SÉMINAIRE D'ANALYSE FONCTIONNELLE ÉCOLE POLYTECHNIQUE

Systèmes projectifs de mesures et théorème de Prokhorov

Séminaire d'analyse fonctionnelle (Polytechnique) (1969-1970), exp. nº 1, p. 1-5 http://www.numdam.org/item?id=SAF 1969-1970 A1 0>

© Séminaire Laurent Schwartz (École Polytechnique), 1969-1970, tous droits réservés.

L'accès aux archives du séminaire d'analyse fonctionnelle implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

ÉCOLE POLYTECHNIQUE

CENTRE DE MATHÉMATIQUES

17, RUE DESCARTES - PARIS V Téléphone : MÉDicis 11-77 (633)

SEMINAIRE L. SCHWARTZ 1969-1970

SYSTEMES PROJECTIFS DE MESURES ET THEOREME DE PROKHOROV

=-=-=-=-=-=-=-=-=-=-

§ 1. MESURES DE RADON FINIES.

Tous les espaces topologiques considérés seront séparés. On appelle mesure de Radon (sous-entendu : finie ≥ 0) sur X, une fonction μ sur la tribu borélienne de X, à valeurs dans \mathbb{R}_+ , dénombrablement additive et intérieurement régulière au sens suivant :

$$\mu(B) = \underset{K \subset \mathbb{R}}{\sup} \sup_{K \subset \mathbb{R}} \mu(K), \text{ pour tout B borélien.}$$

En particulier, µ est portée par une réunion dénombrable de compacts.

On dit que μ est une probabilité de Radon si $\mu(X)=1$. La théorie de l'intégration sera supposée connue.

§ 2. IMAGES DE MESURES.

Soit h: X -> Y une application de X dans Y, espaces topologiques, et soit μ une mesure de Radon sur X. On dit que h est μ -mesurable Lusin si, pour tout $\delta > 0$, il existe un compact $K_{\delta} \subset X$, tel que : $\mu(X - K_{\delta}) \leq \delta$, et que la restriction de h à K_{δ} soit continue.

Si h est μ -mesurable, on définit la mesure image $h\mu$ par $(h\mu)(B) = \mu(h^{-1}B)$, pour B borélien de Y; c'est une mesure de Radon sur Y. Si f est une fonction sur Y à valeurs dans un Banach, elle est $h\mu$ -intégrable, si et seulement si $h*f = f \circ h$ est μ -intégrable, et l'intégrale est la même. Si f est une fonction sur Y à valeurs dans un espace topologique Z, elle est $h\mu$ -mesurable, si et seulement si $f \circ h$ est μ -mesurable, et il y a transitivité des images : $f(h\mu) = (f \circ h)(\mu)$.

Proposition (I;2,1).

Si h : X -> Y est continue et injective, alors h : $\mu \mapsto h\mu$, opérant de l'espace des mesures sur X dans l'espace des mesures sur Y, est injective.

Soit v une mesure finie sur Y. Pour qu'elle soit image par h d'une mesure finie sur X, il faut et il suffit qu'elle vérifie les deux propriétés suivantes.:

- 1) Elle est portée par h(X). Alors l'application h^{-1} : $h(X) \rightarrow X$ est définie v presque partout sur Y.
- 2) h^{-1} est v-mesurable.

<u>Démonstration</u>: $v*(Y-h(X)) = \mu*(\emptyset) = 0$ si $v = h\mu$, donc la première condition est nécessaire; supposons-la réalisée.

Si $v = h\mu$, l'application h^{-1} o $h = Id_X$ est μ -mesurable, donc h^{-1} est hµ-mesurable, c'est-à-dire v-mesurable.

Inversement, si h^{-1} est v-mesurable, posons $\mu = h^{-1}v$; alors $h h^{-1}v = v \text{ ou } hu = v \cdot C \cdot Q \cdot F \cdot D$

Proposition (I;2,2).

Soit h: X -> Y continue. Pour qu'une mesure v sur Y soit image par h d'une mesure sur X, il faut et il suffit qu'elle soit portée par une réunion dénombrable d'images de compacts de X.

Démonstration : La condition est trivialement nécessaire, car si μ est

portée par $\bigcup_{n \in \mathbb{N}} K_n$, $\nu = h\mu$ est portée par $\bigcup_{n \in \mathbb{N}} h(K_n)$.

Inversement, soit $(K_n)_{n \in \mathbb{N}}$ une suite croissante de compacts de X, et supposons ν portée par $\bigcup_{n} h(K_n)$.

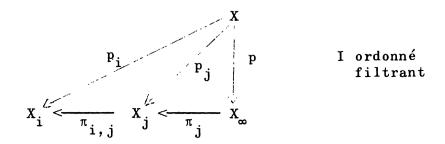
- 1) Supposons d'abord X, Y compacts, h surjective, auquel cas la condition précédente est réalisée.

Alors v est une forme linéaire continue sur C(Y); les images réciproques $h^*\phi = \phi$ o h des $\phi \in C(Y)$ forment un sous-espace vectoriel de C(X), et $\phi \circ h \mapsto v(\phi)$ est une forme linéaire continue sur ce sous-espace. Par Hahn-Banach, elle se prolonge en une forme linéaire continue µ sur C(X), de même norme $\|\mu\| = \|\nu\|$. Mais on a $\mu(1) = \nu(1) = \|\nu\| = \|\mu\|$, donc $\mu \geq 0$, d'où le résultat, car $h\mu = v$.

- 2) Passons au cas général. Soit v_n le produit de v par la fonction caractéristique de $h(K_n)$ - $h(K_{n-1})$. Elle est portée par $h(K_n)$, donc elle est l'image, par l'injection $h(K_n) \rightarrow Y$, d'une mesure v'_n sur $h(K_n)$.

En appliquant le résultat 1), $\nu'_n = h\mu'_n$, μ'_n mesure portée par K_n , de même masse que ν'_n ou ν_n . Alors si μ_n est l'image de μ'_n par l'injection $K_n \longrightarrow X$, on vérifie sans peine que $h\mu_n = \nu_n$. Comme $\nu = \sum \nu_n$, et que $\mu_n(1) = \nu_n(1)$, la mesure $\mu = \sum_n \mu_n$ est finie et vérifie $h\mu = \nu$. C.Q.F.D.

§ 3. SYSTEME PROJECTIF DE MESURES.



Soit $(X_i, \pi_{i,j})$ un système projectif d'espaces topologiques $(\pi_{i,j}$ application continue de X_j dans X_i pour $i \leq j$, avec $\pi_{i,i} = \operatorname{Id}_{X_i}$, $\pi_{i,k} = \pi_{i,j} \circ \pi_{j,k}$ pour $i \leq j \leq k$). Soit X_{∞} la limite projective, π_i son application canonique dans X_i .

Soit X un espace topologique, $p_i: X \longrightarrow X_i$ des applications continues, avec $p_i = \pi_{i,j}$, p_j pour $i \le j$. Par la propriété universelle des limites projectives, la donnée des p_i est équivalente à celle d'une application continue $p: X \longrightarrow X_{\infty}$, avec $p_i = \pi_i \circ p$.

Un système projectif de probabilités relatif au système précédent est la donnée d'une famille de probabilités de Radon, μ_i sur X_i , telles que $\mu_i = \pi_i$, $j \mu_j$ pour $i \leq j$. On se pose le problème suivant : existe-t-il une probabilité de Radon μ sur X, telle que $\mu_i = p_i \mu$ pour tout i?

THEOREME DE PROKHOROV (1;3,1).

Pour qu'il existe une probabilité μ sur X, verifiant $\mu_i = p_i \mu$ pour tout i, il faut et il suffit que la condition suivante soit vérifiée : pour tout $\epsilon > 0$, il existe un compact K de X tel que, pour tout i, $\mu_i(p_i(K) \geq 1-\epsilon$. Si, en outre, les p_i séparent les points de X, μ est unique.

<u>Démonstration</u>: La condition est trivialement nécessaire, montrons qu'elle est suffisante.

<u>1er Cas</u>: Les X_i sont compacts, $X = X_{\infty}$, $p = \operatorname{Id}_{X_{\infty}}$. C'est le cas de la limite projective de mesures de Radon sur des compacts, traité dans Bourbaki, Intégration, Chap.III, § 4, prop.8. (Bourbaki s'est canulé inutilement en supposant les $\pi_{i,j}$ surjectives; on se convaincra que c'est inutile, car de toute façon μ_i est portée par $\pi_{i,j} X_j$, donc aussi par $\pi_{i,\infty} = \bigcap_{j \geq i} \pi_{i,j} X_j$, car on peut passer à la limite des mesures par un ordonné filtrant décroissant de compacts); la condition de Prokhorov est toujours réalisée, avec $K = X_{\infty}$.

On peut s'affranchir de l'hypothèse de complète régularité des X_i ; nous ne le ferons pas, la démonstration est plus délicate et dans la suite, les X_i seront des espaces vectoriels topologiques, donc complètement réguliers.

 $\mu(K) = \text{Inf } \mu(\pi_i^{\nu-1} \pi_i^{\nu} K_{\infty}) \geq 1-\epsilon$, ce qui prouve notre assertion.

3ème Cas, Cas général : Si la condition de Prokhorov est réalisée pour X et les p_i , elle l'est a forfiori pour X_∞ et les π_i , en prenant, pour tout $\epsilon > 0$, $K_\infty = p(K)$, où K est associé à ϵ sur X. D'après le 2ème cas, il existe donc une mesure μ_∞ sur X_∞ , telle que $\mu_i = \pi_i \mu_\infty$ pour tout i. En outre, $\mu_\infty(p(K)) \geq 1-\epsilon$, donc μ_∞ est portée par une réunion dénombrable d'images par p de compacts de X, donc $\mu_\infty = p\mu$, μ de Radon sur X, d'après la

proposition (I;2,2); et on a bien $\mu_i = p_i \mu$ pour tout i.

<u>Unicité</u>. Il y a toujours unicité dans le 1er Cas (Bourbaki). Donc aussi dans le 2ème, car une solution sur X_{∞} pour les π_i l'est a fortiori sur Z pour les π_i . Il y a unicité dans le cas général, si et seulement si $p: X \longrightarrow X_{\infty}$ est injective (prop.(I;2,1)), c'est-à-dire si et seulement si les p_i séparent les points de X.