SÉMINAIRE D'ANALYSE FONCTIONNELLE ÉCOLE POLYTECHNIQUE

S. CHEVET

Conditions de Hölder

Séminaire d'analyse fonctionnelle (Polytechnique) (1969-1970), exp. nº 23, p. 1-15 http://www.numdam.org/item?id=SAF 1969-1970 A25 0>

© Séminaire Laurent Schwartz (École Polytechnique), 1969-1970, tous droits réservés.

L'accès aux archives du séminaire d'analyse fonctionnelle implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

ÉCOLE POLYTECHNIQUE

CENTRE DE MATHÉMATIQUES

17, RUE DESCARTES - PARIS V Téléphone : MÉDicis 11-77 (633)

SEMINAIRE L. SCHWARTZ 1969-1970

CONDITIONS DE HÖLDER

par S. CHEVET

§ 1. QUELQUES RAPPELS SUR LES MODULES DE CONTINUITE

<u>Définition</u>: Une fonction réelle φ définie sur un intervalle $]0,\alpha]$ $(\alpha \in \mathbb{R}_{*}^{+})$ est appelée <u>module de continuité</u> si elle est positive, croissante, sous-additive et si $\varphi(h) \to 0$, quand $h \to 0$.

Un module de continuité est continu , car pour tout $h_1 \in]0,\alpha]$

et pour tout h > 0 tel que $h_1 + h < \alpha$ (resp. tel que $h < h_1$) on a

$$|\phi(h_1+h) - \phi(h_1)| \le \phi(h)$$
 (resp. $|\phi(h_1-h) - \phi(h_1)| \le \phi(h)$). (1)

De plus, pour tous réels λ et h tels que λh et $h \in]0,\alpha]$, on a :

$$\varphi(\lambda h) \le (\lambda + 1)\varphi(h) . \tag{2}$$

En effet, si $\lambda \leq 1$, c'est trivial (car ϕ croissante); si $\lambda > 1$, il existe un entier n > 0 tel que

$$n < \lambda \le n+1$$
;

et que et puisque $\lambda h \in \c]0,\alpha\c], \phi$ est sous-additive et croissante, on a :

$$\varphi(\lambda h) \le \varphi(nh) + \varphi((\lambda - n)h) \le n\varphi(h) + \varphi(h)$$
,

d'où

$$\varphi(\lambda h) \leq (\lambda + 1)\varphi(h)$$
.

Remarque: Si φ est un module de continuité pour lequel $\frac{\varphi(h)}{h} \to 0$, quand $h \to 0$, φ est alors identiquement nul. [En effet, d'après (1), φ est alors dérivable sur $]0,\alpha]$ et sa dérivée est nulle; et comme $\varphi(h) \to 0$, φ est bien identiquement nulle].

Donnons quelques critères sur les modules de continuité.

1. Si Φ_1 et Φ_2 sont deux modules de continuité, $\Phi = \Phi_1 - \Phi_2$ est un module de continuité (sur l'intervalle de définition de $\Phi_1 + \Phi_2$).

Soit $\Phi:]0.a] \to \mathbb{R}^+$ une fonction continue croissante telle que $\Phi(h) \to 0$. quand $h \to 0$. Si $x \to \frac{\Phi(x)}{x}$ est une fonction décroissante sur]0,a], donc si $\Phi(x)$ est une fonction concave sur [0,a]. Pest un module de continuité.

Il suffit en effet de vérifier que ϕ est sous-additive. Or, par hypothèse, pour tous h_1 et h_2 de]0.a] tels que $h_1+h_2\leq a.$ on a :

$$\frac{\varphi(h_1+h_2)}{h_1+h_2} < \frac{\varphi(h_1)}{h_1} \quad \text{et} \quad \frac{\varphi(h_1+h_2)}{h_1+h_2} < \frac{\varphi(h_2)}{h_2} \quad :$$

d'où, en multipliant les inégalités respectivement pat $\mathbf{h_1}$ et $\mathbf{h_2}$, puis en les ajoutant, on montre la sous-additivité de ϕ .

Exemple : Sur $]0,\frac{1}{e}]$, $x = \sqrt{x} \log \frac{1}{x}$ est un module de continuité. [Cela résulte de 1.. puisque $x = \sqrt{x}$ est un module de continuité sur $]0,\infty[$ et que, d'après 2.. $x = x \log \frac{1}{x}$ est un module de continuité sur $]0,\frac{1}{e}]$.

Théoreme (XXIII.1:1) : Si p est un module de continuité sur]0,a], il existe un module de continuité concave o₁ satisfaisant

$$\varphi(x) \leq \varphi_{1}(x) \leq 2\varphi(x) \quad . \quad \forall x \in]0.a]. \tag{3}$$

Remarque : Un module de continuité n'est pas forcément concave.

Preuve : Posons $\phi(0) = 0$. Soient G le graphe de ϕ et B l'enveloppe convexe du compact $B = \{(x,y) \; ; \; (x,y) \in \mathbb{R}^2 \; ; \; 0 \le x \le a \; , \; 0 \le y \le \phi(x) \}$. On définit $\phi(x,y) = \phi(x)$ par

$$\tau_1(x) = \max \{y : (x,y) \in B_c \}$$
;

 $_{1}^{p}$ est ains une fonction concave et $\phi_{1} \neq 0$.

On a, pour tout x de [0,a],

$$\varphi_1(x) = \sup \{ \varphi(x_1, x_2; x) : x_1 \neq x_2, 0 \leq x_1 \leq x \leq x_2 \leq a \}$$

où $x \to \phi(x_1, x_2; x)$ désigne la fonction définie sur [0,a] pour tout (x_1, x_2) de \mathbb{R}^2 tel que $0 \le x_1 < x_2 \le a$ par

$$\varphi(x_1, x_2; x) = \begin{cases} \frac{x_2 - x}{x_2 - x_1} & \varphi(x_1) + \frac{x - x_1}{x_2 - x_1} & \varphi(x_2) & , & x_1 \le x \le x_2 \\ \varphi(x) & , & \text{sinon.} \end{cases}$$

En utilisant (2), on vérifie que $\varphi_1 \leq \varphi_2$.

De plus, $\phi_1(0) = 0$, $\phi_1(a) = \phi(a)$ et ϕ est croissante (car $x \rightarrow \phi(x_1, x_2, x)$ est croissante); par suite ϕ_1 est continue, puisque concave. cqfd

§ 2. VERSIONS A TRAJECTOIRES SATISFAISANT UNE CONDITION DE HOLDER

Dans ce paragraphe, mus considérons K un espace uniforme précompact et métrisable, (E,δ) un espace métrique complet et $\widetilde{X}: K \to L^0(\Omega,P;E)$ une fonction aléatoire. On se donne aussi une distance d sur K compatible avec la structure uniforme de K, une version de \widetilde{X} désignée aussi par \widetilde{X} et une fonction $\phi:]0,\alpha] \to \mathbb{R}^+$ croissante et telle que $\phi(h) \to 0$, quand $h \to 0$. On supposera que K est un ensemble infini.

Dans l'exposé XXI, on a vu (cf. preuve de la proposition (XXI,3;1)) que si \tilde{X} est continue, si $(M_n,\alpha_n,b_n)_n$ est une suite d'éléments de $\mathcal{P}(K)\times\mathbb{R}^+_*\times\mathbb{R}^+_*$ telle que $(M_n,\alpha_n)_n$ vérifie $p_{(K,d)},\tilde{n}b_n<\infty$ et $P(\underbrace{\text{lim}}_nA_n)=1$ avec

$$A_{n} = \{\omega; \sup[\delta(\widetilde{X}(s)(\omega), \widetilde{X}(t)(\omega)), \{s, t\} \in \mathfrak{M}_{n}(2\alpha_{n} + \alpha_{n+1})] \leq b_{n}\},$$

alors il existe une fonction $(s,n) \to s(n)$ de $K \times IN$ dans K et une version X de \widetilde{X} qui satisfont 1, 2, 3 et 4 avec :

- (1) "X est à trajectoires uniformément continues sur K",
- 2 "pour tout $(s,n) \in K \times \mathbb{N}$, $s(n) \in M_n$ et $d(s,s(n)) \leq \alpha_n$ ",
- (3) "pour tout entier N, pour tout $\omega \in \Lambda_n = \bigcap_{k \ge N} A_k$, pour tout (s,t) de K^2 et pour tout $k \ge N$

$$\begin{split} \delta\left(X(s)(\omega),X(t)(\omega)\right) &\leq \delta\left(X(s(k))(\omega),X(t(k+1))(\omega)\right) + \delta\left(X(s(k))(\omega),X(s(k+1))(\omega)\right) \\ &+ \sum\limits_{n\geq k} \left[\delta\left(X(s(n))(\omega),X(s(n+1))(\omega)\right) + \delta\left(X(t(n))(\omega),X(t(n+1))(\omega)\right)\right] "\;, \end{split}$$

(4) "pour tout entier N, pour tout $w \in \Lambda_N$, pour tout $k \ge N$ et pour tout (s,t) de K^2 tel que $d(s,t) \le \alpha_k$

$$\delta(X(s)(\omega),X(t)(\omega)) \le 2 \sum_{n\ge k} b_n$$
 " .

Théorème (XXIII,2;1) : Soient Ψ et Φ deux fonctions croissantes de $]0,\alpha]$ dans \mathbb{R}^+_{Ψ} . Si elles satisfont :

- i) $\int_0^{\infty} \frac{\Phi(t)}{t} dt < +\infty ,$
- ii) $\int_0^\infty N^2(K;d,t) \, \frac{\psi(6t)}{t} \, dt < +\infty \quad ,$
- iii) pour tout $(s,t) \in K^2$ tel que $d(s,t) < \alpha$,

$$P\{\omega; \delta(\widetilde{X}(s)(\omega), \widetilde{X}(t)(\omega)) \ge \Phi(d(s,t))\} \le \Psi(s,t)) ,$$

alors il existe une version X de \widetilde{X} à trajectoires uniformément continues sur K et une variable aléatoire H relative à (Ω,P) strictement positive, telles que pour tout $(s,t,\omega) \in K^2 \times \Omega$ vérifiant $d(s,t) \leq H(\omega)$, on ait

$$\delta(X(s)(\omega),X(t)(\omega)) \le 2 \int_0^{d(s,t)} \frac{\Phi(12t)}{t} dt.$$

Si K est un compact de ${
m I\!R}^k$ et si d est la distance sur K associée à la jauge d'un corps convexe S de ${
m I\!R}^k$, on peut remplacer ii) par iv) :

$$(v)$$
 $\int_{0}^{\infty} \frac{\psi(t)}{t^{k+1}} dt < +\infty$

$$\int_0^{\infty} \frac{\phi(t)}{t} dt < +\infty \Rightarrow \sum_{n \ge n} \phi(\frac{1}{2^n}) < +\infty$$

еt

$$\int_0^{N^2(K;d,t)} \frac{\psi(6t)}{t} dt < +\infty \Rightarrow \sum_{n \ge n} N^2(K;d,\frac{1}{2^{n+1}}) \psi(\frac{3}{2^n}) < +\infty \qquad ;$$

d'où en gardant les notations du début de ce paragraphe et en prenant, pour tout n, $\alpha_n = \frac{1}{2^{n+n_0}}$, $b_n = \Phi(3\frac{1}{2^{n+n_0}})$ et M_n un $\frac{1}{2^{n+n_0}}$ -réseau de (K,d) de cardinal $N(K;d,\frac{1}{2^{r+n_0}})$, on déduit qu'il existe une version X de \widetilde{X} à trajectoires uniformément continues sur K telle que, pour tout entier N, pour tout $\omega \in \Lambda_n$, pour tout $k \ge N$ et pour tout $(s,t) \in K^2$ tel que $d(s,t) \le \frac{1}{2^{k+n_0}}$

$$\delta(X(s)(\omega),X(t)(\omega)) \le 2 \sum_{n \ge k+n} \Phi(\frac{3}{2^n}) .$$

Mais

$$\sum_{n \ge k+n} \Phi(\frac{3}{2^n}) = \sum_{n \ge k+n} \Phi(\frac{12}{2^n}) \le \int_0^{x_{k+1}} \frac{\Phi(12t)}{t} dt ;$$

d'où, en considérant deux éléments distincts s'et t'de K tels que $d(s,t) \leq \frac{1}{2^{N+n}} \quad \text{et en remarquant qu'il existe k}_0 \text{ entier } \geq N+n \text{ tel que }$

$$\frac{1}{2^{k_0+1}} \le d(s,t) \le \frac{1}{2^{k_0}}$$

on en déduit que, pour tout entier N, pour tout $\omega \in \Lambda_N$ et pour tout $(s,t) \in K^2$ tel que $d(s,t) \leq \alpha_N = \frac{1}{2^{N+n_0}}$, on a :

$$\delta(X(s)(\omega),X(t)(\omega)) \leq 2 \int_{0}^{d(s,t)} \frac{\Phi(12t)}{t} dt .$$

Considérons la fonction H₁ définie sur U A_n par

$$H_1(\omega) = \alpha_0$$
, $\sin \omega \in \Lambda_0$

$$H_{1}(\omega) = \alpha_{n} \quad , \quad \text{si } \omega \in \Lambda_{n} \setminus \Lambda_{n-1} \ , \ n \geq 1 \, ,$$

Comme $P(\Lambda_n)$ 11, quand n1 ∞ . l'existence de H (définie comme dans l'énoncé du théorème) est donc bien assurée.

Le cas particulier du théorème résulte du théorème (XXII,1;3).

 $\begin{array}{lll} & \underline{\text{Lemme}} & : & \text{Soit} \left(\underline{M}_n, \underline{\alpha}_n, \underline{\eta}_n \right)_n \text{ une suite d'éléments de } \mathbb{P}(K) \times \mathbb{R}_*^+ \times \mathbb{R}_*^+ \text{ telle que la suite } \left(\underline{M}_n, \underline{\alpha}_n \right) \text{ vérifie } p_{(K, d)} \text{ et } \underline{\eta}_n \downarrow 0. \text{ Posons, pour tout entier } n, \end{array}$

$$v_n = \alpha_n + \alpha_{n+1} + \gamma_n$$

$$B_{n} = \bigcap_{\{s,t\} \in \mathfrak{M}_{n}(v_{n})} \{\omega; \delta(\widetilde{X}(s)(\omega), \widetilde{X}(t)(\omega)) \leq \varphi(d(s,t))\}$$

еt

$$S_{\mathbf{n}} = \bigcap_{\mathbf{k} \ge \mathbf{n}} B_{\mathbf{k}}$$

Soit n_0 entier tel que $3v_{n_0} \le \alpha$.

Si les conditions suivantes dont satisfaites :

- a) $\sum_{\substack{n\geq n \\ 0}} \phi(3\alpha_n) < +\infty$, $P(S_n) \to 1$, quand $n \to +\infty$ et \widetilde{X} est continue,
- b) pour tout entier $k \ge n_0$, $\eta_{k+1} \ge \alpha_k$,
- c) il existe une suite bornée $\left(\gamma_k\right)_k$ de réels >0 , telle que, pour tout entier $k\geq n$

$$\sum_{n \ge k} \varphi(\alpha_n + \alpha_{n+1}) \le \gamma_k \varphi(\gamma_{k+1}) ;$$

alors il existe une version X de X (à trajectoires uniformément continues

sur K) telle que pour tout entier N>n, pour tout $w \in S_N$ et pour tout $(s,t) \in K^2$ tel que $d(s,t) \leq N$, on alt

$$(5) : \delta(X(s)(\omega), X(t)(\omega) \leq \varphi(\rho d(s,t)) + 2 \sup_{k>N} \gamma_k \varphi(d(s,t))$$

avec $_0 \leq 3$; si, de plus, ϕ est sous-additive, on peut supposer $\rho = 1$ dans $\begin{picture}(60,0) \put(0,0){\line(0,0){100}} \put(0,0){\line(0$

<u>Démonstration</u>: Supposons $k_0 = 0$. (On peut toujours se ramener à ce cas en supprimant les k_0 premiers termes de la suite $(M_n, \alpha_n, \eta_n)_n$ et en "renumérotant" cette suite).

Par a) et par le corollaire 1 de la proposition (XXi,3;1), \widetilde{X} est à trajectoires uniformément continues sur K. Plus précisément, en posant pour tout n, $b_n = \phi(3\alpha_n)$ et en gardant les notations du début du paragraphe, on a, d'après b),

$$S_N \subset \Lambda_N = \bigcap_{n \geq N} A_n$$
;

et ainsi, par a), $\sum\limits_{n=0}^\infty b_n < \infty$ et $P(\Lambda_n) \to 1$, quand $n \to \infty$. Il existe donc une version X de \widetilde{X} et une fonction $(s,n) \to s(n)$ de $K \times N$ dans K satisfaisant $\widehat{(1)}$, $\widehat{(2)}$ et $\widehat{(3)}$. D'où, pour tout entier N, pour tout $w \in S_N$, pour tout $k \ge N$ et pour tout $(s,t) \in K^2$

$$\delta(X(s)(w),X(t)(w)) \leq \delta(X(s(k))(w),X(t(k))(w)) - \varphi(\alpha_k + \alpha_{k+1}) + \frac{2 \sum_{n \geq k} \varphi(\alpha_n + \alpha_{n+1})}{n}.$$

$$\left(\left. \text{Car, par} \right. \left(2 \right) \right. , \left. \left. d \left(\left. s \right(n \right), \left. s \right(n+1 \right) \right) \leq \alpha_{n} + \alpha_{n+1} \quad , \quad \Psi \left(\left. s, n \right) \in K \times \left. N \right)_{\epsilon}$$

D'autre part, pour tout $(s,t) \in K^2$ et pour tout $k \in \mathbb{N}$

$$d(s(k),t(k+1)) \le d(s,t) + \alpha_k + \alpha_{k+1}$$

Donnons-nous alors arbitrairement (s,t) dans K^2 tel que $s \neq t$ et $d(s,t) \leq \eta_N$;

il existe ainsi k_0 entier $\geq N$ tel que

$$\eta_{k_0+1} \leq d(s,t) \leq \eta_{k_0} ; \qquad (1)$$

d'où, si $s(k_0) \neq t(k_0+1)$

$$(s(k_0), t(k_0+1)) \in M_{k_0}(v_{k_0})$$

et par conséquent

$$\delta \big(\, X \big(\, s \big(\, k_{_{\boldsymbol{0}}} \big) \, \big) \, \big(\, \omega \big) \, , \, X \big(\, t \big(\, k_{_{\boldsymbol{0}}} + 1 \big) \, \big) \, \big(\, \omega \big) \, \big) \, \leq \phi \big(\, d \big(\, s \, , \, t \, \big) \, + \, \alpha_{_{\boldsymbol{k}_{_{\boldsymbol{0}}}}} + \, \alpha_{_{\boldsymbol{k}_{_{\boldsymbol{0}}}} + 1} \big) \quad , \quad \forall \quad \omega \in S_{_{\boldsymbol{N}}} \, .$$

En outre, on a, d'après c) et (1)

$$2 \sum_{n \geq k_0} \varphi(\alpha_n + \alpha_{n+1}) \leq 2 \sup_{n \geq N} \gamma_n \varphi(\eta_{k_0 + 1}) \leq 2 \sup_{n \geq N} \gamma_m \varphi(d(s, t))$$

et d'après b) et (1)

$$\varphi(d(s,t) + \alpha_{k_0} + \alpha_{k_0+1}) \le \varphi(3d(s,t))$$
.

On en déduit donc que, pour tout $\omega \in S_{\begin{subarray}{c} N\end{subarray}}$,

$$\delta \left(\left. X(s)(\omega), X(t)(\omega) \right) \leq \phi \left(\left. d(s,t) + \alpha_{k_0} + \alpha_{k_0} + 1 \right) - \phi \left(\alpha_{k_0} + \alpha_{k_0} + 1 \right) + 2 \sup_{n \geq N} \gamma_n \phi \left(\left. d(s,t) \right) \right)$$

et

$$\delta(X(s)(\omega),X(t)(\omega)) \leq \varphi(3d(s,t)) + 2 \sup_{n \geq N} \gamma_n \varphi(d(s,t)). \tag{2}$$

En particulier, si φ est sous-additive,

$$\delta\left(\,X(\,s\,)\,(\,\omega\,)\,\,,\,X(\,t\,)\,(\,\omega\,)\,\right) \,\leq\, \left(\,1\,+\,2\,\sup_{\,n\,\geq\,N}\,\gamma_{\,n}\,\right) \ \phi\left(\,d\,(\,s\,,\,t\,)\,\right) \quad , \quad \Psi\ \omega\,\in\,S_{\,N}^{\,}\left(\,3\,\right)$$

(s,t) ayant été choisi arbitrairement, le lemme est établi.

Remarque 1 : On peut avoir $\sum\limits_{k}\phi(\alpha_k+\alpha_{k+1})<+\infty$ et $\sum\limits_{k}\phi(3\alpha_k)=+\infty$. Il suffit de considérer la fonction $\phi:x\to\exp(-\frac{1}{x})$ et la suite $(\alpha_n)_n$ avec $\alpha_n=1/\log n$.

De ce lemme on déduit deux théorèmes.

Théorème (XXIII,2;2) : On suppose φ et \widetilde{X} tels que :

1) il existe deux constantes réelles >0 , a et a', avec a \neq 1 telles que

$$\varphi(ax) \le a' \varphi(x)$$
 , $\forall x \in]0, \frac{\alpha}{a}]$;

- 2) $\stackrel{\sim}{X}$ est continue;
- 3) il existe une suite $(M_n, \alpha_n)_n$ d'éléments de $P(K) \times \mathbb{R}^+_*$, un réel A > 0 et un entier m_0 tels que $(M_n, \alpha_n)_n$ vérifie $p_{(K,d)}$ et
 - $2 \sum_{k \geq n} \phi(\alpha_k + \alpha_{n+1}) \leq A \phi(\alpha_n) , \quad \forall n \geq m_o ,$

$$\beta) \qquad P\{\underbrace{\lim_{n \to \infty} \{s, t\} \in \mathfrak{M}_{n}(\alpha_{n} + \alpha_{n+1} + \alpha_{n-1})}_{n} \{\omega; \delta(\widetilde{X}(s)(\omega), \widetilde{X}(t)(\omega)) \leq \varphi(d(s,t))\}\} = 1.$$

Alors, il existe une version X de \widetilde{X} , un réel M>0 et une variable aléatoire H relative à (Ω,P) et strictement positive, telles que :

$$((s,t) \in K^2, d(s,t) \leq H(\omega) \Rightarrow \delta(X(s)(\omega), X(t)(\omega)) \leq M \varphi(d(s,t))$$
.

 $\frac{\text{D\'{e}monstration}}{\text{Soit n}_o} : \text{Posons } \eta_n = \alpha_{n-1} \text{ et v\'{e}rifions que le lemme est applicable.}$ Soit no entier $\geq m_o$ tel que $3(\alpha_{n_o} + \alpha_{n_o} + 1 + \alpha_{n_o} - 1) \leq \alpha$.

Par définition même de η_n , les conditions b) et c) sont satisfaites $(\gamma_k = A, \text{ pour tout } k \ge n_0)$.

La condition a) est réalisée : d'après β), Σ $\phi(\alpha_k) < \infty$; d'où par 1), $\sum_{k \geq n_0} \phi(3\alpha_k) < \infty \text{ et on a bien a) par 2) et 3, <math>\beta$).

Le lemme étant ainsi applicable, et comme par 1), il existe une constante B>0 telle que (pour tout $(s,t) \in K^2$ vérifiant $d(s,t) < \frac{\alpha}{3}$)

$$\varphi(3 d(s,t)) \leq B \varphi(d(s,t))$$

on en déduit facilement le théorème en prenant M=B+2A. Remarquons que, si ϕ est sous-additive, on peut prendre M=1+2A . cqfd

Théorème (XXIII,2;3) : On suppose φ et \widetilde{X} tels que :

- 1) φ est un module de continuité sur $]0,\alpha]$;
- 2') $\stackrel{\sim}{X}$ est continue :
- 3') il existe une suite $(M_n, \alpha_n, \eta_n)_n$ d'éléments de $\mathcal{P}(K) \times \mathbb{R}_{*}^{+} \times \mathbb{R}_{*}^{+}$ avec $(M_n, \alpha_n)_n$ vérifiant $p_{(K,d)}, \eta_n \downarrow 0$ et

$$\alpha^{\,\circ}) \quad \sum_{k \geq n} \ \varphi \big(\alpha_k + \alpha_{k+1} \big) = 0 \big(\varphi \big(\eta_{n+1} \big) \big)^{\,\bullet} \quad (n - \infty) \quad ,$$

$$\beta^{\dagger}) P\left[\frac{\lim_{n \to \infty} \widehat{x}}{\{s, t\} \in \mathfrak{M}_{n}(v_{n})} \{\omega; \widehat{o}(\widetilde{X}(s)(\omega), \widetilde{X}(t)(\omega) \leq \varphi(d(s, t))\}\right] = 1,$$

$$\text{avec } v_{n} = \alpha_{n} + \alpha_{n+1} + \eta_{n} \quad \circ$$

Alors il existe une version X de \tilde{X} telle que, pour tout réel a>1, il existe une variable aléatoire H_a relative à (Ω,P) , strictement positive et satisfaisant :

$$\left(\,d(\,s\,,\,t\,)\,\leq H_{\mathbf{a}}(\,\omega\,)\,\right)\Rightarrow \left(\delta\,\left(\,X(\,s\,)\,(\,\omega\,)\,,\,X(\,t\,)\,(\,\omega\,)\,\right)\,\leq\,\mathbf{a}\,\,\phi\,(\,d(\,s\,,\,t\,)\,)\right)\,.$$

Remarque 1: Si φ est un module de continuité ne s'annulant pas sur $]0,\alpha],\ (s,t) \to \varphi(d(s,t))$ définit une distance sur K_{\circ}

Remarque 2 : D'après la relation (1) du § 1 , 1 , implique 1) et d'après α^{\dagger}) il existe donc encore k_0 entier tel que $\sum_{n\geq k_0} \phi(3\alpha_n) < +\infty$; ainsi, la

condition a) du lemme est satisfaite.

$$\begin{array}{lll} \sup & \gamma_k \to 0 & \text{,} & \text{quand } n \to \infty \\ k \ge n & \end{array}$$

$$\sum_{k\geq n} \varphi(\alpha_k + \alpha_{k+1}) \leq \gamma_n \varphi(\eta_{n+1}) , \quad \forall n \geq m_o .$$

Cela implique, d'une part, la condition c) du lemme, et d'autre part, $l'existence\ d'un\ entier\ m_0^r\geq m_0\ tel\ que$

$$\alpha_n \leq \eta_{n+1}$$
 , $\forall n \geq m_0^{\dagger}$,

c'est-à-dire la condition b) du lemme.

Par conséquent, (ϕ étant sous-additive), il existe une version X de \widetilde{X} et un entier n_o tels que pour tout entier $N > n_o$, pour tout $\omega \in S_N$ et pour tout $(s,t) \in K^2$ tel que $d(s,t) \leq \eta_N$, on ait

$$\delta(X(s)(\omega),X(t)(\omega)) \leq (1+2 \sup_{k\geq N} \gamma_k) \varphi(d(s,t)) .$$

Et le théorème s'en déduit immédiatement.

Corollaire 1 : Soit Ψ : $]0,\alpha] \rightarrow \mathbb{R}^+$ une fonction croissante telle que $\Psi(h) \rightarrow 0$, quand $h \rightarrow 0$, et telle que pour tout $(s,t) \in K^2$ vérifiant $d(s,t) < \alpha$,

$$P\{\omega,\delta(\widetilde{X}(s)(\omega),\widetilde{X}(t)(\omega)) \ge \varphi(d(s,t))\} \le \psi(d(s,t)).$$

Alors, le résultat du théorème (XXIII,2;2) (resp. XXIII,2;3) subsiste si la condition 2) (resp. 2^{\dagger})) est supprimée et si la condition 3β) (resp. $3^{\dagger}\beta^{\dagger}$)) est remplacée par la condition

$$\sum_{n} \operatorname{card} \mathcal{M}_{n}(v_{n}) \ \psi(v_{n}) < +\infty \quad ,$$

avec
$$v_n = \alpha_n + \alpha_{n+1} + \alpha_{n-1}$$
 (resp. $v_n = \alpha_n + \alpha_{n+1} + \eta_n$).

C'est immédiat.

Corollaire 2: Soit S un corps convexe borné de \mathbb{R}^k et p_S la jauge de S. Soient Φ un module de continuité $]0,\alpha]$ et $\Psi:[0,\alpha]\to\mathbb{R}^+$ une fonction croissante telle que $\Psi(h)\to 0$, quand $h\to 0$. Si l'on a :

- $i) \ P\{\omega; \delta(\widetilde{X}(s)(\omega), \widetilde{X}(t)(\omega)) \ge \Phi(p_S(s-t)) \} < \psi(p_S(s-t)) \ ,$ pour tout $(s,t) \in K^2$ tel que $p_S(s-t) < \alpha$;
- ii) il existe une suite $(\eta_n, \alpha_n)_n$ d'éléments de $\mathbb{R}_*^+ \times \mathbb{R}_*^+$ tels que :

$$\nu$$
) $\eta_n \downarrow 0$, $\alpha_n \downarrow 0$, $\eta_n \geq \alpha_n$, $\forall n$,

$$\forall ') \quad \sum_{n \geq n} \left(\frac{\eta_n}{\alpha_n \alpha_{n+1}} \right)^k \Psi(\alpha_n + \alpha_{n+1} + \eta_n) < + \infty ,$$

$$\nu") \quad \sum_{\mathbf{k'} \geq \mathbf{n}} \Phi(\alpha_{\mathbf{k'}} + \alpha_{\mathbf{k'}+1}) = O(\Phi(\eta_{\mathbf{n}+1})) \quad (\mathbf{n} \to \infty) \quad ,$$

alors, pour tout compact K de \mathbb{R}^k , il existe une version X de \widetilde{X} telle que, pour tout a>1, il existe $H_{\widetilde{K}}(a, .)$ une variable aléatoire relative à (Ω, P) , strictement positive et telle que :

$$((s,t)\in \mathtt{K}^2\;,\;\mathtt{p}_S(s-t)\leq \mathtt{H}_{\overline{K}}(a,\omega))\Rightarrow \delta(\mathtt{X}(s)(\omega),\mathtt{X}(t)(\omega))\leq a\;\Phi(\,\mathtt{p}_S(s-t))\;\text{.}$$

card
$$\mathfrak{M}_{n}(v_{n}) \leq M(v_{n}S, \alpha_{n}S)$$
 . card M_{n+1} .

D'où, par la proposition 6, § 1, exposé XVIII,

card
$$\mathfrak{M}_{n}(v_{n}) \leq \left(\frac{v_{n}+\alpha_{n}}{\alpha_{n}}\right)^{k} \left(\frac{1}{\alpha_{n+1}}\right)^{k}$$
, $\forall n$.

Il existe donc une constante réelle A>0 telle que

card
$$\mathfrak{M}_{n}(v_{n}) \leq A(\frac{\eta_{n}}{\alpha_{n} \cdot \alpha_{n+1}})^{k}$$
, $\forall n$.

Et le corollaire 2 s'en déduit immédiatement.

§ 3. UN EXEMPLE

Soit $t\to\widetilde{X}(t)$ une fonction aléatoire du mouvement brownien à k paramètres de temps et soit $|\cdot|$ la norme euclidienne sur ${I\!\!R}^k$.

Alors, pour tout a>1 et pour tout compact K de \mathbb{R}^k , il existe une version X de \tilde{X} et une variable aléatoire $H_K(a,.)$ strictement positive telle que :

$$((s,t) \in K^2, |s-t| \leq H_K(a,\omega)) \Rightarrow \delta(X(s)(\omega),X(t)(\omega)) \leq a \varphi(|s-t|)$$

avec

$$\varphi(u) = \sqrt{\frac{k}{\pi} u \operatorname{Log} \frac{1}{u}} \qquad (u \leq \frac{1}{e}) .$$

 $\frac{\text{D\'{e}monstration}}{\text{A, A' et A''}} : \text{Soit K un compact de } \mathbb{R}^k \text{. Dans ce qui suit, C, C', C'',}$

Par définition même du mouvement brownien, on a pour tout réel $\alpha>0$, pour tout $s\in K$ et pour $t\in K$ tel que $s\neq t$

$$P\{\omega; |\widetilde{X}(s)(\omega) - \widetilde{X}(t)(\omega)| \ge \alpha\} \le 2 \int_{\alpha/\sqrt{|t-s|}}^{+\infty} e^{-\pi u^2} du$$

$$\leq C \frac{\sqrt{|t-s|}}{\alpha\sqrt{\pi}} \exp\left(-\frac{\pi\alpha^2}{|s-t|}\right)$$
.

Soit a un réel >1 arbitraire et soit θ tel que $1<\theta< a$. Considérons alors les fonctions

$$h \to \Phi(h) = \sqrt{\frac{\theta k}{\pi}} h \log \frac{1}{h}$$
, $h \to \Psi(h) = C h^{\theta k / / \theta k} \log \frac{1}{h}$

définies sur $]0,\frac{1}{e}]$. Φ et Ψ sont deux fonctions ≥ 0 ; Φ est un module de continuité, Ψ est croissante et $\Psi(h) \rightarrow 0$ et la condition i) du corollaire est vérifiée $(E=I\!\!R\,,\,\,p_S(x)=\big|x\big|,\alpha=\frac{1}{e})$.

Posons alors, pour tout $n \ge 3$,

$$\eta_n = \frac{n-2}{2^n}$$
 et $\alpha_n = \frac{1}{2^n}$

et vérifions que les conditions ν), ν ') et ν ") du comblaire sont satisfaites. Remarquons tout d'abord que, pour tout $n \ge 3$,

$$\begin{split} v_{n} &= \alpha_{n} + \alpha_{n+1} + \eta_{n} \leq \frac{n}{2^{n}} , \\ \psi(v_{n}) &= C \left(\frac{n}{2^{n}}\right)^{\theta k} \frac{1}{\sqrt{\log \frac{2^{n}}{n}}} \leq C' \left(\frac{n}{2^{n}}\right)^{\theta k} \frac{1}{\sqrt{n}} , \\ \Phi(2\alpha_{n}) &\leq \sqrt{\frac{2k\theta}{\pi}} \left(\frac{n}{2^{n}}\right)^{\frac{1}{2}} , \\ \Phi(\eta_{n+1}) &\geq A \sqrt{n} \left(\frac{n}{2^{n}}\right)^{\frac{1}{2}} , \end{split}$$

$$(1)$$

$$\left(\frac{\eta_{n}}{\alpha_{n}}\right)^{k} \leq 2^{k} (n 2^{n})^{k} .$$

et

Par suite, d'une part

$$\theta \leq \left(\frac{\eta_n}{\alpha_{n-\alpha_{n+1}}}\right)^k \quad \psi(v_n) \leq C'' \quad \frac{n(\theta+1)k-1/2}{2^{n(\theta-1)k}} \qquad , \quad \forall \quad n \geq 3$$

donc v') est satisfaite (puisque $\theta > 1$); d'autre part

$$\sum_{\mathbf{k} \geq \mathbf{n}} \phi \left(\alpha_{\mathbf{k}} + \alpha_{\mathbf{k}+1} \right) \leq A! \sqrt{\frac{\mathbf{n}}{2^{\mathbf{n}}}} \left(\sum_{\mathbf{k}} \sqrt{\frac{\mathbf{k}}{2^{\mathbf{k}}}} \right) = A! \sqrt{\frac{\mathbf{n}}{2^{\mathbf{n}}}} \quad , \quad \forall \quad \mathbf{n} \geq 3 \quad ,$$

donc, par (1), v") est satisfaite.

Par suite, d'après le corollaire, il existe une version X de \widetilde{X} et une variable aléatoire $H(\ .\)$ strictement positive telle que

$$((s,t) \in \texttt{K}^2 \;,\;\; s \neq t \;,\;\; \left| \; s - t \; \right| \; \leq \; \texttt{H}(\omega)) \; \Rightarrow \; \delta \left(\; \texttt{X}(s) \left(\omega \right) \;,\; \texttt{X}(t) \left(\omega \right) \right) \; \leq \sqrt{\frac{ak}{\pi} \; \left| \; t - s \; \middle| \text{Log} \; \; \frac{1}{\left| \; t - s \; \middle|} \; \right|} \;\; \bullet$$

Comme le réel a>1 et le compact K de \mathbb{R}^k ont été choisis arbitrairement, le résultat annoncé a été démontré.