SÉMINAIRE D'ANALYSE FONCTIONNELLE ÉCOLE POLYTECHNIQUE

L. SCHWARTZ

Poids et mesures

Séminaire d'analyse fonctionnelle (Polytechnique) (1969-1970), exp. n° 4, p. 1-5 http://www.numdam.org/item?id=SAF 1969-1970 A4 0>

© Séminaire Laurent Schwartz (École Polytechnique), 1969-1970, tous droits réservés.

L'accès aux archives du séminaire d'analyse fonctionnelle implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

ÉCOLE POLYTECHNIQUE

CENTRE DE MATHÉMATIQUES

17, RUE DESCARTES - PARIS V
Téléphone : MÉDicis 11-77
(633)

SEMINAIRE L. SCHWARTZ 1969-1970

POIDS ET MESURES

§ 1. POIDS SUR P(R.).

Nous allons chercher des évaluations de la plus ou moins grande concentration d'une probabilité de Radon à distance finie.

On appellera poids une fonction $\Phi: \mathbb{P}(\overline{\mathbb{R}}_+) \to \overline{\mathbb{R}}_+$ (où $\overline{\mathbb{R}}_+$ est [0,+\infty]), ayant les deux propriétés suivantes :

- $\lim_{j} \mu_{j} = \mu \text{ dans } \mathcal{P}(\overline{\mathbb{R}}_{+}), \text{ alors } \lim_{i} \inf \Phi(\mu_{j}) \geq \Phi(\mu).$
- 2) Φ est croissante sur $\mathbb{P}(\overline{\mathbb{R}}_+)$.

Il y a une relation d'ordre naturelle sur ${\mathbb G}\left(\overline{\mathbb R}_+
ight)$: on dit que $\mu \le
u$ si les masses de μ sont plus rapprochées de l'origine que celles de ν , c-à-d si, pour tout $a \in \mathbb{R}_+$, $\mu(]a,+\infty]) \le \nu(]a,+\infty]$). (Elle n'a aucun rapport avec la relation d'ordre usuelle des mesures ; mais $\mu \le \nu$ ne peut pas prêter à confusion, car pour des mesures de même masse 1, l'inégalité usuelle $\mu \leq \nu$ signifieralt $\mu = \nu$).

Alors $\mu \leq \nu$ implique $\Phi(\mu) \leq \Phi(\nu)$.

Exemples.

Exemples.

1)
$$\Phi = \| \|_p$$
, $0 : $\|\mu\|_p = \left(\int_0^{+\infty} d\mu(t)\right)^{\frac{1}{p}}$$

- $\Phi = \| \|_{+\infty}, \| \mu \|_{+\infty} = \text{Maximum du support de } \mu.$
- 3) $0 \le a \le +\infty$, $\Phi = M_a$, $M_a(\mu) = \mu(]a, +\infty]$). Le cas a = $+\infty$, avec $M_{+\infty} = 0$, est inintéressant.
- 4) $0 \le \alpha \le 1$, $\Phi = J_{\alpha}$, $J_{\alpha}(\mu) = Min\{a \in \overline{\mathbb{R}}_{+}; \mu(]a, +\infty]) \le \alpha\}$ Le cas $\alpha = 0$ donne $J_0 = \| \|_{+\infty}$; on se bornera généralement à $\alpha > 0$, $\| \cdot \|_{+\infty}$ étant plutôt associé aux $\| \cdot \|_{p}$. Pour α = 1, J_{α} \equiv 0 est inintéressant.

L'inégalité $J_{\alpha}(\mu) \le a$ est équivalente à l'inégalité $M_{a}(\mu) \le \alpha$.

Une somme de poids, une enveloppe supérieure de poids, une intégrale de poids (moyennant quelques conditions simples) sont des

poids. Par exemple:

- 5) $\mu \rightarrow \int_{0}^{+\infty} \varphi(t) d\mu(t)$, φ croissante ≥ 0 continue à gauche est un poids. Le cas $\varphi(t) = \exp(kt^2)$ jouera un rôle dans l'étude des variables gaussiennes.
- 6) Sup $p(\alpha)J_{\alpha}$, p fonction > 0 sur] 0,1[, est un poids. $0 < \alpha < 1$

§ 2. POIDS PLUS FORTS OU PLUS FAIBLES QUE LO

Un poids Φ est dit plus fort que L^0 si la convergence de $\Phi(\mu)$ vers 0 entraîne la convergence étroite de μ vers δ (c'est-à-dire, si le filtre de base des A_M , $A_M = \{\mu \in \mathbb{P}(\overline{\mathbb{R}}_+) : \Phi(\mu) \leq M\}$, M>0, converge vers δ dans $\mathbb{P}(\overline{\mathbb{R}}_+)$.

 Φ est dit plus faible que L^0 , si la convergence étroite de μ vers δ entraîne la convergence de $\Phi(\mu)$ vers 0; ou encore si $\Phi(\delta) = 0$ et si Φ est continue sur $\delta^0(\overline{\mathbb{R}}_+)$ au point δ ; ou encore si les A_M sont les voisinages de δ dans $P(\overline{\mathbb{R}}_+)$.

 Φ est dit équivalent à L o s'il est à la fois plus fort et plus faible, c.à.d. si les $A_{\mbox{\scriptsize M}}$ forment un système fondamental de voisinage de δ .

Les exemples 1, 2, 6 donnent des poids plus forts , 3, 4 des poids plus faibles ; 5 donne un poids équivalent, si et seulement si $\phi(t)>0$ pour t>0, $\phi(t)$ tend vers 0 quand t tend vers 0, $\phi(+\infty)<+\infty$. Ainsi $\mu\mapsto\int_0^{+\infty}\text{Min}(1,t)\,d\mu(t)$ est un poids équivalent à L^0 .

§ 3. POIDS COMPACTS.

Un poids Φ est dit compact, si, pour tout $M \geq 0$ fini, l'ensemble $A_{\overline{M}} = \{\mu \in \mathcal{P}(\overline{\mathbb{R}}_+) : \Phi(\mu) \leq M\}$ est compact dans $\mathcal{P}(\mathbb{R}_+)$ $(\mathcal{P}(\mathbb{R}_+) \text{ et non } \mathcal{P}(\overline{\mathbb{R}}_+);$ pour tout poids Φ , l'ensemble $A_{\overline{M}}$ est fermé dans $\mathcal{P}(\overline{\mathbb{R}}_+)$ donc compact!). Φ est compact (puisqu'il est fermé) si et seulement s'il est relativement

compact, donc, d'après Prokhorov, si et seulement si, pour tout M fini et $\epsilon > 0$, il existe $R_{\epsilon,M}$ fini tel que $\Phi(\mu) \leq M$ implique $\mu(R_{\epsilon,+\infty}) \leq \epsilon$.

On voit aisément qu'un poids plus faible que L⁰ n'est jamais compact; les poids compacts usuels sont plus forts que L⁰. Les exemples 1, 2, 6 donnent des poids compacts. Pour 6, on a $R_{\epsilon M} = \frac{M}{\psi(\epsilon)}$; un poids de l'exemple 6 mesure exactement comment A_M vérifie la condition de Prokhorov.

§ 4. POIDS HOMOGENES.

Pour $\mu \in \mathcal{P}(\overline{\mathbb{R}}_+)$, on appelle $\tau \mu (0 < \tau < +\infty)$ la transformée de μ par l'homothétie $t \mapsto \tau t$ (il n'y a pas de confusion possible avec le produit de μ par le scalaire τ , qui n'aurait plus la masse +1). Alors Φ est dit homogène si $\Phi(\tau \mu) = \tau \Phi(\mu)$.

Les exemples 1, 2, 4, 6 sont des poids homogènes ; 1, 2, 6 des poids homogènes compacts, 4 un poids homogène plus faible que L^0 .

Tout poids homogene compact est plus fort que L^0 . Un poids homogène peut être plus fort (exemples 1, 2, 6) ou plus faible (exemple 4) que L^0 , jamais équivalent.

§ 5. FONCTIONS COMPACTES SUR UN ESPACE TOPOLOGIQUE.

Une fonction $\theta \ge 0$ sur un espace topologique X est dite compacte, si, pour tout M fini, l'ensemble $\{x \in X : \theta(x) \le M\}$ est compact. C'est un renforcement de la semi-continuité inférieure, pour laquelle on exigerait que cet ensemble soit fermé.

Exemple: sur le dual $\sigma(F',F)$ d'un Banach F, la norme est une fonction compacte.

Sur l'espace \mathfrak{D}' des distributions, la fonction égale à $\| \ \|_{L^p}$ sur le sousespace $L^{\mathfrak{D}}$, $1 , et à <math>+\infty$ sur $\mathcal{C}L^p$, est compacte.

§ 6. LE THEOREME DE PROKHOROV AVEC LES POIDS.

Proposition (IV; 6,1).

limite \vee dans ${}^{\flat}(\overline{\mathbf{R}}_{\perp})$.

Soient X un espace topologique, Φ un poids compact, θ une fonction ≥ 0 compacte sur X. L'ensemble des probabilités de Radon λ sur X vérifiant $\Phi(\theta(\lambda) \leq 1$ est un compact de P(X).

Démonstration : d'abord il est relativement compact. En effet, soit $\varepsilon>0$; puisque Φ est compact sur $\mathbb{P}(\overline{\mathbb{R}}_+)$, il existe R tel que, pour $\mu\in\mathbb{P}(\overline{\mathbb{R}}_+)$, $\Phi(\mu)\leq 1$ implique $\mu(]\mathbb{R},+\infty])\leq \varepsilon$. Puisque θ est une fonction compacte sur X, l'ensemble $\{x\in X: \theta(x)\leq R\}$ est un compact K de X. Alors, pour $\Phi(\theta(\lambda))\leq 1: \lambda(C(K))=\lambda\{x\in X: \theta(x)>R\}$ = $(\theta(\lambda))(]\mathbb{R},+\infty])\leq \varepsilon$, donc, d'après Prokhorov, l'ensemble $\{\lambda\in\mathbb{P}(X): \Phi(\theta(\lambda))\leq 1\}$ est relativement compact dans $\mathbb{P}(X)$. Il reste à montrer que cet ensemble est fermé. Soient donc des λ_j , formant un ordonné ultra-filtrant, convergeant étroitement vers λ sur X, avec $\Phi(\theta(\lambda_j))\leq 1$. Comme $\mathbb{P}(\overline{\mathbb{R}}_+)$ est compact, les $\theta(\lambda_j)$ (ultrafiltre!) ont une

Soit φ une fonction ≥ 0 continue croissante bornée sur $\overline{\mathbb{R}}_+$. Alors φ o θ est semi-continue inférieurement bornée sur X. Donc $\nu(\varphi) = \lim_{J} (\theta(\lambda_J))(\varphi)$ $= \lim_{J} \lambda_J((\varphi \circ \theta)) \geq \lambda(\varphi \circ \theta) = (\theta(\lambda))(\varphi).$

Mais l'inégalité $\nu(\phi) \ge (\theta(\lambda))(\phi)$ est stable par passage à la limite croissante des suites de fonctions ϕ ; vraie pour ϕ continue croissante bornée, elle est donc aussi vraie pour ϕ = fonction caractéristique de (]a,+ ϕ]). Donc, pour a ≥ 0 : $\nu(]a,+\infty]) \ge (\theta(\lambda))(]a,+\infty])$, ou $\nu \ge \theta(\lambda)$. Alors

$$1 \ge \lim_{j \to 0} \inf \Phi(\theta(\lambda_{j})) \ge \Phi(v) \ge \Phi(\theta(\lambda)), \quad cqfd.$$

Corollaire 1: soient E un espace vectoriel topologique localement convexe, Φ un poids compact, θ une fonction compacte sur E. Soit λ une probabilité cylindrique sur E, limite cylindrique de probabilités de Radon $\lambda_j, \ \underline{\text{vérifiant } \Phi(\theta(\lambda_j)) \leq 1. \ \text{Alors } \lambda \text{ est de Radon, et } \Phi(\theta(\lambda)) \leq 1.}$

En effet, l'ensemble $\{\lambda \in P(E) : \Phi(\theta(\lambda)) \le 1\}$ est compact dans P(E), donc fermé dans l'espace P(E) des probabilités cylindriques sur E.

Corollaire 2

Soient E un Banach, Φ un poids compact. Soit λ une probabilité cylindrique sur E, limite cylindrique de probabilités de Radon λ_j , vérifiant $\int_E \|\mathbf{x}\|_F^p \ d\ \lambda_j(\mathbf{x}) \leq M^p \ \text{fixe, } 0 qui est de Radon, et <math display="block">\int_{\sigma(E'', E')} \|\mathbf{x}''\|_{E''}^p \ d\lambda(\mathbf{x}'') \leq M^p.$

En effet, sur $\sigma(E",E')$, la norme est une fonction compacte, et il suffit d'appliquer le corollaire 1 à $\sigma(E",E')$ avec $\Phi = \frac{1}{M} \parallel \parallel_p$, $\theta = \parallel \parallel_{E"}$.

Définition (IV; 6,2)

Soient Φ un poids, θ une fonction ≥ 0 semi-continue inférieurement sur X.

On dit qu'une probabilité de Radon λ sur X est d'ordre (Φ, θ) , si $\Phi(\theta(\lambda)) \leq 1$.

On écrit aussi $\Phi(\lambda, \theta) \leq 1$.