SÉMINAIRE D'ANALYSE FONCTIONNELLE ÉCOLE POLYTECHNIQUE

L. SCHWARTZ

Limites projectives de variables aléatoires, applications décomposantes et nikodymisantes

Séminaire d'analyse fonctionnelle (Polytechnique) (1969-1970), exp. nº 13, p. 1-8 http://www.numdam.org/item?id=SAF_1969-1970____A13_0

© Séminaire Laurent Schwartz (École Polytechnique), 1969-1970, tous droits réservés.

L'accès aux archives du séminaire d'analyse fonctionnelle implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

ÉCOLE POLYTECHNIQUE

CENTRE DE MATHÉMATIQUES

17, RUE DESCARTES - PARIS V Téléphone : MÉDicis 11-77 (633)

SEMINAIRE L. SCHWARTZ 1969-1970

§ 1. LIMITES PROJECTIVES DE VARIABLES ALEATOIRES : POSITION DU PROBLEME

Soient $(X_i)_{i \in I}$, $(\pi_{i,j})_{(i,j) \in I_X J, i \leq j}$, X_{∞} , $(p_i)_{i \in I}$, X, p, des objets analogues à ceux du $\S 3$ de l'exposé I, définissant une application continue p de X dans la limite projective X_{∞} des X_i .

Soit Ω un espace topologique muni d'une probabilité de Radon μ , et soit $(f_i)_{i \in I}$ un système de variables aléatoires, f_i μ -classe d'applications μ -mesurables de Ω dans X_i , vérifiant la relation de cohérence $f_i = \pi_{i,j}$ of j pour $i \leq j$.

On se pose la question survante : <u>existe-t-il une variable aléatoire f</u>, μ -classe d'applications μ -mesurables de Ω dans X, telle que, pour tout $1 \in I$, $f_i = p_i$ of ?

Proposition (XIII, 1; 1):

- 1) Si les p_i séparent les points de X, la variable aléatoire f, si elle existe, est unique.
- Une condition nécessaire d'existence de f est que le système des probabilités de Radon $f_i(\mu)$, sur les X_i , admette une limite projective sur X, c'est-à-dire une probabilité \vee sur X, telle que pour tout $i \in I$, $f_i(\mu) = p_i(\nu)$; autrement dit, c'est la condition de Prokhorov (I,3;1): quel que soit $\varepsilon > 0$, il existe un compact K de X tel que, pour tout $i \in I$, $(f_i(\mu))(p_i(K)) \ge 1 \varepsilon$.

Démonstration :

1) Soient f, g, deux applications (et non classes d'applications) solutions du problème. Elles sont mesurables ; donc, pour tout ε>0, il existe un compact A ⊆ Ω, tel que μ(A) ≥ 1 - ε, et que les restrictions de f et g à A soient continues. On peut toujours supposer que A est dans le support de μ, faute de quoi on peut le remplacer par son intersection avec le support. Pour tout i, p_{i o} f et p_{i o} g sont alors continues sur A contenu dans le support, et μ-presque partout égales, donc partout égales.
Alors, puisque les p_i séparent les points de X, f et g coincident sur A;

comme $\epsilon>0$ est arbitraire, f et g sont μ -presque partout égales sur Ω , donc définissent la même variable aléatoire.

2) est évident, car, si f existe, alors $v = f(\mu)$ répond à la question.

§ 2. LE THEOREME FONDAMENTAL

Théorème (XIII,2;1)

La condition de Prokhorov 2) de la prop. (XIII,1;1) est suffisante pour l'existence de f, dans chacun des deux cas suivants:

- 1) Il existe un ensemble denombrable $J \subseteq I$ tel que les π_i , $i \in J$, séparent les points de X;
- 2) Les parties compactes de X sont métrisables.

Démonstration :

- O) Supposons d'abord I dénombrable, les p_i séparant les points de X. La limite projective X_{∞} est une partie de $\prod_{i \in I} X_i$; soit f_{∞} l'application $\prod_{i \in I} f_i$ de Ω dans $\prod_{i \in I} X_i$, μ -mesurable puisque I est dénombrable. Alors la probabilité image $f_{\infty}(\mu)$ est la limite projective des $f_i(\mu)$ (qui d'ailleurs existe toujours dans le cas dénombrable, la condition de Prokhorov est automatiquement réalisée), donc portée par X_{∞} , donc f_{∞} est une variable aléatoire à valeurs dans X_{∞} . Mais $f_{\infty}(\mu)$ est l'image par p de la probabilité ν dont l'existence sur X est supposée ; alors la prop. (I,2;1), p étant injective, montre que p^{-1} , application de p(X) dans X, est définie $f_{\infty}(\mu)$ -presque partout et $f_{\infty}(\mu)$ -mesurable ; et $f=p^{-1}$ o f_{∞} répond à la question.
- 1) Il existe une partie dénombrable J⊂I telle que les p_i, i ∈ J, séparent les points de X. On peut toujours supposer que la structure d'ordre de I induit sur J une structure isomorphe à celle de N (ou exceptionnellement d'un segment [0,n] de N).
 [En effet, soit (j_n)_{n∈N} une surjection de N sur J; par récurrence, on peut construire une application croissante (j̄_n)_{n∈N} de N dans I, telle que pour tout n, j̄_n ≥ {j_o, j₁,...,j_n} (I est filtrant); alors J = {j̄_o, j̄₁,...,j̄_n,...}

a la même propriété que J, mais sa structure d'ordre est isomorphe à celle de N ou d'un segment de N]. Bornons-nous alors au système projectif des π_i , $\pi_{i,j}$, p_i , avec les X_i et X pour $i,j \in J$; il vérifie toujours la condition de Prokhorov, avec la même probabilité v sur X, mais J est dénombrable et sépare les points de X; le cas 0) affirme qu'il existe $f_J: \Omega \to X$, unique, w-mesurable telle que $f_i = p_i$ of f_j pour tout $i \in J$.

Soit J' un autre ensemble ayant les mêmes propriétés que J, mais 'majorant' J au sens suivant : tout élément de J admet un majorant dans J'. Alors \mathbf{f}_J et \mathbf{f}_J , sont deux variables aléatoires $\Omega \to X$, vérifiant $\mathbf{f}_i = \mathbf{p}_{i \mid 0} | \mathbf{f}_J = \mathbf{p}_{i \mid 0} | \mathbf{f}_{J}$, pour $i \in J$; donc elles cofncident par l'unicité. Si maintenant J_1 et J_2 sont deux parties dénombrables quelconques de I séparant les points de X, il en existe une autre J qui majore chacune d'elles au sens ci-dessus, donc $\mathbf{f}_{J} = \mathbf{f}_{J} = \mathbf{f}_{J}$. Finalement, il existe une variable aléatoire unique $\mathbf{f}_{J} = \mathbf{f}_{J} = \mathbf{f}_{J}$. Finalement, il existe une variable aléatoire unique $\mathbf{f}_{J} = \mathbf{f}_{J} = \mathbf{f}_{J}$. Mais tout $\mathbf{f}_{J} = \mathbf{f}_{J} = \mathbf{f}_{J}$ dénombrable séparant les points de $\mathbf{f}_{J} = \mathbf{f}_{J} = \mathbf{f}_{J}$. Mais tout $\mathbf{f}_{J} = \mathbf{f}_{J} = \mathbf{f}$

2) Supposons les parties compactes de X métrisables. La probabilité v sur X est portée par X', réunion dénombrable de tels compacts, donc souslinien. On peut alors supprimer X et raisonner sur X', en restreignant les p_i, p à X'.

Alors p est une surjection continue du souslinien X' sur $p(X') \subset X_{\infty}$. L'espace p(X') est souslinien; ses points sont séparés (comme ceux de X_{∞}) par les π_i , donc, d'après une propriété des sousliniens, il existe une partie dénombrable $J \subset I$ telle que les π_i , $i \in J$, séparent les points de p(X'); donc, d'après le cas 1), il existe une variable aléatoire $f_{\infty}: \Omega \to p(X')$, telle que $f_i = \pi_{i \mid 0} f_{\infty}$ pour tout $i \in I$. D'après un théorème de von Neumann sur les sousliniens (voir Dixmier, 'Algèbres d'opérateurs dans les espaces hilbertiens', Paris, Gauthiers-Villars, 1957, Appendice V, dernière page), il existe une "section" $\sigma: p(X') \to X'$ universellement mesurable $(p_0 \circ = identité sur p(X'))$. Alors $f = \sigma_0 f_{\infty}$ répond à la question, c q f d.

§ 3. APPLICATIONS RADONIFIANTES ET DECOMPOSANTES

Soit E un espace vectoriel localement convexe, et soit $\phi: (\Omega,\mu) \to E \text{ une variable al\'eatoire à valeurs dans E. Elle définit une probabilité de Radon } \phi(\mu) \text{ sur E, donc, a fortiori, une probabilité cylindrique. Une fonction aléatoire associée linéaire sur E', est E' <math>\to L^0(\Omega,\mu)$, $\xi \mapsto <\phi, \xi>=\xi_0 \ \phi$; nous l'appellerons f_0 ou ϕ^* .

Inversement, soit $f: E' \to L^0(\Omega,\mu)$ une fonction aléatoire linéaire sur E'; nous dirons qu'elle est décomposée, s'il existe $\phi: \Omega \to E, \mu$ -mesurable, telle que $\phi^* = f$, ou $\xi_0 \phi = f(\xi)$ pour tout $\xi \in E'$. Notons que nous nous plaçons d'emblée dans une situation "duale". Pour une application f d'un Banach U dans un espace $L^0(\Omega,\mu)$, il serait naturel de dire qu'elle est décomposée, s'il existe ϕ , variable aléatoire $\Omega \to U'$, telle que $\xi_0 \phi = f(\xi)$ pour tout $\xi \in U$.

Alors, pour U=E', U' est E'', et nous serions amenés à admettre ϕ à valeurs dans E''. Pour ne pas introduire de telles complications, nous garderons toujours ces situations duales : nous ne parlerons que de fonctions aléatoires linéaires sur des duals E', et nous les décomposerons par des applications $\Omega \to E$.

Proposition (XIII,3;1)

Pour qu'une fonction aléatoire $f: E' \to L^0(\Omega,\mu)$ soit décomposée, il est nécessaire que la probabilité cylindrique λ_f sur E soit de Radon, et c'est suffisant si E a ses parties compactes métrisables. Si f est décomposée, la variable aléatoire ϕ qui la décompose est unique.

Démonstration :

Cela résulte trivialement de la prop. (XIII,1;1), et du cas 2) du théorème (XIII,2;1)

Ici X = E, X_i est un espace \mathbb{R}^n , p_i une application linéaire continue de E dans \mathbb{R}^n définie par un système $(\xi_1, \xi_2, \ldots, \xi_n) \in E^n$, $\pi_{i,j}$ une matrice définissant une application linéaire continue d'un \mathbb{R}^m dans un \mathbb{R}^n , f_i est la variable aléatoire $(f(\xi_1), f(\xi_2), \ldots, f(\xi_n)) : \Omega \to \mathbb{R}^n$. La variable aléatoire $f : \Omega \to X$ des §§ 1,2, s'écrit ici $\varphi : \Omega \to E$; si l'on a $f(\xi) = \xi_0 \varphi$,

on a aussi $(f(\xi_1), f(\xi_2), \ldots, f(\xi_n)) = (\xi_1, \xi_2, \ldots, \xi_n) \circ \varphi : \Omega \to E \xrightarrow{(\xi_1, \ldots, \xi_n)} \mathbb{R}^n$ Ici les $\xi \in E'$ séparent les points de E, donc il y a unicité, prop.(XIII,1;1). Le théorème (XIII,2;1) donnent deux critères possibles ; mais le 1er est un cas particulier du 2ème ; car, si E' admet une partie dénombrable D' séparant les points de E, tout compact de E est plongeable dans $\mathbb{C}^{D'}$ donc métrisable, c q f d.

Exemples: 1) E souslinien;

2) E Banach ou Fréchet.

Malheureusement, la théorie des applications radonifiantes introduit souvent $\sigma(G'',G')$; ses parties compactes ne sont pas métrisables, sauf dans le cas bien rare où G' est séparable !

Soit u une application linéaire continue d'un Banach E dans un Banach G. On dit que ${}^tu:G'\to E'$ est p-décomposante (<u>situation duale</u>), si, pour toute application linéaire continue $f:E'\to L^p(\Omega,\mu)$, la composée $f_o{}^tu$ est décomposée par une application $\phi:\Omega\to G$, appartenant à $L^p(\Omega,\mu;G)$, c'est-à-dire μ -mesurable, avec (Sup. ess.) $_{\mu}\|\phi\|<+\infty$ pour $p=+\infty$, $\int_{\Omega}\|\phi(\omega)\|^p\ d\mu(\omega)<+\infty \ pour \ p<+\infty.$

Proposition (XIII,3;2) :

Soient E,G, des Banach, u une application linéaire continue de E dans G. Alors u est p-radonifiante, $0 \le p \le +\infty$, si et seulement si ^tu est p-décomposante.

Démonstration :

Soit λ une probabilité cylindrique de type p sur E ; on sait qu'on peut lui associer des fonctions aléatoires linéaires continues $f: E' \to L^p(\Omega,\mu)$ (prop. VI,1;1), et qu'inversement à toute fonction aléatoire telle que f est associée une probabilité cylindrique λ de type p. Alors la composée f_o u est associée à la probabilité cylindrique $u(\lambda)$; et la prop.(XIII,3;1) dit justement que $u(\lambda)$ est de Radon si et seulement si f_o u est décomposée; si f_o u est décomposée par $\phi: \Omega \to G$, il est enfin équivalent de dire que $\phi \in L^p(\Omega,\mu;G)$ ou que $u(\lambda) = \phi(\mu)$ est d'ordre p, c q f d.

§ 4. APPLICATIONS NIKODYMISANTES

Une mesure vectorielle vector

Considérons la transformée ${}^t v$, application linéaire continue $E' \to M(\Omega)$, où $M(\Omega)$ est l'espace des mesures de Radon sur Ω ; dire que v est scalairement de base μ , équivaut à dire que v envoie E' dans l'espace $\Lambda^1_{loc}(\Omega,\mu) \simeq L^1_{loc}(\Omega,\mu)$ des mesures de base μ , et elle est forcément continue puisque v est continue de E' dans $M(\Omega)$. Et dire que v est de base μ , c'est dire que v: $E' \to L^1_{loc}(\Omega,\mu)$ est décomposée par une fonction $\phi \in L^1_{loc}(\Omega,\mu;E)$.

Soient E, G, des Banach, u une application linéaire continue de E dans G. On dit que u est nikodymisante, si, pour toute mesure de Radon $\nu: \Omega \to E$ sur un espace localement compact Ω , scalairement de base une mesure $\mu \geq 0$ sur E, la mesure image $u_0 \vee : \Omega \to G$ est de base μ .

Proposition (XIII,4;1) :

Si l'application u : E → G est 1-radonifiante, elle est nikodymisante ; si u est nikodymisante, elle est 1-sommante, donc 1-radonifiante si G est réflexif ou dual séparable de Banach ou si E est réflexif ou de dual séparable.

Démonstration :

1) Supposons u 1-radonifiante. Soient d'abord Ω un espace localement compact et μ une mesure ≥ 0 <u>finie</u> sur Ω ; on pourra sans inconvénient

la supposer de masse 1. Soit ν une mesure vectorielle $C_{comp}(\Omega) \to E$, scalairement de base μ , et telle en outre que, pour tout $\xi \in E'$, $\xi_o \nu$ soit produit de μ par une fonction, non seulement localement μ -intégrable , mais même globalement μ -intégrable. Alors $^t\nu: E' \to M(\Omega)$ envoie E', non seulement dans $L^1_{loc}(\Omega,\mu)$, mais même dans $L^1(\Omega,\mu)$; continue de E' dans L^1_{loc} , elle est forcément continue de E' dans L^1 par le théorème du graphe fermé. Alors $f={}^t\nu$ est une fonction aléatoire linéaire de type 1. Puisque u est 1-radonifiante, tu est 1-décomposante, donc f_o tu est décomposée par une fonction $g \in L^1(\Omega,\mu;G)$; les mesures de Radon $g\mu$ et $u_o \nu: \Omega \to G$ sont scalairement égales, donc égales. Cela prouve non seulement que $u_o \nu$ est de base u, mais qu'elle est produit de u par une fonction u intégrable.

Soit maintenant $\vee:\Omega\to E$ une mesure vectorielle, de base μ , mesure ≥ 0 arbitraire sur Ω . Soit Ω_i un ouvert relativement compact de Ω ; la mesure induite μ_{Ω_i} est finie. Il résulte de ce qui précède que $u\circ V_{\Omega_1}$ est produit de u_{Ω_1} par une fonction g_1 . u_{Ω_1} -intégrable. Considérons alors le recouvrement $(\Omega_i)_{i\in I}$ de Ω par ses ouverts relativement compacts; pour chaque i, on a une fonction $g_i:\Omega_i\to G$, u_{Ω_i} -intégrable; dans $\Omega_i\cap \Omega_j$, g_1 et g_j sont $\mu_{\Omega_i}\cap \Omega_j$ -presque partout égales. On sait qu'alors il existe une application $g:\Omega\to G$, qui sur tout Ω_1 est u_{Ω_1} -presque partout égale à $g_i^{(\bullet)}$, donc localement u-intégrable, et répond à la question puisque $(g_i)_{\Omega_i}=g_i\mu_{\Omega_i}$.

^(*)Voir Bourbaki, démonstration de Lebesgue - Nikodym, Intégration, chap. V, p. 52.

Elle est scalairement de base μ , si μ est n'importe quelle mesure ≥ 0 (finie puisque \overline{N} est compact) sur \overline{N} contenant des masses en tous les entiers, car $<\nu$, $\xi>=\sum\limits_{\mathbf{n}\in \mathbf{N}}\mathbf{c}_{\mathbf{n}}<\mathbf{a}_{\mathbf{n}}$, $\xi>\delta_{\left(\mathbf{n}\right)}$, avec $\sum\limits_{\mathbf{n}\in \mathbf{N}}\left|\mathbf{c}_{\mathbf{n}}<\mathbf{a}_{\mathbf{n}}$, $\xi>\left|\leq \left\|\mathbf{c}\right\|_{\mathbf{0}}\left\|\mathbf{a}\right\|_{\mathbf{1}}^{*}$.

Prenons, par exemple, $\mu = \sum_{n \in \mathbb{N}} \frac{1}{2^{n+1}} \delta_{(n)}$. Puisque u est nikodymisante, la mesure image $\sum_{n \in \mathbb{N}} c_n u(a_n) \delta_{(n)}$ doit être de base μ , donc produit de μ par une fonction intégrable (\overline{N} compact !). Donc

$$\sum_{\mathbf{n}\in\mathbb{N}} |\mathbf{c}_{\mathbf{n}}| \|\mathbf{u}(\mathbf{a}_{\mathbf{n}})\| 2^{\mathbf{n}+1} \frac{1}{2^{\mathbf{n}+1}} < +\infty$$

Ainsi la suite $(\|u(a_n)\|)_{n\in\mathbb{N}}$ devient convergente après multiplication par n'importe quelle suite ≥ 0 tendant vers 0, donc elle est convergente, et u est bien 1-sommante.

Ensuite, si E ou G vérifie les conditions indiquées dans l'énoncé, on sait que u, 1-sommante, est 1-radonifiante (exposé XII, §3, cas 3).