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Résumé 

Dans cet exposé je discute quelques difficultés rencontrées dans l'analyse de 

signaux biomédicaux d'un point de vue statistique (en contraste avec le point de vue 

ingénieur). 

Une difficulté typique dans beaucoup d'applications est le choix d'un bon modèle 

comme base pour l'analyse de données. Souvent, les méthodes nonparamétriques offrent 

une alternative attractive parce qu'elles n'exigent pas un modèle choisi a priori. Une 

discussion détaillée est consacrée aux estimateurs à noyau pour la régression et la 

différentiation. En outre, une difficulté rencontrée souvent pour les signaux biomédicaux 

est que les résidus ne sont pas indépendants mais corrélês. Par conséquent, beaucoup de 

méthodes classiques de la statistique - des tests en particulier - ne peuvent être appliqués 

naïvement dans de telles situations. 
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Abstract

In this paper 1 deal with some difficulties that we encountered when analyzing

biomédical signais from a statistical point ofview (as contrasted to an engineering point of

view). A typical difficulty in various contexts is the choice ofan appropriate modelfor the

data analysis. Often, nonparametric methods of analysis offer an attractive alternative

since they do not rely on an a priori model. Kernel estimators will be discussed in some

détail for the purpose of signal extraction. A second difficulty is that residuals of

biomédical signais do usually not fulfill the requirement of independence but are

correlated. Therefore, many classical methods ofstatistics, in particular tests, cannot be

applied to suc h signais naively.

Keywords : Nonparametric régression, kernel estimator,

modeling, signal analysis.

1. Introduction

In the analysis of biomédical signais an overlap of statistical and engineering

methods is found, the latter being much more frequently applied. In my view, statistics

should play a more important part, firstly, by introducing more rigid arguments when

comparing différent approaches and, secondly, by better accounting for interindividual

variability. In this paper I will focus on the following two areas.

The choice of model is a crucial step in a régression and in a time séries

situation. In particular in a biomédical context, this step may pose serious

problems. Nonparametric methods can in thèse circumstances become an

attractive alternative.

The analysis of biomédical signais can usually be formalized as a

régression problem with correlated residuals with unknown covariance

structure. The coloured noise prohibits the naive use of classical methods

of inference. This has often been overlooked in the engineering literature,

e.g. by applying y? or Kolmogorov-Smirnov-tests as goodness-of-fit

tests to correlated data.
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The first problem will be illustrated and discussed in the régression and the time

séries context. The difficultés of parametric modeling in régression can be elucidated in a

classical application such as analysis of human growth (Gasser et al , 1984), where a

nonparametric technique via kernel estimation describes the data better (Gasser et al.,

1985a). Therefore, récent progress on kernel estimation is reviewed, including the data-

driven choice of the smoothing parameter and an intégration of various well-known

smoothers under the heading of design-adaptive kernel estimators. The automatic choice

of the smoothing parameter shows the importance of the second problem since ail

methods proposed rely on independent residuals. The importance and difficulty of the

model choice is also illustrated for electroencephalogram (EEG) data, where familiar

parametric modeis (such as autoregression) failed to adequately describe the EEG of a

sample of subjects (Steinberg et al., 1985).

The second problem (already discussed in the context of the choice of smoothing

parameter) anses in many différent applications. I will discuss one, i.e. the analysis of

trial-to-trial variability of brain signais evoked by repeated stimuli. Again, the application

of standard tests to test some psychophysiological hypothèses is not feasible, due to the

corrélation of residuals. However, the prior application of a prewhitening filter opens

access to rigorous tests (Môcks et al., 1984), and this procédure can be justified in a

maximum-likelihood framework (Pham Dinh Tuan et al., 1987).

2. Régression Analysis

Let us assume that data Xi = X(ti) has been recorded which can be modelled as a
signal s corrupted by additive noise e : (with E(ei) = 0)

X i = s ( t i ) + ei ( i = l n)

The temporary assumption of independent, identically distributed residuals (with

variance a2) makes arguments simpler. The more difficult case of couloured noise will be

discussed at the end of this section. When s(t) belongs to some parametric family of

functions F(t ; ai,...,ak) (ai,...,ak = régression parameters) and when this parametric

family is a priori known, parametric régression is the method of choice. However, even a

minor misspecification of the parametric model may prevent us from describing
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adequately the structure of the régression data. This is illustrated for human height growth

in figure. 1, where the same boy has been measured from birth to adulthood. Besides a

well-known and accentuated pubertal spurt (velocity peak at about âge 14), a further spurt

at about âge 7 can be clearly seen in the data for this child. The nonparametric fit

quantifies this phenomenon nicely, whereas it is absent in the parametric fit since it is not

part of the model (Preece-Baines model, the best fitting so far for growth data). However,

this lack of structure leads also to bias in the pubertal period which can be seen in this

child, and which has proved to be systematic (Gasser et al., 1984).
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Figure 1.

Velocity (above) and accélération (below) for height growth of a boy from

birth to twenty years. Divided différences from data (A), kernel estimators

(solid line), parametric fitting of Preece-Baines model (dotted line).
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This altogether has spurred an interest in nonparametric régression methods, such

as kernel estimators. As in the case of growth data, it is often of interest to estimate

derivatives ŝ v) of s as well. The définition of the estimator sv follows Gasser an

Millier, 1984 :

= 0,l,2

1 f
where : g{ = I W

f l

I v
t- u du

The kernel function Wv and the bandwidth or smoothing parameter b(t) need to be

specified. Recommendations for this choice will be given below. First, I want to disais s

why to décide for kernel estimators, and not for some other nonparametric technique,

such as cubic smoothing splines or k-nearest neighbour estimators. For a constant

bandwidth b(t) = b one obtains the ordinary fixed-width kernel estimator. Assuming an

equidistant régression design most nonparametric régression estimators can also be

represented as a fixed width kernel estimator. For design points {ti,...,tn}, distributed

according to some density f(t), a wide class of non parametric estimators can be

represented as kernel estimators when defining a systematically varying bandwidth as b(t)

= b 0 . f(t)"a (thèse arguments are asysmptotic). This incorporâtes in particular ordinary

kernel estimators (oc = 0), cubic, smoothing splines (a = 1/4 ; Silverman, 1984) and k-

nearest-neighbour estimators (a = 1). Such a représentation also enables a comparison

of the merits of the différent methods in terms of mean square (MSE) : it turns out that

none is uniformly optimal, whereas the ordinary kernel estimator (a = 0) is minimax

optimal. A more detailed exposition of this topic may be found in Jennen-Steinmetz and

Gasser (1988). For a more gênerai discussion of nonparametric curve estimation, the

reader may consult the book by Bosq and Lecoutre (1987).

For ease of présentation (and in view of theoretical results), I will concentrate on
fixed bandwidth b(t) = b. A kernel of order k for estimating a derivative of order v (v = 0,
1, 2,...) has to satisfy the following moment conditions with k = v + j (j = 2, 4,...) :
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/ , 

î 
vu Wv(x)xmb(x) = 0 m = 0 v-l,v+l k-1 

= (-l)v v! m = v 

= (3k * 0 m = k 

Asymptotic expressions for bias and variance are as follows : 

Bias (sv (t)) ~ — bk"v s(k) (t) j Wv (x) xkdx 

2 

V a r ( s v ( t ) ) ~ - ? — | W*(x)dx 
nb2v+1 / • 

Thèse formulae lead to the asymptotic integrated mean square error (IMSE), which 

in turn gives the rate of convergence as O ( n - 2 ^ ) ^ ) . The IMSE can be interpreted as a 

functional of Wv. When minimizing it with respect to Wv, optimal kernels can be derived 

(see figure 2 and Gasser et al., 1985b). Optimal kernels of order k are polynomials of 

order k for which a neat représentation could be derived in terms of Legendre 

polynomials. Appropriate adjustments need to be made for the boundary. 

A further - and crucial - parameter which needs to be specified is the bandwidth b. 

The optimal choice dépends on the signal itself and on the variance of e and is thus 

inaccessible. A subjective choice, however, has various drawbacks. This has led to a 

number of proposais for determining an estimate of the optimal bandwidth in a data-

adaptive way (see e.g. the paper by Hardie et al., 1988 and their références). The most 

popular one is cross-validation, in which an estimator of IMSE is minimized with respect 

to b, based on one-leave-out residuals. We hâve worked out a différent method which 

turned out to be flexible, efficient and fast (Gasser et al., 1988). It consists of estimating 

the asymptotically optimal bandwidth 

1 

basy = 

2 \(2k+l) 
1 a 
n /• 

• ^ 0 

s (Vdt 
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Figure 2.

Kernel of order (v + 2) [above] and of order (v + 4) [below]; v = 0, 1 ,2 from

left to right ; dotted line at zéro.

firstly by estimating a2 (following Gasser et al. 1986 a) and secondly by estimating

x s (t) dt in an itérative algorithm.

Figure 3 shows in a simulated example (data = sine-wave plus Gaussian noise) that the

method works well down to small sample size (hère n = 25). Depicted are the kernel

estimâtes when using the true optimal banwidth and the estimated bandwidth (the latter is

typical since it had médian mean square error in 401 simulated replicates).
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Figure 3. 

Simulated data (*) with kernel estimate using truly optimal bandwidth (dotted 

line) or estimated optimal bandwidth (solid line). 

What happens when the assumption of i.i.d. residuals is not fulfïlled ? The 

violation of an invariant distribution (in particular of a constant variance) does not matter 

so much, but lack of independence does, and many biomédical signais do hâve coloured 

noise. Practically important is, that none of the methods for estimating the optimal 

bandwidth works for correlated errors (Hart, 1987). Regarding theory, the asymptotic 

expression for the bias of the kernel estimator remains unchanged, but the variance is 

changing (Gasser et al., 1986 b). In fact, the estimator is no longer consistent (Hart and 

Wehrly, 1986). Despite of thèse problems, kernel estimators proved to be a valuable tool 

for analyzing biomédical signais with correlated noise. 

Figure 4 provides an example of a smoothed pH-curve (24 hour intragastric recording), 

leading to about 17 000 points, where parametric modeling is neither possible nor of 

interest. On the other hand kernel estimators provide the information of interest to 

gastroenterologists : a quantification of the pH-effect of meals and drugs (via derivatives) 

and an assessment of the pattern of pH-changes. 
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Figure 4.

Intragastric 24 h pH-recording of a healthy subject (dotted line) and kernel

estimate (solid line). Vertical Unes indicate the time of meals.

3. Electroencephalogram Time Séries

The EEG records electrical brain activity from various (typicaUy 4 to 20) locations

on the head. Since the sampling rate is about 100 Hz, one minute of recording leads up to

120 000 data points. Any method to be considered has thus to be computationally fast.

The basic assumption which is usually made is that the EEG can be modelled as a

stationary vector process. Empirical studies show that stationarity holds to a good

approximation for periods up to 40 seconds. The process is in most cases not too far from

Gaussian so that the bulk of information about the process is contained in the spectrum /

cross-spectrum matrix.
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As in régression, a parametric model-oriented approach of time séries analysis is
in many respects attractive, and it has, therefore, attracted a lot of attention.
Au tore grès si ve (AR) modeling consists in fitting a linear p-th order scheme to the data,
driven by white noise Et :

k=0

If driven by a moving average of Et » an autoregressive-moving average process would

resuit. It should be noted that the parameters (aj^k themselves are difficult to interprète

in an EEG context ; however, Zetterberg (1969) has proposed a transformation to

détermine more meaningful spectral parameters. The order p plays a rôle similar to

bandwidth in régression, and différent rules hâve been suggested to détermine the order

from the data. In a comparison for EEG séries, consistent rules (Hannan and Quinn,

1979) proved to be superior for data analysis (Steinberg et al., 1985) compared to popular

inconsistent rules (Akaike, 1969). The introduction of AR-fitting to sélective frequency

bands brought considérable advantages. However, despite thèse refinements, empirical

results based on AR-modeling remained somewhat disappointing compared to a

nonparametric approach. Thèse empirical results refer to a comparison with broad band

power (see below) in a study of retest reliability for repeated recordings, in a further study

of developmental change in school-age children and a third one, trying to associate IQ

with EEG parameters. In ail three studies, broad band power brought sharper results

compared to transformed AR-parameters (based on sélective frequency range and with

choice of order optimized). Nonparametric spectrum estimation consists in smoothing the

periodogram, essentially also kernel estimation (Brillinger, 1975). Figure 5 shows an

extrême case of model bias : 6 x 20 seconds consécutive EEG data hâve been analyzed by

AR-modeling (using Hannan's criterion) and by nonparametric spectrum estimation. The

clear two-peak-structure does not corne out at ail in the parametric spectrum estimâtes.

Increasing the order of the AR-fit much beyond the optimal order would lead to a smaller

bias. However, it would then be difficult to deal adequately with the large number of

parameters (large compared to other subjects). In fact, such an estimate would be closer to

the rationale of nonparametric fitting than parametric fitting. The traditional way of

extracting parameters from the nonparametric spectrum estimate consists in summing

power in prespecified frequency bands (2-6 Hz wide), selected according to

neurophysiological expérience. This procédure is not very appealing from a statistical

point of view, but in our expérience it was more advantageous than a refined AR-fitting

from EEG analysis.



BIOMEDICAL SIGNALS 95 

Most of the parametric models used in biomédical signal analysis are purely 

descriptive, applied for the purpose of data fitting and subséquent data réduction for 

further statistical analysis (AR fitting is an example).The critical remarks made with 

respect to a model-oriented data analysis refer only to this context and not to the one, 

where intrinsic biomédical knowledge is the basis for analysis ("biological modeling"). A 

basic problem spécifie for biomédical signais is that the model has to be appropriate for a 

sample of subjects, and often for différent groups (e.g. controls and patients). It is not 

sufficient that a model shows a good performance for a majority of normal subjects, 

which may often be the case for some reasonable model. Thèse problems turned out to be 

even more accentuated for EEG-analysis compared to growth curve analysis, since even 

normal subjects show a large variety of patterns of brain activity. 

0 2 4 6 8 10 12 m 16 18 20 

FREQUENCY (Hz) 

Figure 5. 

Spectrum estimation of 6 x 20 seconds, of EEG data : parametric AR-fitting 

(above) and kernel estimation (below). 
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analysis ("biological modeling"). A basic problem spécifie for biomédical signais is that

the model has to be appropriate for a sample of subjects, and often for différent groups

(e.g. controls and patients). It is not sufficient that a model shows a good performance for

a majority of normal subjects, which may often be the case for some reasonable model.

Thèse problems turned out to be even more accentuated for EEG-analysis compared to

growth curve analysis, since even normal subjects show a large variety of patterns of

brain activity.

4. Analysis of Brain Potentials

The response of the brain to a stimulus is of interest in a number of biomédical

fields, and this problem has also attracted the interest of statiticians (see the récent Wald

lecture by Brillinger, 1988). Due to the low signal-to-noise ratio, the response to a single

stimulus is not even visible, and stimuli are repeatedly given (typically from 20 to 400

times) to enhance the signal-to-noise ratio by averaging brain activity time-locked to

stimuli (since the noise has random phase, it tends to cancel). The basic model for one

subject, at one brain location, is the following :

i = 1 ,...,T (indexing post-stimulus tune)

j = l,...,n (indexing stimulus number)

X = data, r = response, e = noise

A crucial but shaky assumption is the invariance of the response across stimuli

this also justifies the use of the average r (t̂  ) = — X ^ j l1*) •
j=i

It would be of interest to check the validity of this assumption which may hold better for

some expérimental paradigm compared to another. We studied the following alternative

models, allowing for a stimulus-dependent response rj (ti) :



BIOMEDICAL SIGNALS 97

A. rj(ti) = aj r(ti) model with amplitude
variation

B. rj(ti) = rj_i(ti) model with slow

variation

C. rj(ti) = r(ti-Tj) model with latency
variation (x=latency)

Model C is the only one considered previously by Woody (1967) who suggested a

heuristic procédure for estimating the Tj and then to obtain a latency-corrected averagee

response.

This is not the place to review our work on testing and estimation in thèse models

(see Môcks et al., 1984 and Pham Dinh Tuan et al., 1987 for the statistical part). Rather, I

will give a short outline of problems related to the colour of residuals e which already

posed problems when determining an optimal banwidth for kernel estimators. The noise e

(mainly spontaneous brain activity) is usually far from white and shares its spectral

domain with that of the response r. The ideas for testing alternatives A and B are rather

intuitive (Môcks et al. 1984). Regarding A, let us note that CJ = cov(Xj,r) is in the mean

proportional to aj. The variability of the Cj is thus a measure for the extent of amplitude

variability. To obtain a test statistic for alternative A, it has to be scaled by the variability

of Ci to be expected under the standard model. The main obstacle for obtaining

distributional properties of the ensuing statistic is the lack of independence in the data.

This is also true for a statistic derived for testing model B. This statistic is based on the

plausible idea to compare the power of successive différences (Xj+i(t)-Xj(t)) with

another estimator of power, based on the basic model. The tool to circumvent the problem

of correlated data was in both cases the introduction of a prewhitening filter : the data are

filtered with a transfer function with zéro phase and with gain [f(v)]"l/2, where fis an

estimate for the noise spectrum. With this preliminary step, the asymptotic distribution of

the above mentioned test statistics could be derived and they proved to be a good finite

sample approximation in simultations.

When studying model C, the prewhitening step got firmer mathematical support

(Pham Dinh Tuan et al., 1987) : based on a maximum-likelihood argument estimators for
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the latencies Xj also needed a prior prewhitening step. This proves, that the prewhitening

technique is more than an intuitive trick when dealing with correlated data. Estimation

of latencies is the one problem where from the engineering side Woody (1967) had

proposed an estimator based on heurisric reasoning. This estimator was compared with

the maximum-likelihood approach. Figure 6 shows that the latter method is superior in

MSE by order of magnitude, in particular for small signal-to-noise ratio.

A fuither advantage of the maximum-likelihood method is that it also leads to a test

spécifie for model C.

Figure 6.

Estimation of latencies for 41 pseudo real simulations. Root MSE versus log

signal-to-noise ratio for ML approach (*) versus Woody's heuristic approach

(o) together with their régression lines. Above : model with no latency jitter;

below : model with moderate latency jitter.
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5. Concluding Remarks

This paper is intended to alert statisticians of some of the problems spécifie for the
analysis of biomédical signais, but also to point out the scientific interest lying in this
field. The problems discussed can be put under the large umbrella of "robustness" - not in
its classical sensé of déviations from the normal distribution.

Rather, it is shown that a priori models and assumptions should be accepted with

some caution, since they can themselves lead to erroneous conclusions. For régression

problems an attractive solution via nonparametric estimators is now at hand, and the utility

of the associated estimator of derivatives will be better appreciated in the time to corne.

Regarding déviations from independence, no universal tool is at hand and spécifie

solutions hâve to be sought, instead of sticking to an assumption that is often not fulfilled.
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