SÉMINAIRE D'ANALYSE FONCTIONNELLE ÉCOLE POLYTECHNIQUE

L. SCHWARTZ

Applications *O***-radonifiantes** (suite et fin)

Séminaire d'analyse fonctionnelle (Polytechnique) (1969-1970), exp. nº 17, p. 1-10 http://www.numdam.org/item?id=SAF_1969-1970 A18_0>

© Séminaire Laurent Schwartz (École Polytechnique), 1969-1970, tous droits réservés.

L'accès aux archives du séminaire d'analyse fonctionnelle implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

ÉCOLE POLYTECHNIQUE

CENTRE DE MATHÉMATIQUES

17, RUE DESCARTES - PARIS V Téléphone : MÉDicis 11-77 (633)

SEMINAIRE L. SCHWARTZ 1969-1970

APPLICATIONS 0-RADONIFIANTES (suite et fin)

§ 1. FIN DE LA DEMONSTRATION DU THEOREME (XVI,2;1)

D) Montrons l'équivalence des points 2 et 4 Supposons 2 réalisé, pour toute probabilité de Radon λ sur E. Soient Ω , μ , donnés. Un système fondamental de voisinages de 0 de L⁰(Ω, μ ;G) est formé par les ensembles

$$\left\{\Psi\in L^{\mathbf{0}}(\Omega,\mu;G)\;;\; J_{\beta}(\mu,\left\|\Psi\right\|)\leq \varepsilon\right\}^{\bullet}\quad,\qquad 0<\beta<\mathbf{1},\quad \epsilon>0\;\;.$$

Par ailleurs, un système fondamental de voisinages de 0 sur $\mathfrak{L}(E^{\dagger};L^{0}(\Omega,\mu)) \text{ est formé des ensembles } \{f\in\mathfrak{L}(E^{\dagger};L^{0}(\Omega,\mu)) \text{ ; } \forall \xi\in E^{\dagger} \text{ tel que } \|\xi\| \leq 1, \ J_{\alpha}(\mu,\|f(\xi)\|) \leq \eta \}, \ 0 \leq \alpha \leq 1, \ \eta \geq 0. \text{ Montrer la continuité de l'application } \oplus u_{\alpha}\phi, \ de \ L^{0}(\Omega,\mu;E) \text{ muni de la topologie induite par } \mathfrak{L}(E^{\dagger};L^{0}(\Omega,\mu)), \ dans \ L^{0}(\Omega,\mu;G), \ c'est \ donc \ monter \ que, \ quels \ que \ soient \beta, \ \epsilon, \ il \ existe \ \alpha, \ \eta, \ avec \ l'implication :$

$$\begin{array}{cccc} (\textbf{XVII}, \textbf{1}; \textbf{1}) & (\forall \ \phi \in L^{\mathbf{c}}(\Omega, \mu; E)) : & (\sup_{\|\xi\| \leq 1} J_{\alpha}(\mu, \|\xi \circ \phi\|) \leq \pi \Rightarrow \\ \\ J_{\beta}(\mu, \|u, \phi\|) \leq \varepsilon) & . \end{array}$$

 $\begin{array}{ll} \text{Or si } \lambda = \phi(a), \text{ c'est une probabilité de Radon, et l'on a} \\ \text{Sup } J_{\alpha}(\mu, |\xi)\phi) = \underset{\|\xi\| \leq 1}{\text{Sup }} J_{\alpha}(\xi(\lambda)) = J_{\alpha}^{*}(\lambda), \text{ it } J_{\beta}(a, \|u\|\phi\|) = J_{\beta}(u(\lambda)). \text{ Donc } \\ \|\xi\| \leq 1 \\ \text{l'implication (XVII.1;1) résulte de l'inégalité 2 de (XVI.2;1), avec} \\ \eta = \frac{\epsilon}{M} \end{array}.$

Inversement, supposons la continuité de $\phi\mapsto u\circ\phi$ réalisée, pour un (Ω,μ) tel que μ soit diffuse pour des ϕ étagées. Alors , pour tous β , ϵ , il existe α , η , vérifiant (XVII.1;1). Soit λ une probabilité sur E, portée par un ensemble fini : $\lambda = \sum\limits_{n\leq N} C_n \ \delta_{n}$. Il existe une $\phi:\Omega\to E$,

 $\begin{array}{lll} \mu\text{-\'etag\'ee, te\'lle que }\phi(\mu)=\lambda \text{ ; il suffit que l'on trouve una partition} \\ \Omega=\bigcup_{n\leq N} \Omega_n, \ \mu(\vec{\Omega_n})=C_n, \text{ ce qui est possible pursque }\mu \text{ est diffuse, et que }n\leq N \end{array}$

Rappelons (page (V,1). ligne 3) que $\Phi(\lambda,\theta)$ veut dire $\Phi(\theta(\lambda))$, si Φ est un poids, A une probabilité de Radon sur un espace topologique, θ une fonction s. c. $i \geq 0$ sur cet espace.

 ϕ soit égale à a_n sur Ω_n . Alors, de l'inégalité (XVII,1;1) on déduit $J_{\beta}(u(\lambda)) \leq M \ J_{\alpha}^*(\lambda), \ \text{si } M = \frac{\varepsilon}{\eta} \ .$

E) Pour terminer la démonstration du théorème (XVI,2;1), il reste à montrer que, si (Ω,μ) est donné avec μ diffuse, et si u est très approximativement 0-radonifiante de E dans $\sigma(G'',G')$, alors la continuité de $\phi\mapsto u \circ \phi$ indiquée dans le point 4 est réalisée pour des fonctions étagées. Nous utiliserons pour cela le théorème du graphe fermé, en plusieurs étapes assez longues, ce qui nous amène à introduire un nouveau paragraphe.

§ 2. L'APPLICATION DU THEOREME DU GRAPHE FERME.

Soit C l'espace vectoriel des μ -classes d'applications μ -étagées de Ω dans E, plongeable dans $\mathcal{L}(E';L^0(\Omega,\mu))$ par l'identification de $\varphi \in L^0(\Omega,\,;E)$ et de $\varphi^* \in \mathcal{L}(E';L^0(\Omega,\mu)), \; \varphi^*(\xi) = \xi \circ \varphi = \langle \varphi, \xi \rangle, \; \text{et}$ soit \overline{C} l'adhérence de C dans $\mathcal{L}(E';L^0(\Omega,\mu))$. Comme $\mathcal{L}(E';L^0(\Omega,\mu))$ a une base dénombrable de voisinages, il est métrisable, et il est complet parce que $L^0(\Omega,\mu)$ l'est. Il en est donc de même de \overline{C} , et on peut donc le prendre comme espace-source pour l'application du théorème du graphe fermé.

Soit $f \in \overline{C}$; f est limite d'une suite $f_n = \phi_n^*$, ϕ_n étagées $\Omega \to E$. Pour toute ϕ_n , la probabilité $\phi_n(\mu) = \lambda_n$ est combinaison finie de masses ponctuelles; f_n converge vers f uniformément sur la boule unité de E', a fortiori simplement, donc $f_n(\xi)$ converge vers $f(\xi)$ dans $L^0(\Omega,\mu)$, donc $(f_n(\xi)(\mu)$ converge étroitement vers $(f(\xi))(\mu)$, de sorte que, d'après le lemme 1 page (V,5), la probabilité cylindrique $\lambda_f = \lambda$ définie par f est limite cylindrique des λ_n ; enfin les f_n sont équicontinues de E' dans $L^0(\Omega,\mu)$ [soit en effet V un voisinage de 0 dans $L^0(\Omega,\mu)$, et soit W un voisinage de 0 équilibré tel que $W+W\subset V$. Il existe un $n_0\in N$ tel que, pour $n\geq n_0$, $(f_n-f)(B')\subset W$, où B' est la boule unité de E', donc $f_n(B')\subset W+f(B')\subset k(W+W)\subset kV$ pour k convenable. Pour tout $n< n_0$, il existe k_n tel que $f_n(B')\subset k_n$ V. Alors $\bigcup_{n\in \mathbb{N}} f_n(B')\subset V$ Sup $(k,(k_n)_{n< n_0})$, ce qui prouve l'équicontinuité], $n\in \mathbb{N}$

donc les λ_n sont uniformément de type 0 (exposé XVI, \S 1), et λ est de type 0 très approximable. Comme nous avons supposé u très approximativement 0-radonifiante de E dans $\sigma(G'',G')$, l'image $u(\lambda)$, associée à la fonction aléatoire fo $u:G' \xrightarrow{t_c} E' \xrightarrow{f} L^0(\Omega,\mu)$, est de Radon. Malheureusement, $\sigma(G'',G')$ n'a pas ses parties compactes métrisables, on ne peut donc pas appliquer la prop (XIII,3;1) et fo u n'a pas de raison d'être décomposée.

$$\{ \boldsymbol{\Psi} \in L^{\boldsymbol{o}}(\Omega, \boldsymbol{\mu}; \sigma(\boldsymbol{H}^{\scriptscriptstyle \mathsf{T}}, \boldsymbol{H})) \ ; \ \boldsymbol{J}_{\boldsymbol{\beta}}(\boldsymbol{\mu}, \left\| \boldsymbol{\Psi} \right\|) \leq \epsilon \, \} \ ,$$

 $0<\beta<1,\ \epsilon>0$. Elle induit sur $L^0(\Omega,\mu;\mathbb{H}^*)$ la topologie définie au § 1.D. C'est bien une topologie d'espece vectoriel. [Si h et k sont 2 fonctions ≥ 0 μ -mesurables, $J_{\alpha+\beta}(\mu,h+k) \leq J_{\alpha}(\mu,h) + J_{\beta}(\mu,k)$; car h est majorée par $J_{\alpha}(\mu,k)$ sauf sur un ensemble de μ -mesure \leq , donc h+k est majorée par $J_{\alpha}(\mu,h) + J_{\beta}(\mu,k)$ sauf sur un ensemble de μ -mesure $\leq \alpha + \beta$: donc, si V est le voisinage défini par β , ϵ , le voisinage W défini par β , ϵ , vérifie W· W \subset V], métrisable puisqu'ayant une base dénombrable de voisinages de 0; et

[•]et k majorée par $J_{\beta}(\mu,k)$ sauf sur un ensemble de μ -mesure $\leq \beta$,

Lemme (XVII,2;1) : l'espace $L^{0}(\Omega,\mu;\sigma(H',H))$ est complet.

$$J_{\frac{1}{2^{k+1}}} (\mu, \|\Psi_{n_{k+1}} - \Psi_{n_{k}}\|) \le \frac{1}{2^{k+1}}.$$

Pour simplifier les notations, posons $\Psi_{n_{k+1}} - \Psi_{n_k} = \theta_k$, $\Psi_{n_0} = \theta_0$. Il s'agit de montrer que la série $\sum\limits_{k\in\mathbb{N}}\theta_k$ converge dans $L^0(\Omega,\mu;\sigma(H',H))$, avec $J=\frac{1}{2^{k+1}}(\mu,\|\theta_k\|)\leq \frac{1}{2^{k+1}}$. Pour tous $l\in\mathbb{N},\,m\in\mathbb{N},$ $J=\frac{1}{2^{k+1}}(\mu,\|\theta_l\|+\|\theta_{l+1}\|+\cdots+\|\theta_{l+m}\|)\leq J=\frac{1}{2^{l+1}}(\mu,\|\theta_l\|)+\frac{1}{2^{l+1}}(\mu,\|\theta_l\|+\|\theta_{l+1}\|+\cdots+\|\theta_{l+m}\|)\leq J=\frac{1}{2^{l+1}}(\mu,\|\theta_l\|+\|\theta_{l+1}\|+\cdots+\|\theta_{l+m}\|)$

+
$$J_{\frac{1}{2^{1+m+1}}}(\mu, \|\theta_{1+m}\|) \leq \frac{1}{2^{1+1}} + \frac{1}{2^{1+2}} + \dots + \frac{1}{2^{1+m+1}} \leq \frac{1}{2^{1}}$$
.

Comme l'ensemble $\Omega_{1,m}$ $\{\omega \in \Omega; \|\theta_1(\omega)\| + \ldots + \|\theta_{1+m}(\omega)\| > \frac{1}{2^1} \}$ croît avec l, et que sa mesure reste $\leq \frac{1}{2^1}$, il en sera de même pour l'ensemble réunion $\Omega_1^{\text{me}} \{\omega \in \Omega; \|\theta_1(\omega)\| + \ldots + \|\theta_{1+m}(\omega)\| + \ldots > \frac{1}{2^1} \}$; donc, pour μ -presque tout $\omega \in \Omega$, la série $\sum_{k \in \mathbb{N}} \|\theta_k(\omega)\|$ converge, a fortiori la série $\sum_{k \in \mathbb{N}} \theta_k(\omega)$ converge dans H'; soit $\theta(\omega)$ sa somme. Alors θ est une fonction définie μ -presque partout à valeurs dans H', et on a $\|\theta(\omega) - \sum_{k=0}^{l-1} \theta_k(\omega)\| \leq \frac{1}{2^l}$ pour $\omega \notin \Omega_1$, la suite des Ω_1 étant décroissante, avec $\mu(\Omega_1) \leq \frac{1}{2^l}$. Sur tout Ω_1 , la série Ω_1 étant décroissante, avec $\mu(\Omega_1) \leq \frac{1}{2^l}$.

mément par rapport à la structure uniforme de H' définie par la norme,

puisque, pour $\omega \notin \Omega_1$, et pour tout $1' \ge 1$ donc $\omega \notin \Omega_{1'}$,

 $\|\theta(\omega) - \sum_{k=0}^{\Gamma'-1} \theta_k(\omega)\| \leq \frac{1}{2^{\Gamma'}} \text{. Alors } \theta \text{ est } \mu\text{-mesurable de } \Omega \text{ dans } \sigma(H',H)$ [pour tout 1, il existe $\widetilde{\Omega}_1 \supset \Omega_1$, $\mu(\widetilde{\Omega}_1) \leq \frac{1}{2^{\Gamma-1}}$, tel que les restrictions des θ_k à $\int_{-1}^{\infty} \widetilde{\Omega}_1$ soient toutes continues de $\int_{-1}^{\infty} \widetilde{\Omega}_1$ dans $\sigma(H',H)$, et $\sum_{k \in \mathbb{N}} \theta_k$ converge vers θ uniformément sur $\int_{-1}^{\infty} \widetilde{\Omega}_1$, pour la structure uniforme $h \in \mathbb{N}$ définie par H' donc a fortiori pour celle qui est définie par $\sigma(H',H)$; donc la restriction de θ à $\int_{-1}^{\infty} \widetilde{\Omega}_1$ est continue de $\int_{-1}^{\infty} \widetilde{\Omega}_1$ dans $\sigma(H',H)$, donc θ est μ -mesurable de Ω dans $\sigma(H',H)$], soit $\theta \in L^0(\Omega,\mu;\sigma(H',H))$, et $\sum_{k \in \mathbb{N}} \theta_k$ converge vers θ dans $L^0(\Omega,\mu;\sigma(H',H))$, ce qui démontre le lemme. $h \in \mathbb{N}$

Donc $L^0(\Omega,\mu;$ $\sigma(H^!,H))$ peut être pris comme espace-but pour l'application du théorème du graphe fermé. La situation est maintenant la suivante : nous avons une application linéaire $f\mapsto \Psi_f$, avec $\Psi_f^*=f \circ^t u$, de \overline{Q} dans $L^0(\Omega,\mu;\sigma(H^!,H))$, pour H Banach séparable ; et on peut appliquer le théorème du graphe fermé aux espaces $\overline{Q}\subset \mathfrak{L}(E^!;L^0(\Omega,\mu))$ et $L^0(\Omega,\mu;\sigma(H^!,H))$. Montrons donc que $f\mapsto \Psi_f$ a son graphe fermé. Soit $(f_n)_{n\in\mathbb{N}}$ une suite de \overline{Q} , ayant une limite f, et telle que Ψ_f ait une limite Ψ . Les $f_n \circ^t u$ convergent vers $f \circ^t u$ dans $\mathfrak{L}(G^!;L^0(\Omega,\mu))$; mais les $\|\Psi_f - \Psi\|$ convergent vers 0 dans $L^0(\Omega,\mu)$, donc a fortiori Ψ_f^* converge vers Ψ_f^* dans $\mathfrak{L}(G^!;L^0(\Omega,\mu))$. Donc $\Psi_f^*=f_n \circ^t u$ entraîne $\Psi^*=f \circ^t u = \Psi_f$, et le graphe est fermé.

Donc l'application $f\mapsto \Psi_f$, définie pour G=H', H Banach séparable, est de graphe fermé, donc continue. Si on la restreint à $C\subset \overline{C}$, pour $f=\phi^*$, $\phi\in L^0(\Omega,\mu;E)$ étagée, on a $\Psi_f=u_{\bullet}\phi\in L^0(\Omega,\mu;H')$, et nous avons observé que la topologie de $L^0(\Omega,\mu;H')$ était induite par celle de $L^0(\Omega,\mu;\sigma(H',H))$, on a bien (XVI,2;1), si G=H', H Banach séparable, pour des ϕ étagées.

Soit maintenant G=H', H Banach quelconque, et montrons la continuité de $\phi\mapsto u \cdot \phi$, pour des ϕ étagées, u étant toujours supposée approximativement 0-radonifiante de E dans $\sigma(H',H)$. Comme les espaces considérés sont métrisables, il suffit de montrer que, si $\left(\phi_n\right)_{n\in\mathbb{N}}$ est

une suite de $L^0(\Omega,\mu;E)$, formée de fonctions étagées, telle que ϕ_n^* converge vers 0 dans $\mathfrak{L}(E^!;L^0(\Omega,\mu))$, alors $\mathfrak{u}_{\epsilon}\phi_n$ converge vers 0 dans $L^0(\Omega,\mu;H^!)$. Chaque ϕ_n prend ses valeurs dans un sous-espace E_n de dimension finie de E, donc $\mathfrak{u}_{\epsilon}\phi_n$ dans un sous-espace H_1^* de dimension finie de $H^!$. Alors H_1^* est le dual de H/H_1^* ; la norme d'un élément de H_1^* est la borne supérieure des modules de ses produits scalaires avec des éléments d'une partie dénomirable dense de la boule unité ouverte de H/H_1^* , donc, par relèvement, des modules de ses produits scalaires avec les éléments d'une partie dénombrable N_n de la boule unité ouverte de H. Soit \widetilde{H} le sous-espace vectoriel fermé de H engendré par les N_n , $n \in \mathbb{N}$: c'est un Banach séparable. Pour tout $n \in \mathbb{N}$ et tout $e \in \Omega$

$$\|(\mathbf{u}_{\bullet}\psi_{n})(\boldsymbol{\omega})\| = \sup_{\substack{\xi \in \widetilde{H} \\ \|\xi\| \le 1}} |\langle (\mathbf{u}_{\bullet}\phi_{n})(\boldsymbol{\omega}), \xi \rangle|;$$

autrement dit, la convergence des $u \cdot \phi_n$ vers 0 dans $L^0(\Omega, \mu; H^1)$, équivaut à la convergence vers 0 des $\rho \cdot u \cdot \phi_n$ dans $L^0(\Omega, \mu; \widetilde{H}^1)$, où $\rho : H^1 \to \widetilde{H}^1$ est la transposée de l'injection $\widetilde{H} \to H$, et $\widetilde{H}^1 = H^1/\widetilde{H}^0$. Mais $\rho \cdot \sigma u$ est approximativement 0-radonifiante de E dans $\sigma(\widetilde{\Pi}^1, \widetilde{H})$, et le résultat antérieur nous démontre bien que $\rho \cdot u \cdot \sigma_n$ converge vers 0 dans $L^0(\Omega, \mu; \widetilde{H}^1)$.

Enfin, si G est un Banach arbitraire, et u approximativement 0-radonifiante de E dans $\sigma(G'',G')$, alors $\phi\mapsto u\cdot\phi$ sera continue de $L^0(\Omega,\mu;E)$, muni de la topologie induite par $\mathfrak{L}(E';L^0(\Omega,\mu))$, dans $L^0(\Omega,\mu;G'')$; mais $u\circ\phi\in L^0(\Omega,\mu;G)$, dont la topologie est induite par celle de $L^0(\Omega,\mu;G'')$, donc l'implication $1\Rightarrow 4$ du théorème (XVI,2;1) est complètement démontrée, ce qui achève la démonstration de ce théorème. Ouf!

§ 3. SUPPRESSION DES HYPOTHESES D'APPROXIMATION ET DU RECOURS AU BIDUAL G".

On démontrera exactement comme à la proposition (XI,2:1), cas 1 et 2, et à la proposition (XII,1;1), cas 1 :

Proposition (XVII. 3;1): seient E, G, des Banach, $u: E \rightarrow G$ linéaire continue, approximativement 0-radonifiante de E dans $\sigma(G'', G')$. Alors on peut supprimer "approximativement" si le couple (E, E') a la propriété d'approximation métrique, et on peut remplacer $\sigma(G'', G')$ par G, si G est un Banach réflexif ou un dual fort séparable d'un Banach.

<u>Démonstration</u>: pour la suppression de la condition d'approximation, on devra appliquer, comme pour (XII,1;1), la prop.(V,4;1); si λ est de type 0 sur E, il existe un poids A de la forme $\sum_{\alpha > 0} \varphi(\alpha) J_{\alpha}$, $\varphi > 0$, $0 < \alpha < 1$

telle que λ soit de type A (voir démonstration C du théorème (XVI,2;1)); A est un poids plus fort que L^0 (§ 2 de l'exposé IV), donc la prop (V,4;1) dit que λ est de type A approximable si (E,E') a la propriété d'approximation métrique, donc a fortiori de type 0-approximable, ce qui assure le résultat. Pour le remplacement de $\sigma(G'',G')$ par G, c'est le théorème de Phillips si G est un Banach réflexif. Si G=H', H' séparable H Banach, on a besoin d'un analogue du lemme démontré à l'additif de l'exposé XI: si $u:E\to G$ est approximativement 0-radonifiante de E dans $\sigma(G'',G')$, elle est faiblement compacte de E dans G (car alæs, comme à l'additif cité, si λ est cylindrique de type 0 sur E, elle est scalairement concentrée sur les boules de E, donc $u(\lambda)$ sera scalairement concentrée sur les faiblement convexes de G). Je ne connais pas de démonstration directe de ce fait ; mais nous verrons au corollaire E du E suivant, que E est a fortiori E sumante, pour tout E elle cela assurera le résultat.

nemarques

- 1) Si u est approximativement p-radonifiante de E dans $\sigma(G'',G')$, p < 1 (en particulier p = 0), peut-on en déduire qu'elle est approximativement p-radonifiante de E dans G, si E est un Banach réflexif, ou un Banach de dual séparable (prop. (XII,2;2))?
- 2) Existe-t-il des $u: E \rightarrow G$ qui soient approximativement 0-radonifiantes de E dans $\sigma(G'',G')$ sans l'être de E dans G? Je n'en connais pas. Les seuls cas connus où on ne peut pas remplacer $\sigma(G'',G')$ par G, sont relatifs à des applications p-radonifiantes, p=1 ou $+\infty$.

§ 4. LES APPLICATIONS (p,q)-RADONIFIANTES. Proposition (XVII,4;1) (Kwapien):

Soit u une application linéaire continue d'un Banach E dans un Banach G, ayant la propriété suivante : pour toute λ cylindrique sur E, de type q approximable, $u(\lambda)$ est de Radon dans $\sigma(G'',G')$. Alors, pour toute λ cylindrique de type q approximable, $u(\lambda)$ est de Radon d'ordre q dans $\sigma(G'',G')$, autrement dit u est approximativement q-radonifiante de E dans $\sigma(G'',G')$.

Démonstration : comme toute application linéaire continue est ∞ -radonifiante de E dans $\sigma(G'',G')$, on peut se borner à q fini >0. En utilisant le théorème du graphe fermé comme au § 2, on montrera que, si (Ω,μ) est donné, si Ω est l'espace des μ -classes d'applications μ -étagées de Ω dans E, muni de la topologie induite par $\mathfrak{L}(E',L^q(\Omega,\mu))$, alors $\varphi \to u_{\bullet}\varphi$ est continue de Ω dans $L^0(\Omega,\mu;G)$. Soit Φ le poids sur $P(\overline{\mathbb{R}}_+)$:

$$v \rightarrow \Phi(v) = \int_{\overline{\mathbb{R}}_{+}} \operatorname{Inf}(1,t) dv(t)$$
.

C'est un poids équivalent à L⁰ (§ 2 de l'exposé IV). Donc l'ensemble

$$\{ \Psi \in L^{0}(\Omega, \mu; G) ; \Phi(\mu, ||\Psi||) \leq \frac{1}{2} \}$$

est un voisinage de 0 de L $^0(\Omega,\mu;G)$. Alors il existe, d'après la continuité de $\phi \to u_{\sigma} \phi$, un R>0 tel que l'inégalité

$$\sup_{\xi \in E'} \|\xi_{o}\varphi\|_{L^{q}(\Omega, \mu)} \leq R$$
$$\|\xi\| \leq 1$$

entraîne

$$\Phi(\mu, \|u \circ \varphi\|) \leq \frac{1}{2} .$$

Si on a choisi un (Ω,μ) avec μ non diffuse, on en déduira, comme au D du § 1, que, pour toute λ de Radon portée par un ensemble fini, l'inégalité $\|\lambda\|_q^* \leq R$ entraı̂ne $\Phi(u(\lambda)) \leq \frac{1}{2}$, ou

$$\int_{E} \operatorname{Inf}(1, \|\mathbf{u}(\mathbf{x})\|) d\lambda(\mathbf{x}) \leq \frac{1}{2} .$$

On voit alors que $\Phi(u(\lambda)) = \operatorname{Inf}(1, \|u(a)\|_q)$, et $\Phi(u(\lambda)) \leq \frac{1}{2}$ équivaut à $\|u(a)\|_q \leq \frac{1}{2}$. Nous avons alors montré que $\|a\|_q^* \leq R$ entraîne $\|u(a)\|_q \leq \frac{1}{2}$, pour toute suite finie $a = (a_n)_{n \leq N}$ de points de E, avec $a_n \neq 0$, $u(a_n) \neq 0$, et cela subsiste manifestement pour une suite où certains des a_n ou $u(a_n)$ sont nuls.

Par homogénéité, on en déduit que, pour toute suite finie a, $\left\|u(a)\right\|_{q} \leq \frac{1}{2R} \left\|a\right\|_{q}^{*} \text{ , donc que u est q-sommante, avec } \pi_{q}(u) \leq \frac{1}{2R} \text{ , c.q.f.d.}$

Conséquences :

On dira que $u: E \rightarrow G$ est approximativement (p,q)-radonifiante de E dans $\sigma(G'',G')$, si, pour toute λ cylindrique de type p approximable sur E, $u(\lambda)$ est de Radon d'ordre q sur $\sigma(G'',G')$.

De telles applications n'existent pas, à moins d'être nulles, si q > p. En effet, s'il existe un $x \in E$ tel que $u(x) \neq 0$, prenons pour λ la probabilité image de $\nu \in \mathbb{P}(\mathbb{R})$ par $t \to tx$; on voit que $u(\lambda)$ est l'image de ν par $t \to tu(x)$, et que, pour $\xi \in E'$, $\xi(\lambda)$ est l'image de ν par $t \to t < x, \xi >$; alors $\|\lambda\|_p^{*a} = \|\lambda\|_p^* = \|x\| \|\nu\|_p$, et $\|u(\lambda)\|_q = \|u(x)\| \|\nu\|_q$; de sorte que, pour toute probabilité ν sur \mathbb{R} , $\|\nu\|_p < +\infty$ doit entraîner $\|\nu\|_q < +\infty$, ce qui exige $q \le p$. M is, pour $q \le p$, on a :

Corollaire 1: si u est approximativement (p,q)-radonifiante de E dans $\sigma(G'',G')$, elle est approximativement (p,p)-radonifiante, c-à-d p-radonifiante, de E dans $\sigma(G'',G')$.

En effet, u est a fortiori approximativement (p,0)-radonifiante, et la prop. (XVII,4;1) prouve qu'elle est approximativement p-radonifiante.

Donc, essentiellement, il n'y a pas de théorie des applications (p,q)-radonifiantes. Au contraire, il existe une théorie des applications (p,q)-sommantes , pour $q \ge p$ (elles sont nulles pour q < p).

Corollaire 2: toute application approximativement p-radonifiante de E dans $\sigma(G'',G')$, est approximativement q-radonifiante, pour $q \ge p$.

En effet, u est a fortiori approximativement (p,0)-radonifiante, donc (q,0), donc (q,q) par la prop.(XVII,4;1).

 $^{^{}ullet}$ On les appelle habituellement (q,p)-sommantes!