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STABILITY OF EXTREME VALUE FOR
A MULTIDIMENSIONAL SAMPLE
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Abstract.
Let (Yy,...,Y,) be arandom sample from a continuous distribution function F

over R+ If Y:‘1 denotes the highest value of this sample, then the highest value of

F(Y{),....F(Y,) is F(Y;). This simple remark suggests a natural definition for the
highest value X; =(R:,9:l) of a random sample (X,,..., X)) in Rk, based upon

the polar representation (R{,0,)....,(R,,8,) of these variables. Precisely, if Fy is the
conditional distribution function of R given © =0, we define the maximum value of
the sample as the observation X* which maximizes Fe(R). This definition is attractive

because it is not based only on a classical distance in Rk, but, which seems more
relevant, on the probability to be at a certain distance from the origin. This notion allows
us to study the stability of such extreme values. Of course, a lot of multidimensional
distributions do not have stability properties. So we need a weaker notion than stability to
go on. The idea is to substitute a variable X¢ = (¢p(R),8) for each observation
X = (R,0), where @ is a suitable function, in order to obtain stability properties for
the variable X@. It consists in considering a new set of points
Eﬁ’ = {(P(R),01),....(9(R)),©))} instead of the initial sample. As shown in this paper,

the function ¢ must be sufficiently concave.

Ke);-words: sample, isobar , extreme value, stability, relative stability, asymptotic
localization.
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I. INTRODUCTION

Nowadays, theory of extreme values concerns often non identically distributed
data, dependent data ([Haiman, Puri, 1990],[Haiman, Puri]) or multivariate independent
identically distributed data ([Davis, Mulrow, Resnick, 1987]). However recent papers
about outliers ([Gather, Rauhut, 1990],[Green, 1976],[Mathar, 1989],[Munoz-Garcia,
Moreno-Rebollo, Pascual-Acosta, 1990]), give a new interest to the old notion of
stability ([Geffroy, 1958,1959],[Geffroy, 1961],[Gnedenko, 1943]). We propose here a
new definition for the highest value of a multidimensional sample and for the stability of
this highest value. It is also possible to define outlier-resistant or outlier-prone
distributions as it has been done for R ¥-valued variables in [Gather, Rauhut, 1990],
[Green, 1976]. However, in the first step of this study, we examine the properties of
such extreme values : in the present paper we focus our attention on the stability of the
extreme value of a sample. ]

In this paper we consider random variables defined on a probability space
(Q,C,P) and with values in the Euclidian space Rk.

For every x in RW\{0} we define a pair (llxll,"”:—“) =(r,0) in R+* xSk-1, where

LIt is the Euclidean norm. The unit sphere Sk-1 in Rk is endowed with the induced
topology of Rk,

For each random variable X = (R,©), we assume that the distribution of ©, and
for all 6, the distribution of R given © = 6, have a continuous density. We name Fy

the continuous conditional distribution function of R, given © =0, and Fbl its

generalized inverse. For each 0 <u <1, we name u-level isobar - from the distribution
of R given © =0 - the mapping 6 ~— F'el(u). We suppose that this mapping is

continuous and strictly positive ; the surface which equationis p = Fél(u) is also named

an isobar.
Let E, =(X{,...,X,) be a sample of independent random variables with the

same distribution as X. Foreach 1<k <n there is almost surely an unique u,-level
isobar from the distribution of R given © =0 which contains (R,,6,). We define the
maximum value in E, as the point X; = (R;,G;) which belongs to the upper level

isobar, i.e. the isobar which level is max u, . Obviously, we are not able to find this
1<k<n

maximum value of a sample from an unknown distribution, whereas it can be done with
the farest point from the origin or with the fictitious point having the largest coordinates
of the sample. However this kind of extreme value and, more generally, the extreme
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values obtained by ordering the sample according to the levels, hold more information on
the conditional distributions tails and allow a statistic survey of the isobars.
In section II, we specify some properties of the distribution of the pair (R;,G;).

In section IIT and IV, we define the notions of stability in probability and almost sure
stability of the maximum value. Roughly the idea lying back of the definition is the

tendency of X; to be near a given surface. More precisely, X; is called stable in

probability (or almost surely) if there is a sequence (I';) of surfaces, which equations are
p = g,(8) , such that R: - gn(G:) — 0 in probability (or almost surely). For a class of

distributions we precise, this phenomenon occurs and (g,) turns out to be a sequence of

isobars. This expands the notion of stability studied by J. Geffroy in [Geffroy,
1958,1959]. Actually we use several of his methods. Examples are given in section V. In
section VI, the assumptions we have done throughout this paper are discussed, especially
some regularity conditions for the isobars. At length, in section VII we give some
properties and examples about ¢-stability.

IT - PRELIMINARIES

In this section we give some results about the conditional distribution of R;
given 9; = 0. They will be used in the sequel of this paper.
Let (X;,....X,) be a sample with polar representation (R;,8),...,(R,8,). For

each 1<i<n, put:
n
(1 E; = (FoR) = max Fg,(R)).

For all 6 andforall 0 <t<1, PFg(R) < t/6 =0) = Fyg(F 1(t)) =1t, hence
{Fe (R ), j = 1,...,n} is a sample from the uniform distribution over [0,1]. Now the
maximum value of the sample is almost surely defined as the point X which polar

representation is :
®,6p) =2 | R, O)lg, .
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PROPERTY 1.- a) 9: and © are identically distributed.

b) Any u-level isobar from the distribution of R given © is also
the un-level isobar from the distribution of R; given 6; .

] a) Since P(Fg(R) < t/© =0) =t, foreach 1<j<n Gj and Fej(Rj) are
independent. It follows easily that {Gj ;j=1..,n} and {Fej(Rj) ;j=1,..,n} are

independent.
Thus, foreach 1<j<n, Gj and lEj are independent. Consequently, for any

Borel set C of Sk-1:

n : n
N *
@ P@©, € C) = P(El 8l € C) = Ei P@©;e C;E)
n
= Zl P(®,€ C)P(E)=P@O ¢ O)
1=
b)Let p = Fél(u) be an u-level isobar from the distribution of R given ©=0

and let B be the event {R; < Fé;(u)}. Since B = ﬁ'i'=1 {Fei(Ri) <u), B is

independent of {®j, j=1,...,n}. Thus for any Borel set C of Sk-1(2) implies :

n n
P®, e C;B) EIP(@ie C;E;;B) = Eip(eie C) P(E;B)

P(® e C) P(B)

Thus 9; and 1p are independent ; therefore,

n
3) PR, <Fgb(w)/®, =6) = P(B) = I pEg,R) <w) =un .

*
COROLLARY 1.- Let F; g be the conditional distribution fonction of R, given

* *
®,=6. Forany ©, F,q=Fg.
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1 Let S be the support of the distribution of X. Let x = (r,8) be a point which distance
from the nearest isobar is strictly positive. Taking account of the isobar's continuity,
there exists an open ball B(x,e) which distance from the nearest isobar is also strictly
positive. Therefore the distribution of X assigns a null mass to B(x,€). But the support
S is the set of all points z in RX such that P(V) >0 for each open set V containing z ;
hence x is not a point of S. Thus the distance between any point of S and an isobar is
zero. In the sequel of the proof, we shall consider as an isobar any (uniform) limit of a
decreasing sequence of isobars. S is then the union of all the isobars from the
distribution of R given © = 0. For any open set 0 in Sk-1 and for any pair (g,h) of
isobars such that g <h, define

D(0,gh)={x=(,0)e S:0€ 0, g6) <r<h(9)}.

Clearly the class U of these sets is a w-system [Billingsley, 1968].

Moreover for all x in § and for all € >0 thereisaset D in U, with diameter less
than €, such that x € DcD (IS denotes the interior of D for the induced topology on
S). By [Billingsley, 1968] page 14, U is a determining class for the separable metric

space S.
Let X = (R,8) be a R*-valued random variable such that © and © are

identically distributed and such that the distribution function of R given © =0 is Fg. It

suffices now to show that X and X* are identically distributed in order to obtain the

corollary 1.
This follows immediatly from (3), from the following equation :

@ P(R < g(©)/© = 6) = Fy(g(6)) =u" ,

and from the fact U is a determining class.
The previous results state that both the distribution of R given © and the

distribution of R; given 6: have the same set of isobars. Hence we will deal only with

the formers. In the sequel any u-level isobar from the distribution of R given © is

labelled as u-level isobar.
We assume in the remainder of this paper that for all 6 the mapping Fy is

strictly increasing and thus bijective. Fix a point 8, in Sk-1 and provide the axis (08;)

—
with the unit vector 08, . For every point w on the positive half axis 061+ , there is an
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unique isobar containing w, which level is denoted by u(w). Let p =g(0,w) be the
equation of this u(w)-level isobar (note that g(8,,w) = w). Moreover the mapping
w ~> u(w) from R+* into ]0,1[ is increasing and bijective. The following condition

(H) will be used in most theorems.

H) there exists 0 <@, <B; <+ o such that forall 8 in Sk-1
. )
and forall w>0: 0y < 5E @,w) <B,
An immediate consequence is given by the next property :

PROPERTY 2.- For all € >0, there exists M >0, and for all w > 0, there exists
two isobars h&(@,w) and h&(0,w) such that for every O :

(5) g(6,w)—e< h&O,w) < gO,w) —n <g®O,w)+1 <h&(O,w) <gOw) +£
(we lay stress on the factthat M does not depend upon w).

1 By the mean value theorem, we obtain :

go,w) + La,;

< gO.w+2) < gOw) + 4B, if £>0
and gO,w) + £B; < gOw+ L) <

go.w) + Loy if £<0

It suffices to choose £ = £ (resp. £ = -¢/B,) and to put
1

©6) n=eo,; /B,
)] h&®,w) = g(0,w +e/B;)
®) he@,w) = g(0,w — &/B).

REMARK 1.- The level u(w +&/B;) (resp. u(w —¢€/B,)) of h&(8,w) (resp. of
R€(0,w)) is a increasing function of w or of u(w).

REMARK 2.- Actually, (5) is a key-property, but H is somewhat easier to handle.
H was suggested to us by an unpublished work of Geffroy on a closely related topic.
Most details can be found in the thesis of Lecoutre [Lecoutre, 1982]. Geffroy considered
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the case of an unimodal density in IR2, decreasing in any direction. The sample was
ordered according to the level-lines of the bivariate density of the isobars. Anyway, (H)
is not necessary as shown in section VL.

REMARK 3.- For a gaussian sample of R2-vectors with covariance matrix (g 2) s

the hypothesis (H) is satisfied. We point out that the isobars are also the level-lines
of the bivariate density. Their polar equations are g(6,w) = w@(0) where

_ 1 rcos?e , sin2¢ Y12
¢(6)—ﬁc( o+ )

III - STABILITY IN PROBABILITY OF X} =(R},8}).

By property 1, the distributions of (Rp;,©;) and of (R,®) do have the same set

of isobars. So we can propose the following definition.

1. DEFINITION 1.- (X3),, is stable in probability if and only if there is a sequence
(8y)y, » of isobars satisfying

©) R'—g (0} 0.

2. PROPOSITION 1.- Suppose that (H) holds. If R%,— g(8%) — 0 (where (g,),
is a sequence of isobars), then for all €>0:

(10) ngnP(R; < g,(0)+&/0; = 0)—>1 and
an m:xP(R; < g,(0)—¢/0, =6)—>0

1 Let € >0; by property 2, thereis 1 >0 and two sequences of isobars (hd), and
(ﬁg)n such that for all ® and for all n,

(12) g @) —& < hi¥O) < g,(0)-1M <g,®) +n< h(®) < g,(O) +€,

It follows that for each fixed 0 :
R: <g @) +M) C (R} <hED)).
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Since RY, — 2,00 50,

(13) Lim PR} <hE@©}) = 1.
N—+o0

Furthermore, if v, n is the level of hnE :

(14) PR} < hEO}) = J‘Sm PR}, < hi()/8] = 0) F«(d0)

= fsk_l Ven Pe:(d9)=v£,n

And for every 0, v, =P(R; < hE(8)/6] = 6) <P(R] <g,(6) +¢&/6] =6).
We deduce (10) from (13) and (14). The proof of (11) can be treated in the same way. 1

This proposition provides a criterion of stability in probability.

3. THEOREM 1.- Let (g,), be a sequence of isobars ;
i) if (H) holds and if R;—gn(G;) 2)0, thenforall 0 <a<b<1:

(15) lm  sup [0 (0) - (F 9l @] =0

n—eo ees -
ii) conversely, if (15) holds, then X; = (R;,}) is stable in probability.

8 Let €>0. In view of the proposition 1, for n large enough, b<P(R;<gn(e)+e/9; =0)
for any ©. Then for every 0, (F’:l,e)'l(b) < g,(0) + € . Similarly,
(F;,e)'l(a) > g,(8) — € for any 0. Thus (15) follows. Conversely, for € > 0,
(F:,e)‘l(l—e) - (F:;,e)'l(e) converges to 0 uniformly. We choose by a diagonal method a
sequence (g,) which decreases to 0, such that :

(Fp ol (1 —&y) — Fp ) l(ey)

converges to 0 uniformly
Putting hy(8) = (F; '1(1 —€,) and g,(8) = (F, ¢)"(g,) , it follows that :

PR} < h (6)1©, =6) = 1-¢, and
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P(R; < g,(0)1©]=6) = ¢, forall®,

so that
P(g,(®)) <R < hy(®))) > 1-2¢, .

This completes the proof of the theorem 1. ]

The corollary 1 gives foreach 0 <y<1: (F;’e)'l(y) = Fgl(y!/m) ([Geffroy,

1958,1959], page 70) and this entails the next theorem. The proof is the same as for
theorem 20 in [Geffroy, 1958, 1959].

4. THEOREM 2.-
If (H) holds andif R: —g,(@0 50, thenforall0< a<p :

(16) Lim sup |FJ(1-o/n) -F(1-Ppm)l =

N—+oe 0eS -1

ii) If (16) holds then (X;';)n is stable in probability.

REMARK 4.-

a) Fgl(1-p/n) and Fgl(1-o/n) are meaningful for B/n <1 and for a/n <1.

b)Forall © and forall 0<t<1,put Gg(t) =Fgl(1-t) (where Gg=1-Fp).
We have just proved that if x* Jn is stablein probabnhty, the "highest" values of the

sample are then stable "about" the isobars ¥,(6) = G‘l(—), for n large enough.

5. Gnedenko's theorem ([Geffroy, 1958,1959],[Gnedenko, 1943]) gives a
simple criterion of stability in Probability in our context.

THEOREM 3.- Suppose that (H) holds, then (X*),, is stable in Probability if and
only if for some 0, :

Gel (x)

xh) =0 ,forall h>0

17
a7 X—oo Gel

(Then (17) is true for all 0).
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Put W# the intersection of 09’1L with the isobar containing X* (see section II).
Forall w>0,

P(WX < w) = PR < g(O%,w)),

where g is the isobar which equation is g(0,w).
Since g is an isobar, P(R} < g(8,w) / ©f =0) does not depend upon 6, then

P(Wk<w) = PR} < g(8,,w) 1©%=8))
=PR}¥< w | ©}F=60,)
= F}, ().
Let W; be the intersection of OGJIr with the isobar containing X, = (R;,0)), (i=1....,n).
For all w >0,

The random variable W} is then the maximum of n R t+-valued i.i.d. variables,
W1,..,W, , having a common distribution function Fg L From Gnedenko's theorem ,

(W}), is stable in Probability if on only if :

Gel(x)

—1 " _0 forall h>0
xoree G, (<B)

Now it suffices to prove that (W), is stable in probability if and only if (X}), is stable

in probability.
Let &> 0, suppose that (W) is stable in Probability ; there exists a sequence

(ay), suchthat W} —a, E) 0 .Let £, be the isobar containing a, and fnﬁ , hﬁ the

isobars satisfying (5) for all 0 :

(19)' £2,(0)-¢ < ﬁ:(e) < 2,0)-n<2,0)<£,(O)+n< h“’:(e) <A2,0)+¢e

(n does not depend upon n).
Then,
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20) {Wx-aj<n)} C {RO)) <R¥ < hX@}} < IRk — £,(OF)I <&}

so that Rf — 2,(0F) -—P> 0

Conversely, if there exists a sequence of isobars (g,), such that
R} —g.(©F) z) 0, note a, the intersection of 06'{' with g . For € > 0, there exists
1 >0 and for all n, there exists Ez and lf1 satisfying (19) for all 0 ; then,

@) {IRE-g@)l<n} C (RSO <R} < K5OH) < (IWF -2l <€}
and this achieves the proof.

IV - ALMOST SURE STABILITY OF (X}), .

1.- DEFINITIONS.
a) DEFINITION 2.- The sequence (X}), is almost surely stable if and only if there

is a sequence (g,),, of isobars such that :

22) RE - g (8F) = 0.

By theorem 2, if (X:) is almost surely stable, ¥,(0) = Gbl (%) is a convenient g, -
sequence. Thus, in the remainder, ¥,,(6) will denote the isobar Gél(%) and T, the setof

points {(p,8);p <7,®}, (n22).
For € >0, put:

(23) It ={(p.0) : p < 14(6) + €}

(24) I’;e ={(p,0) : p <Y,(0) - €}
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Then, (X}¥), isalmost surely stable if and only if for all €>0,
(25) P{Liminf (X¥e I, -9} = 1

2.- As it has been done with Gnedenko's theorem, it is possible to prove the next
theorem, with theorems 49 and 50 of [Geffroy, 1958,1959],

THEOREM 4.- If (H) holds, then (X}), is almost surely stable if there exists 6,
such that

26 Lim
(26) X400 Gel(x) Log Gel(x)

=+o0, forall h>0.

(If (26) is true for ©,, then (26) is true for all ©).

1 As for theorem 3, put W§ the intersection of 09'; with the isobar containing X} . If

(W3), is almost surely stable, then there exists a sequence (a;), such thatforall €>0:
P{Liminf(a,—€ < W* <a +€)} = 1.

Let £, be the isobar containing aj. Forall € >0, there exists (h7), and (R7), two

sequences of isobars and 1 >0 such that for all 8 (19) holds. The inclusions (20) and
(21) show that under (H), (X}),, is almost surely stable if and only if (W), is almost

surely stable. Now, [Geffroy, 1958, 1959] gives (26) as a necessary and sufficient
condition for (W¥), to be almost surely stable, and this achieves the proof.

Let fg denote the density of Fy.

COROLLARY 2.- If (H) is fulfilled, if there exists ©, such that

@7 Lim foy (0 =t
x—+eo Gg;(x) Log ILog G (x)I

then (X¥), is almost surely stable.

For the proof, see [Geffroy, 1958,1959].
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V - EXAMPLES
In this section, we suppose that k =2 and we use the polar coordinates in R2.

1. EXAMPLE 1.- In this first example, Fg(x) = (1 — e-a(®)x™) 1 {x >0} where
m >0 and o is a continuous, strictly positive function over [0,2x] such that
o(0) = o(2m). Then fg(x) = m o) xm-1 e-®x™ 1 {x < 0}.
For a fixed 0, and for every w > 0, the u(w)-level isobar g(6,w) is defined by

ow) =|—1-
g(0,w) [a ©) ) w

So that (H) is fulfilled.
However (27) is satisfied only for m > 1 since

fo(x) _ mao(8) xm-1
Gg(x) Log ILog Gg(X)l = og (ax(8).x™)

Then (X:;)n is almost surely stable for m > 1.

2. EXAMPLE 2. Assume now that m = 1, so that Fg(x) = (1 - e®(®)x) 1 (x > 0}

(exponential distribution). Then the conditions of Gnedenko's theorem are not satisfied
and (X:)n is not almost surely stable. As mentionned in the introduction, this suggests

a weaker notion than stability : the @-stability. Before studying the @-stability we examine
more deeply the condition (H).
VI - SOME REMARKS ABOUT (H).

First, it can be shown that (H) is not a necessary condition for the stability of
(X:)n ; for this, it suffices to consider the next example :

1. EXAMPLE 3.- Suppose that (X,...,X;) is a sample form a common two-
dimensional distribution :



14 M.F. Delcroix et P. Jacob

(28) Fox) = (1- ex*®) 1 (x>0,
where a is continuous over [0,2%], o(0) = a(2x) and o) >0 forall 0.
The isobars containing w > 0 are defined by :

0}
gO.w) = we® |

a) Clearly (H) is not fulfilled for this example. In fact, even (4) does not hold :
Choose a(8) == +0 over [0,x], thenfor 0<O <,

SL<1
n+0

N =

(29)

Suppose (4) true ; then for all € >0 there exists 1 >0 and for all w >0 there exists
v(w) such that forall 0:

(30) W1l:/1|:+0 < W"/"H'e +-n < (V(W))u/n"'e < v1t/”+e +E .

Particularly,
wW<Vv(W<wW+E.

Therefore,

w8 — (v(w))m+e < wm [(1 .,.5_)"/1”9 -1]

and, for w large enough, forall 6>0:
w0 — (v(w))"/m+0 < 'm0 (% _”e__,, 0 (%))
T+

From (29) we deduce :

Lim ( whin+0 (v(w))"/n+e) =0,
n—> +oo

and this contradicts (30).

b) However (X:)n is almost surely stable.
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Let B(6) = 1/0u(8) and suppose that B has a maximum B(0) = B < 1. The equation of

the isobars is :
(31) gl,w) = wPOR ;

since forall 8 BO)<P<1,

32) sup PO _ OB _ 1y v

for w and v large enough, then

(33) sup lg(®,w) — g(®,v) =Ig0,w) - g(O,v)l

Now, put W; the intersection of the isobar containing X: and the positive half-axis

0=0; (W;:)n is almost surely stable because (27) holds.

Hence, forall €>0:

P {Liminf[a,-e<W, <a,+e]} =1,

. .1
with a, =Gy () = (Logn)P.
Let € >0 and denote by 2::(9) (resp. £,(6), 2:(6)) the isobar containing an -€

(resp. a, ,a, +¢€). Since .t;le and .2: are isobars,

1=P {Liminf[a,-e<W, <a,+€]}
=P {Liminf £5(8)) <R] < 25©))

Moreover from (33),
. -g _
lim sgp | 2n 0)— £,0) = ¢

n—» oo

and

lim sup 1256)- £,(8)I=¢.

n—o 6
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Then,
* * DS
Rn - xn(en) - 0

*
and (Xn )p is almost surely stable.

2.- From this example we deduce another sufficient condition for the stability of
&k
(X ), . Suppose there exists 6, such that forall w>0 and forall n>0
n’n 1 .

(X) sgp (g(6,w+n) — g(8,w-m)) = g(6;,w+n) — g@1,w-7).

Let W; be the intersection of the isobar containing X; and the positive half-axis 09; .

As for example 3 we can prove the next theorem.

THEOREM 5. If (K) holds and if (W;':)n is almost surely stable, then (X:)n is

almost surely stable.

3.- Conditions (H) and (K) differ in kind : (H) is an uniformity condition whereas
(K) uses the existency of a direction 0;, which can be interpreted as the less favourable
direction.
Clearly (H) and (K) are not equivalent (see example 3). Of course if
g(8,w) = k(8)w + £(8) , then (H) involves (K). Remark also that under (K) theorem 3 is

still true.

VII - ¢-STABILITY

1.- Let @ be a function over R+, positive, Cl, increasing and bijective. In this
section we consider the variables XY = (9(R,),8,),...X} = (9(R),6)).

Putforall 8, f§ the conditional density of @(R) given © =8 and F§ =1 - G{ the

conditional distribution function of @(R) given © =6.
Forall t >0,

(34) FQ (©) = Fg(¢'1()



STABILITY OF EXTREME VALUE 17

(35) 80 = (¢710)' . fo(e 1)

Put x";* = (P(Ry))*,©%) the maximum value of (X%,....X}) ; then,

X = (oRY).0%).

n n
Clearly, if (g,), is a sequence of u-level isobars for the distribution of (R,®), then
(9(gg)), is a sequence of u-level isobars for the distribution of (¢(R),8) and

conversely.
This remark entails a definition which generalizes the definition of relative stability
given by Geffroy in [Geffroy, 1958,1959] and Gnedenko in [Gnedenko, 1943].

DEFINITION 3.- The sequence (X:)n is called @-stable in probability (almost
surely) if there exists a sequence of isobars (g,), (for the distribution of (R,®)) such
that :

* x P
(36) PR )—-9(g,(® ) a—; 0.

REMARK 6.- When ¢(x) = ng (x) = Max(0,Logx), ¢ -stability reduces to relative
stability [Geffroy, 1958,1959], [Gnedenko, 1943], [Green,1976] ; (36) can be written :

R B,

37
©n 2,(0}) as.

2.- All the results of sections IIT and I'V can be used for (x‘l"x“’,...,x‘,':) :

a) It is easily seen that the equation of the isobar containing v >0 on the
half-axis 06 is:

(38) £96,v) = o(g0.9 1))

b) Condition (H) becomes (H)? ; for example, if ¢ = Log, (H)? reduces

to:
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w ag(0,w)

~ ow
H) 0y S_g(e,w_) < B

c) Theorems 3 and 4 can be used with Gg , t‘g , ... instead of Gg » fp-
d) Of course, if (X::)n is stable, stability properties subsit for (X:’*)n if

¢ is a concave function, [Gather and Rauhut, 1990].

3.- EXAMPLES
a) Example 4 : Cauchy's distribution.
Suppose E,, is a sample from a multidimensional distribution :

A(0)

m 1{x>0} ;

2
fo(x) ==
0t T

A is a continuous and positive function.
Then

_2 X
Fg(x) == Arctg (7»(9)) 1 {x>0}.

* .
Since Cauchy’s distribution does not have moment of any order, (Xn)n is not stable

[Geffroy, 1958, 1959].
However, forall 6 and for » large enough,

2 A(0)
Fg(x) ~ l-; ~

Then the conditions of Gnedenko's theorem are satisfied by Gg if and only if :

-1 -
(39) Lm P _ 6 foranl h>0.

x40 @ 1l(x)
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It suffices to choose @(x) = vLog x or ¢(x) = Log Log x which is more concave than

VLog x. Moreover for this two functions, (H?) holds for v large enough. Therefore
*

(Xn)n is ¢-stable in probability. Note that ¢, ,(x) = (Log x)%,

(0 <a < 1) is also a suitable function, but (X:)n is not relatively stable.

b) Example 5 : exponential distribution.
Suppose E, is a sample from a multidimensional distribution :

Fo(x)=(1- e®x) 1 {x>0} ;

« is a continuous and positive function.
Similarly, for an exponential distribution, the condition for ¢ is:

40) Lim (p’l(x-h) - (p'l(x) =-00, forall h>0.
X—> +oo

The functions @(x) =Vx or ¢(x) =Log (x) are suitable and (H)? is also satisfied.

c) Example 6.
More generally, consider Example 1 with 0 <m < 1. Choose ¢(x) =

x12m  then F‘g(x) = (1- e-a(e)x2) 1 {x>0} and (X:*)n is almost surely stable, as

it has been shown in Example 1.

d) Example 7.
Suppose E, is a sample from a multidimensional distribution.

A(0)
Fo) = (1 - Gy 1(x>0)

A and o are continuous and positive functions. (For o(8) = 1, we obtain
asymptotically a Cauchy's distribution). Choose @(x) = vLogx ; then ,

Fg(x) =(1-A0) e*®x%) 1 {x>0)

and Example 1 shows that (X:’*)n is almost surely stable.
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VIII - CONCLUDING REMARKS

In view of the previous results, we are led to consider the geometric aspect of the
stability : in a further paper we plan to describe how the sample set of points lies in a
shape limited by the isobars v, . Geffroy [1958,1959], Fisher [1966] were the first to
deal with this subject in the case of a convex shape (see also [Davis, Mulrow, Resnick,
19871), as for the typical example of a gaussian sample. Using the isobars it is possible
to study the case of a non necessarily convex shape.

Moreover it would be interesting to also examine the statistical aspect of the
problem : for example to give a functional estimate of 7, for an unknown sample.
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