP? 2. If each separable subspace of
X has the KMP, does X ? 3. If X has the KMP, does every closed

bounded convex set have a strongly exposed (even denting) point?
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