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STABILITY OF EXTREME VALUE FOR 
A MULTIDIMENSIONAL SAMPLE 

Marie-Françoise DELCROIX and Pieme JACOB 
Laboratoire de Statistique et Probabilités (M2) 

Université des Sciences et Techniques de Lille Flandres-Artois 

59655 VILLENEUVE D'ASCQ CEDEX (France) 

Abstract. 
Let (Ylv„,Yn) be a random samplefront a continuous distribution function F 

over E + . If Yfl dénotes îhe highest value ofthis sample, thenthe highest value of 

* 
F(Y1),...,F(Yn) is F(Yn). This simple remark suggests a natural définition for the 

highestvalue Xn = (Rn,©n) of a random sample ( X ^ . . . ^ ) in R k , based upon 

the polar représentation ^ , 0 ^ , . . . , ( 1 ^ , 0 ^ of thèse variables. Precisely, if F e is the 

conditional distribution function of R given 0 = 0, we define the maximum value of 

the sample as the observation X* which maximizes Fg(R). This définition is attractive 

because it is not based only on a classical distance in R k , but, which seems more 

relevant, on the probability to be at a certain distance from the origin. This notion allows 

us to study the stability ofsuch extrême values. Of course, a lot of multidimensional 

distributions do not hâve stability properties. So we need a weaker notion than stability to 

go on. The idea is to substitute a variable Xq> = (<p(R),0) for each observation 

X = (R,0), where <p is a suitable function, in order to obtain stability properties for 

the variable X(p. It consists in considering a new set of points 

E^ = {((p(R1)>91),...,(cp(Rn),0n)} instead ofthe initial sample. As shown in thispaper, 

the function q> must be sufficiently concave. 

Key-words: sample, isobar, extrême value, stability, relative stability, asymptotic 

localization. 
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I. INTRODUCTION 

Nowadays, theory of extrême values concerns often non identically distributed 
data, dépendent data ([Haiman, Puri, 1990],[Haiman, Puri]) or multivariate independent 
identically distributed data ([Davis, Mulrow, Resnick, 1987]). However récent papers 
about outliers ([Gather, Rauhut, 1990],[Green, 1976],[Mathar, 1989],[Munoz-Garcia, 
Moreno-Rebollo, Pascual-Acosta, 1990]), give a new interest to the old notion of 
stability ([Geffroy, 1958,1959],[Geffroy, 1961],[Gnedenko, 1943]). We propose hère a 
new définition for the highest value of a multidimensional sample and for the stability of 
this highest value. It is also possible to define outlier-resistant or outlier-prone 
distributions as it has been done for Ek-valued variables in [Gather, Rauhut, 1990], 
[Green, 1976]. However, in the first step of this study, we examine the properties of 
such extrême values : in the présent paper we focus our attention on the stability of the 
extrême value of a sample. 

In this paper we consider random variables defined on a probability space 
(Q,ClJP) and with values in the Euclidian space IRk. 

Forevery x in R*\{0} we define a pair (llxll,^) = (r,8) in R+* xS*"1, where 

11.11 is the Euclidean norm. The unit sphère Sk_1 in Rk is endowed with the induced 
topologyof Ek . 

For each random variable X = (R,0), we assume that the distribution of 0, and 
for ail 8, the distribution of R given 0 = 6, hâve a continuous density. We name Fe 

the continuous conditional distribution function of R, given 0 = 8, and F^ its 

generalized inverse. For each 0 < u < 1, we name u-level isobar - from the distribution 
of R given 0 = 8 - the mapping 8 —» F"e (u). We suppose that this mapping is 

continuous and strictly positive ; the surface which équation is p = F^ (u) is also named 

an isobar. 
Let En = (Xls...,Xn) be a sample of independent random variables with the 

same distribution as X. For each 1 < k < n there is almost surely an unique uk-level 
isobar from the distribution of R given 0 = 8 which contains (Rk,0k). We define the 

* * * 
maximum value in En as the point Xn = (Rn,0n) which belongs to the upper level 
isobar, i.e. the isobar which level is max uk . Obviously, we are not able to find this 

l<k<n 
maximum value of a sample from an unknown distribution, whereas it can be done with 
the farest point from the origin or with the fictitious point having the largest coordinates 
of the sample. However this kind of extrême value and, more generally, the extrême 



STABILITY OF EXTREME VALUE 3 

values obtained by ordering the sample according to the levels, hold more information on 

the conditional distributions tails and allow a statistic survey of the isobars. 
* * 

In section II, we specify some properties of the distribution of the pair (Rn>0n). 

In section III and IV, we define the notions of stability in probability and almost sure 
stability of the maximum value. Roughly the idea lying back of the définition is the 

* * 
tendency of Xn to be near a given surface. More precisely, Xn is called stable in 

probability (or almost surely) if there is a séquence (rn) of surfaces, which équations are 
* * 

p = gn(8), such that Rn - gn(0n) -> 0 in probability (or almost surely). For a class of 

distributions we précise, this phenomenon occurs and (gn) turns out to be a séquence of 

isobars. This expands the notion of stability studied by J. Geffroy in [Geffroy, 

1958,1959]. Actually we use several of his methods. Examples are given in section V. In 

section VI, the assumptions we hâve done throughout this paper are discussed, especially 

some regularity conditions for the isobars. At length, in section VII we give some 

properties and examples about (p-stability. 

II - PRELIMINARIES 

* 
In this section we give some results about the conditional distribution of Rn 

given 0 n = 8. They will be used in the sequel of this paper. 

Let (Xlv..,Xn) be a sample with polar représentation (R1,6i),...,(Rn,0n). For 

each 1 < i < n, put : 

(1) E-tFeXRj) = maxFe(R j)}. 
1 j=l J 

For aïl 8 and for ail 0 < t < 1, P(Fe(R) < t/0 = 8) = Fe(F"e
1(t)) = t, hence 

{Fe.(Rj). j = l».»»n} is a sample from the uniform distribution over [0,1]. Now the 

maximum value of the sample is almost surely defined as the point Xn which polar 

représentation is : 

<K*b=£"=i(Ri'ei>v 
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* 
PROPERTYI.- a) 0 n and 0 are identically distributed. 

b)Any u-level isobar from the distribution of R given 0 isalso 
* * 

the xxn~level isobar from the distribution of Rn given 0 n . 

i a) Since P(Fe(R) < t/0 = 8) = t, for each l < j < n 0j and Fe.(Rj) are 

independent. It follows easily that {0; ; j = l,...,n} and {Fe.(R:) ; j = 1 n} are 

independent. 
Thus, for each 1 < j < n, 0 : and 1E . are independent. Consequently, for any 

Borel set C of S*"1 : 

(2) P ( 0 > C) = P ( Z 0 i l E e C ) = E P ( 0 i € C;Ei) 
i=l L i=l 

n 
= X P(0f e C) P(Ei) = P(0 e C) 

b) Let p = FQ (U) be an u-level isobar from the distribution of R given 0 = 9 

andlet B be the event {R* < F:i(u)}. Since B = fl" {Fe.(Ri) £ u}, B is 
wn * 1 

independent of {0:, j = l,...,n}. Thus for any Borel set C of Sk_1 (2) implies : 

n n 
P ( 0 * e C ; B ) = X P ( 0 : e C;E: ;B) = E P(©i e C) P(Ei;B) 

n i=l i=l 

= P(0*e C)P(B) 

* 
Thus ©n and 1B are independent ; therefore, 

n 
(3) P(R! < F i ( u ) / ®* = 6) = P(B) = FI P(Fe (R^ <ï u) = U* . 

t»n i=l i 

l 

* * 
COROLLARYL- Let Fn 9 be the conditional distribution fonction of 1^ given 

0* = 8. For any 8, F * Q = F £ . 
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i Let S be the support of the distribution of X. Let x = (r,8) be a point which distance 

from the nearest isobar is strictly positive. Taking account of the isobar's continuity, 

there exists an open bail B(x,e) which distance from the nearest isobar is also strictly 

positive. Therefore the distribution of X assigns a null mass to B(x,e). But the support 

S is the set of ail points z in R k such that P(V) > 0 for each open set V containing z ; 

hence x is not a point of 5. Thus the distance between any point of S and an isobar is 

zéro. In the sequel of the proof, we shall consider as an isobar any (uniform) limit of a 

decreasing séquence of isobars. S is then the union of ail the isobars from the 

distribution of R given 0 = 8. For any open set 0 in S**1 and for any pair (g,h) of 

isobars such that g < h, define 

D(0,g,h) = {x = (r,8) e S : 8 E 0, g(8) < r < h(8)}. 

Clearly the class *Ll of thèse sets is a K-system [Billingsley, 1968]. 
Moreover for ail x in S and for ail e > 0 there is a set D in *U, with diameter less 

o o 

than e, such that x e D C D (D dénotes the interior of D for the induced topology on 

S). By [Billingsley, 1968] page 14, *U is a determining class for the separable metric 

space S. 
Let X = (R,0) be a E*-valued random variable such that 0 and 0 are 

identically distributed and such that the distribution function of R given 0 = 8 is FJJ. It 

suffices now to show that X and X* are identically distributed in order to obtain the 

corollary 1. 

This follows immediady from (3), from the following équation : 

(4) P(R < g(©)/0 = 8) = F£(g(8)) = un , 

and from the fact *U is a determining class. 
The previous results state that both the distribution of R given 0 and the 

distribution of R* given 0 hâve the same set of isobars. Hence we will deal only with 
n ° n 

the formers. In the sequel any u-level isobar from the distribution of R given 0 is 

labelled as u-level isobar. 
We assume in the remainder of this paper that for ail 8 the mapping F e is 

strictly increasing and thus bijective. Fix a point 82 in Sk"! and provide the axis (08^ 

with the unit vector 08! . For every point w on the positive half axis 08j , there is an 
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unique isobar containing w, which level is denoted by u(w). Let p = g(8,w) be the 
équation of this u(w)-level isobar (note that g(8j,w) = w). Moreover the mapping 
w ~-> u(w) from R+* into]0,l[ is increasing and bijective. The following condition 
(H) will be used in most theorems. 

(H) there exists 0 < ax < Pj < + °° such that for ail 8 in Sk*l 

andforall w>0:oc! < | ^ (9,w) < pj 

An immédiate conséquence is given by the next property : 

PROPERTY 2.- For ail e > 0, there exists t\ > 0, and for ail w > 0, there exists 
two isobars he(8,w) and he(8,w) such that for every 8 : 

(5) g(8,w) - e < he(8,w) < g(8,w) - TI < g(8,w) + Ti < h£(8,w) < g(8,w) + e 

(we lay stress on the fact that T| does not dépend upon w). 

i By the mean value theorem, we obtain : 

g(8,w) + Jtax < g(8,w + i ) < g(8,w) + Â$x if i > 0 
and g(8,w) + i p 1 < g(8,w + i ) < g(8,w) + £ax i f i < 0 

£ 
It suffices to choose i = — (resp. Jt = -e/p^ and to put 

Pi 

(6) Ti = ea 1 /p 1 

(7) he(8,w) = gîS.w + e/p!) 

(8) he(8,w) = g(8,w-e/p1). 
i 

REMARK 1.- The level u(w + e/p^ (resp. u(w - e/p^) of he(8,w) (resp. of 

fie(8,w)) is a increasing function of w or of u(w). 

REMARK 2.- Actually, (5) is a key-property, but H is somewhat easier to handle. 
H was suggested to us by an unpublished work of Geffroy on a closely related topic. 
Most détails can be found in the thesis of Lecoutre [Lecoutre, 1982]. Geffroy considered 
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the case of an unimodal density in R2, decreasing in any direction. The sample was 
ordered according to the level-lines of the bivariate density of the isobars. Anyway, (H) 
is not necessary as shown in section VI. 

REMARK 3.- For a gaussian sample of R2-vectors with covariance matrix f 1, 

the hypothesis (H) is satisfied. We point out that the isobars are also the level-lines 
of the bivariate density. Their polar équations are g(6,w) = w<p(8) where 
mfltt 1 fcos20 , sin29 \-l/2 

m - STABILITY IN PROBABILITY OF X* = (R*,0*). 

By property 1, the distributions of (R£,©„) and of (R,0) do hâve the same set 

of isobars. So we can propose the following définition. 

1. DÉFINITION 1.- (XjJ)n is stable in probability if and only if there is a séquence 

(gn)n » of isobars satisfying 

(9) R ^ - g ^ ^ O . 

P 
2. PROPOSITION 1.- Suppose that (H) holds. If R* - gn(©n) -> 0 (where (gn)n 

is a séquence of isobars), thenfor ail e > 0 : 

(10) minP(R£ < gn(8) + e/©* = 8 ) - » l and 
e 

(1D max P(R* < gn(8) - e/Q*n = 8) -> 0 
e 

i Let e > 0 ; by property 2, there is T| > 0 and two séquences of isobars (h^)n and 

(îij;)n such that for ail 8 and for ail n, 

(12) gn(8)-e < fij(9) < gn(8)-Ti <gn(8) + î l< h£(8) < gn(8) + e , 

It follows that for each fixed 8 : 

(R^<g„(e)+Ti) c (R;<hS(e)). 
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Since R£ - gn (0*) ^ 0 , 

(13) I im P(R; < h^(0*)) = 1. 
n—H-*» 

Furthermore, if v£J1 is the level of h£ : 

(14) P(R* < h ^ ) ) = J^ x P(R*n < h^n(8)/©* = 8 ) Pe; (d8) 

=JSk-iv^pe: (de )=v^ 

And for every 8, v £ ^ = P(R*n < ^(8) /©* = 8) < P(R^ < gn(8) + e/©* = 8). 

We deduce (10) from (13) and (14). The proof of (11) can be treated in the same way. i 

This proposition provides a criterion of stability in probability. 

3. THEOREM 1.- Let (gi)n be a séquence of isobars ; 

ï)if (R)holdsandif R*-g n (©n) - > 0 , Xhenforall 0 < a < b < l : 

(15) lim sup [(F;0)-l(b)-(F;9)-l(a)]=O 
n_>00 9€Sk_1 

ii) conversely, if (15) holds, then X* = (R*,©*) is stable in probability. 

i Let e >0. In view of the proposition 1, for n large enough, b<P(R*<gn(8)+e/0* = 8) 

for any 8 . Then for every 8 , ( F * ^ ) " 1 * ) < g n ( 8 ) + e . Similarly, 

(Fn e ^ " 1 ^ > gn<e> " e f o r a n y 9* T h u s <15> f o l l o w s - Conversely, for e > 0, 

(F* e)-i(l-e) - (F* e)
_1(e) converges to 0 uniformly. We choose by a diagonal method a 

séquence (en) which decreases to 0, such that : 

converges to 0 uniformly 
Putting V e ) = ( ¾ . ^ 1 - ¾ ) Bnd g„(6) = (F;9)^(¾). i t foUowsthat: 

P(R; <h„<e)ie;; = e) = 1~*a and 
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P(R; <gn(0)ie; = e) = en for ail e , 

sothat 
P ( g n ( ® ^ X ^ < h n ( © > > 1 - 2 6 » . 

This complètes the proof of the theorem 1. i 

The corollary 1 gives for each 0 < y < 1 : (Fj| ̂ ( y ) = ^(yl,n) ([Geffroy, 

1958,1959], page 70) and this entails the next theorem. The proof is the same as for 

theorem 20 in [Geffroy, 1958, 1959]. 

4. THEOREM 2 . -

i ) / / (H) holdsandif R* - gn(0*) ^ 0 , thenforail0 < a< P : 

(16) Lim sup I F'Ml - o/n) - F ^ l - p/n) I = 0. 

ii) If ( 16) holds then (X*)n is stable in probability. 

REMARK 4 . -

a)F^(l-p/n) and F^l-a/n) are meaningful for p/n<l and for oc/n < 1. 
b) For ail 8 and for ail 0 < t < 1, put G^(0 = FQ (1-0 (where Ge = 1 - Fe). 

We hâve just proved that if (X*)n is stable in probability, the "highest" values of the 

sample are then stable "about" the isobars yn(8) = G"^-), for n large enough. 

5. Gnedenko's theorem ([Geffroy, 1958,1959],[Gnedenko, 1943]) gives a 

simple criterion of stability in Probability in our context. 

THEOREM 3.- Suppose that (H) holds, then (X*)n is stable in Probability if and 

onlyiffor some Qx : 

G9lW 
(17) lim ^—j—rr =0 , for ail h > 0 

x->+oo ^ e ^ x " n ^ 

(Then (17) is truefor ail Q). 
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Put W* the intersection of 06"J" with the isobar containing X* (see section H). 

For ail w > 0 , 

P(W* < w) = P(R*<g(0*,w)), 

where g is the isobar which équation is g(6,w). 
Since g is an isobar, P(R* < g(6,w) / 0 * =8) does not dépend upon 8, then 

P(W*<w) = P(R* < g(8 1 ,w) l0*-8 1 ) 

= P(R*< w I 0^ = 8^ 

= %&)• 

Let W| be the intersection of 06"}" with the isobar containing X^ - (Ri,0i), (i=l,...,n). 

For ail w > 0, 

(18) P(Wi<w) = P C R j ^ w / e ^ e ^ ^ F e ^ w ) . 

The random variable W* is then the maximum of n E+-valued i.i.d. variables, 
W1,..,Wn , having a common distribution function F0 . From Gnedenko's theorem , 

(W*)n is stable in Probability if on only if : 

Oei(x) 
l im ^ / u\ = 0 , for ail h > 0 

x_>+oo GGl(x-h) 

Now it suffices to prove that (W*)n is stable in probability if and only if (X*)n is stable 

in probability. 
Let e > 0, suppose that (W*)n is stable in Probability ; there exists a séquence 

P ~e e 
( a ^ such that W * - a n ->0 .Let Jtn be the isobar containing ^ and hn , hn the 

isobars satisfying (5) for ail 8 : 

(19) in(8) - e < h£(9) < in(8) - TI < in(6) < in(6) + TJ < h^(8) < in(6) + e 

(T| does not dépend upon n). 

Then, 
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(20) {iWJ-aJSTi} C { i f t e ^ R * <î h^(0*)} C {\R*-An(@*)\<e} 

sothat *Z-*n(@t> - ^ ° 

Conversely, if there exists a séquence of isobars (g„)n such that 
P + 

R*-gn(0*) -»0,note a„ the intersection of 001 with gn. For e > 0, there exists 
T] > 0 and for ail n, there exists hjj and hjj satisfying (19) for ail 0 ; then, 

(21) {lR*-gn(0;)l<Ti} C {ĥ (6*)<R* < l#e*)} c f lwj-ajse} 

and this achieves the proof. 

IV - ALMOST SURE STABILITY OF (X£)n . 

1.- DEFINITIONS. 

a) DÉFINITION 2.- The séquence (X*)n is almost surely stable if and only if there 

is a séquence (gn)n of isobars such that : 

(22) R Î - E n C Q S ) ^ 0 -

By theorem 2, if (X*) is almost surely stable, yn(8) = G ' ^ ) is a convenient gn-

sequence. Thus, in the remainder, Yn(8) will dénote the isobar G'B (-) and Tn the set of 

points {(p,8);p<Yn(e)h (n * 2). 
For e > 0, put : 

(23) r^={(p,8):p<Yn(8) + e} 

(24) r - £ ={(p ,e ) :p<Y n (8 ) -e} 
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Then, (X*)n is almost surely stable if and only if for ail e > 0, 

(25) P{Liminf(X*e i j -r" e ) } = 1 

2.- As it has been done with Gnedenko's theorem, it is possible to prove the next 
theorem, with theorems 49 and 50 of [Geffroy, 1958,1959], 

THEOREM 4.- If (H) holds, then (X*)n is almost surely stable if there exists 6j 

such that 
G9l(x-h) 

(26) lim ^ , * ? r - 7 T = + °°» f ° r a 1 1 h>0. 
X _ H ^ G9l(x) Log G6l(x) 

(If (26) istrue for 8l9 then (26) is true for ail 8). 

i As for theorem 3, put W* the intersection of 08* with the isobar containing X* . If 

(W*)n is almost surely stable, then there exists a séquence (a,,),, such that for ail e > 0 : 

P l L i m i n f ^ - e < W* <an + e)} = 1. 

Let i n be the isobar containing an. For ail e > 0, there exists (hjj)n and (1¾ two 

séquences of isobars and T]>0 such that for ail 8 (19) holds. The inclusions (20) and 
(21) show that under (H), (X*)n is almost surely stable if and only if (W*)n is almost 

surely stable. Now, [Geffroy, 1958, 1959] gives (26) as a necessary and sufficient 
condition for (W*)n to be almost surely stable, and this achieves the proof. 

i 

Let fe dénote the density of FQ. 

COROLLARY 2.- If (H) isfulfilled, if there exists Qx such that 

feiW 
( 2 7 ) x^£o Gei(x) Log ILog Gei(x)l " + °° 

then (X*)n is almost surely stable. 

For the proof, see [Geffroy, 1958,1959]. 
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V - EXAMPLES 

In this section, we suppose that k = 2 and we use the polar coordinates in E 2 . 

1. EX AMPLE 1.- In this first example, Fe(x) = (1 - e"a(e)xm) i {x > 0} where 

m > 0 and a is a continuous, strictly positive function over [0,27c] such that 

cc(0) = <x(27t). Then fe(x) = m a(8) x™-l e-<*(G)xm 1 {x < 0}. 

Forafixed Qx and for every w > 0, the u(w)-level isobar g(8,w) isdefinedby 

g(8,w) = — w. 

a(8)J 

Sothat (H) isfulfilled. 
However (27) is satisfïed only for m > 1 since 

fg(x) m a ( 8 ) x m - 1 

Ge(x) Log ILog Ge(x)l " L o g ( t t(6).xm) * 

Then (Xn)n is almost surely stable for m > 1. 

2. EX AMPLE 2. Assume now that m = 1, so that Fô(x) = (1 - e-a(e)x) H {x > 0} 

(exponential distribution). Then the conditions of Gnedenko's theorem are not satisfïed 

and (Xn)n is not almost surely stable. As mentionned in the introduction, this suggests 

a weaker notion than stability : the <p-stability. Before studying the q>-stability we examine 

more deeply the condition (H). 

VI - SOME REMARKS ABOUT (H). 

First, it can be shown that (H) is not a necessary condition for the stability of 

(X )n ; for this, it suffices to consider the next example : 

1. EXAMPLE 3.- Suppose that (Xlt...,Xn) is a sample form a common two-

dimensional distribution : 
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(28) Fô(x) = ( 1 - e - * a ( e ) ) ! { x > 0 } , 

where a is continuous over [0,2TU] , a(0) = OC(2TC) and a(8) > 0 for ail 8. 

The isobars containing w > 0 are defined by : 

q(Q) 

g(8,w) = w«(ô) . 

a) Clearly (H) is not fulfilled for this example. In fact, even (4) does not hold : 
Choose <x(6) = n + 8 over [0,TC], then for 0 < 8 < TC, 

(29) \ < —- < 1 1 ^ n 
7C+8 

Suppose (4) true ; then for ail e > 0 there exists i\ > 0 and for ail w > 0 there exists 
v(w) such that for ail 8 : 

(30) w*fc+e < w /̂Tt+e+T! < (vWf/n+Q < y
n/n+Q + e . 

Particularly, 
w < v(w) < w + e . 

Therefore, 

Ŵ /TC+G _ (V(w))^+Ô < w^+9 [(1 + £)*/*+e _ i] 

and, for w large enough, for ail 8 > 0 ; 

£ n n,l. 
w % e . ( v ( w ) ) % e < w*/*+e (^^L. + 0(±)) 

W 7C+8 w 

From (29) we deduce : 

Lim ( W^K+G - (v(w))*/*+ô) = 0 , 
n-> +oo 

and this contradicts (30). 

b) However (Xn)n is almost surely stable. 
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Let P(8) = l/<x(8) and suppose that P has a maximum P(0) = P < 1. The équation of 

the isobars is : 

(31) g(e,w) = WP(e)/P ; 

since for ail 6 p(0) <. p < 1 , 

(32) suplwP^-vP^l^w-vl 

e 

for w and v large enough, then 

(33) sup lg(8,w) - g(8,v)l = lg(0,w) - g(0,v)l 
e 

Now, put Wn the intersection of the isobar containing Xn and the positive half-axis 

8 = 0 ; (Wn)n is almost surely stable because (27) holds. 

Hence, for ail e > 0 : 
P {Liminf [a n -e<W n <alï + e]} = 1 , 

with ^ = 0^(^) = (Log n)P. 

Let e > 0 and dénote by i"e(8) (resp. ^n(8), ijj(8)) the isobar containing ^- e 

(resp. ^ , ̂  + e). Since i"e and ijj are isobars, 

1=P {Liminf [an-e<W* <an + e]} 

= P {Lim inf f*(en) <Rn< i ^ ) } 

Moreover from (33), 

and 

lim sup I i"e(8) - in(8)l = e 
n->oo G n 

lim sup l i ^e ) - i n (8 ) l = e 
n-*« e n 
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Then, 
* * Ps-

and (X )n is almost surely stable. 

2.- From this example we deduce another suffïcient condition for the stability of 
(X )n . Suppose there exists 8! such that for ail w > 0 and for ail T|>0 

(K) sup (g(8,w+7i) - g(8,w-Ti)) = gO^w+lD-gOl.w-Ti). 
e 

Let W be the intersection of the isobar containing Xfl and the positive half-axis OOj . 

As for example 3 we can prove the next theorem. 

* * 
THEOREM 5. / / (K) holds and if (W )n is almost surely stable, then (Xn)n is 

almost surely stable. 

3.- Conditions (H) and (K) differ in kind : (H) is an uniformity condition whereas 
(K) uses the existency of a direction 8^ which can be interpreted as the less favourable 

direction. 
Clearly (H) and (K) are not équivalent (see example 3). Of course if 

g(8,w) = k(8)w + i (8 ) , then (H) involves (K). Remark also that under (K) theorem 3 is 

still true. 

VH - cp-STABILITY 

l.-Let cp be a function over E + , positive, C1, increasing and bijective. In this 

section we consider the variables Xj* = ( ¢ ^ ) , 0 ^ , . . , ^ = (¢(1^),0^. 

Put for ail 8, f£ the conditional density of cp(R) given 0 = 8 and F^ = 1 - G^ the 

conditional distribution function of (p(R) given 0 = 8. 

For ail t >0, 

(34) F£(t) = Fe((p-l(t)) 
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(35) fj(t) = (cp-i(t))'. f9(cp-1(0). 

Put X** = ((cp(Rn))*,©ï;) the maximum value of (X\ X^) ; then, 

Xj* = (cp(R*),0*). 

Clearly, if (gn)n is a séquence of u-level isobars for the distribution of (R,0), then 
(<p(gn))n is a séquence of u-level isobars for the distribution of (<p(R),0) and 

conversely. 
This remark entails a définition which generalizes the définition of relative stability 

given by Geffroy in [Geffroy, 1958,1959] and Gnedenko in [Gnedenko, 1943]. 

DÉFINITION 3.- The séquence (X )n is called (p-stable in probability (almost 

surely) if there exists a séquence of isobars (gn)n (for the distribution of (R,0)) such 

that: 

(36) cp(R*)-<p(gn(0*)) -* 0. 
a.s. 

REMARJC 6.- When <p(x) = Log (x) = Max(0,Logx), <p -stability reduces to relative 

stability [Geffroy, 1958,1959], [Gnedenko, 1943], [Green,1976] ; (36) can be written : 

(37) -&- - ^ 1 

2.- AU the results of sections ni and IV can be used for (X^XÎ£f...,X^) : 

a) It is easily seen that the équation of the isobar containing v > 0 on the 

half-axis 0Ql is : 

(38) gne,v) = (p(g(6,<p-1(v))) 

b) Condition (H) becomes (H)<P ; for example, if <p = Log, (H)<P reduces 

to: 
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9g(9,w) 

(H) a, < ^ — < p, 
1 g(6,w) H l 

c) Theorems 3 and 4 can be used with G^, f£ ,... instead of G^ , f0. 

* <p* 
d)Of course, if (X )n is stable, stability properties subsit for (X )n if 

(p is a concave function, [Gather and Rauhut, 1990]. 

3 . - EXAMPLES 

a) Example 4 : Cauchy's distribution. 
Suppose En is a sample from a multidimensional distribution : 

fQ(x) = - ,Mel l { x > 0 } ; 0 7C x2 + X2(6) 

X is a continuous and positive function. 

Then 

Fe(x) = ?-Arctg ( -7- ) M x > 0 ) . 
K X(0) 

* 
Since Cauchy's distribution does not hâve moment of any order, (Xn)n is not stable 

[Geffroy, 1958, 19591. 
However, for ail 9 and for x large enough, 

Fe(x) « 1 - - - 3 - -
je x 

Then the conditions of Gnedenko's theorem are satisfïed by G? if and only if : 

(39) lim ^ (x"h) = 0> f o r a l l h > 0 
X-> +oo (P_1(X) 
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It suffices to choose cp(x) = VLogx or cp(x) = Log Log x which is more concave than 

VLogx. Moreover for this two functions, (H*P) holds for v large enough. Therefore 

(X ) n is <p-stable in probability. Note that 9 a ( x ) = (Log x ) a , 

(0 < a < 1) is also a suitable function, but (X )n is not relatively stable. 

b) Example 5 : exponential distribution. 
Suppose En is a sample from a multidimensional distribution : 

Fe(x) = ( l - e-a(e)x) 1 {x>0} ; 

a is a continuous and positive function. 
Similarly, for an exponential distribution, the condition for q> is : 

(40) lim (p-1(x-h)-<p"1(x) = -«», for ail h > 0 . 
x-> +«° 

>\ 
The functions cp(x) = Vx or <p(x) = Log (x) are suitable and (H)<P is also satisfïed. 

c) Example 6. 
More generally, consider Example 1 with 0 < m < 1. Choose (p(x) = 

xl/2ms ^en F^(x) = (1 -e"0*9)*2) i {x>0} and (X9*) is almost surely stable, as 

it has been shown in Example 1. 

d) Example 7. 
Suppose En is a sample from a multidimensional distribution. 

X and a are continuous and positive functions. (For a (6) = 1, we obtain 

asymptotically a Cauchy's distribution). Choose <p(x) = VLogx ; then , 

F%) = (1-^(9) e-a(e)x2) i {x>0} 
9 

and Example 1 shows that (X ) is almost surely stable. 
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V i n - CONCLUDING REMARKS 

In view of the previous results, we are led to consider the géométrie aspect of the 
stability : in a further paper we plan to describe how the sample set of points lies in a 
shape limited by the isobars yn . Geffroy [1958,19591, Fisher [1966] were the first to 

deal with this subject in the case of a convex shape (see also [Davis, Mulrow, Resnick, 
19871), as for the typical example of a gaussian sample. Using the isobars it is possible 
to study the case of a non necessarily convex shape. 

Moreover it would be interesting to also examine the statistical aspect of the 
problem : for example to give a functional estimate of yn for an unknown sample. 
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