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Résumé ; La méthode proposée constitue une certaine variété de la méthode des 

fonctions potentielles, cependant, en tant que fonction attribuée aux points qui 

représentent en R les éléments échantillons la répartition rotative de Cauchy 

a été appliquée ; et au lieu de la somme, le produit normalisé de ces fonctions a 

été accepté. Parmi les estimateurs non paramétriques de la densité de probabilité 

le type discuté se caractérise par une simplicité particulière, et il a une inter­

prétation gnoséologique. Un théorème concernant la convergence de cet estimateur 

a été présenté. 

Abstratc : The method proposed is a certain type of the potential functions 

methodj in wich the rotational Cauchy distribution is assumed as the function 

assigned to points> representing sample éléments in if1 ; instead of the sum* the 

normalized product of% thèse function is taken into account. Among the nonparametric 

estimâtes of probàbility density function> this is especially simple and has a 

gnosiological interprétation. A certain theorem concerning the convergence of this 

estimâte is presented. 

Mots clés : Probàbility density function. Nonparametric estimate. 
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0 - INTRODUCTION 

In many problems dealt with in Nature1s exploration the objects under study 

appear in the form of composed populations. Each class /i.e. subpopulation/ is a 

population by itself with its own natural probàbility distribution. 

Such distributions of composed populations on TR -space are gêneraily of 

irregular type with many maxima of probàbility density function. That may be 

easily shown in terms of the formula describing the density function/referred 

to as d.f. /of the composed population / x e Rm / : 

O ) fOO - ajfjCx) + a2f2(x) +... + a ^ C x ) , 

where ^ , for i « I,2,...,k, dénote fractions which in the total mass of the 

population represent classes, and f.(x) indicate d. f. of the i-th subpopulation. 

A case such that the division of the population is not known is especially 

difficult and important. This situation is pattern récognition problems [1] is 

called the "récognition without the help of a teacher". There should be distin-

guished some problems which hâve not been satisfactorily solved so far. They are 

the following : 

ï . Définition of "démarcation lines /hyper sur faces/ between territories in lRm 

deviding optimally the masses of représentants of particular classes /the well 

known problem, see e.g. [1],[10]/. 

2. Définition of fontiers /contours/ of classes, which is possible when the clas­

ses are not very dispersed /particularly important in pattern récognition 

problems/. 

3. Estimation of gravity centres of classes /important in biology/. 

Ail thèse problems may be also considered in terms of the sequential approach, 

associated with the search for an optimal sample size. 
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1 - THE BASIS OF THE SAMPLE DENSITY CONSTRUCTION 

The method discussed hère enables solving ail of thèse problems. It requires 

the following assumptions : the component populations are of continuous type, 

defined on the real space ]R ; moreover, d. f. of subpopulations is differen-

tiable Such assumptions are based on many empirical cases ; in some other cases 

they are admissible when treated approximately. 

The well known method of obtaining the "picture of population" is the cons­

truction of "empirical distribution function", see [6]. There are some objections 

to this method. Let us consider them hère : 

1. Most of the populations considered in empirical sciences are of a continuous 

type. It follows that this estimate is an insufficient "picture" to represent 

thèse populations, especially for small samples. 

2. The distribution function is usually a worse gnosiological tool for empirical 

investigations that the d. f. 

3. In multidimensional cases the e.d.f. is defined, but practically it is useless. 

Already in a twodimensional case, in order to get acquainted with e.d.f., it is 

necessary to hâve a spatial model which gives to the empiric investigator not more 

than a spatial set of s ample points. With a larger number of dimensions, a 

spatial model corresponding to intuition cannot be constructed and as an analytic 

instrument for discrimination and pattern récognition, the e.d.f. is of low use. 

From an other side there is a method of potential functions /see e.g. [1]/. 

Thèse are sums of functions belonging to a very large class of functions, assigned 

to particular points of the considered /e.g. sample/ set. We may consider the 

class of continuous functions and then the continu ity of a functional estimât or 

is ensured. However, when the form of the function attributed to points is esta-

blished, the functional estimât or as their sum is not consistent and this can be 

shown easily. By the above mentioned consistence we understand the following 

property of the functional estimate «f(x[s ) based on a random sample S of n 

* ' n r n 
éléments : 

(2) V x e l R m V * > p lim P{ |<f <x|S ) - f (x) | < e} - 1 , 
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where tf is an estimate of d.f. f(x) of population from which the sample was taken. 

In order to eliminate this defect of potential functions, a so called "kernels 

method" was used /due to [9] and [5]/, in which the potential functions 

Y(x,x.,h), of d.f. form, attributed to sample éléments x ^ are called kernels, 

for which the parameter h /of scale/ changes /decreases/ with the growth of a 

random sample size, defined by n. Therefore h is the function of n and such 

function must bave certain properties of convergence to zéro together with n, 

if the function Z. ¥(x,x.,h) put in the place of <f(x|Sn) in the formula(2) bas 

to meet this condition of convergence. 

To kernels method we raise three objections hère : 

1. Arbitrary way to assume the type of function as a kernel. 

If there is an arbitrariness, then there is no optimization. 

2. Lack of gnosiologic interpreation of the total dispersion dépendent on "h", 

which except for some limitations in convergence, may be arbitrary. 

3. The introduction of the scale parameter "h" and its dépendance on the sample 

size, i.e. on its variation, cause complications ; especially as it is toilsome 

in algorithms adapted for computer calculations. 

The sample d.f. /sdf/ proposed by the author seems to be free from the above 

presented objections relating to both the empirical d.f. as well as potential 

functions, based also on kernels. It is defined, basing on the sample 

S > {x.,...,x } represented in TRm, as follows :(*) 
n 1 n 

n 

(3) <-f<xlsn> ' ^ V .n *f <x|x.), 
where 

(4) <f(x|x.) » Cjl+Hx-x.lf) -*, 

and C (S ) > 0 is the constant normalisation coefficient. The functions (4) 
m n 

attributed to the sample élément x. is a normalized, rational Cauchy distribution ; 

i.e. the scale parameter of this d.f. isX= 1. 

(*) The power m is conditioned by the character of intégral convergence on the 

space TR /necessary to make the function (4) a d.f./. If the sample consists at 

least of m éléments, then it is enough to put in the formula (4), the numer I 

instead of m. 
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This is of course one of the possible forms of potential functions attributed 

to points. The admission of just this requires the following three asumptions : 

1. Assumption of Cauchy distribution for each axis of the coordinates System. 

2. Normalization of the scale parameter of this distribution i.e. the assumption 

that X = 1. 

3. Assumption of a rotational form of the multidimensional /multivariate/ 

distribution. 

In [7] there assumptions and principles on which their introduction is based, 

were discussed broadly. There this is presented in outline. 

The introduction of Cauchy distribution is justified by the Bayes postulate 

[4], which after ail may be explainedon the basis of statistical game theory 

/see e.g. [3]/. If we hâve only a sample élément represented as a point in U, and 

we do not hâve other information, then we must choose an élément from class of 

distributions so as to hâve the highest probàbility in the said point and the 

largest dispersion /i.e. infinité/ of the distribution a posteriori. 

The second assumption will be discussed broadly in the following paper of 

the author concerning the applications of this method. Hère only the interpréta­

tion of the parameter X will be given as the smallest distance of distinguisha-

bility. Let for i-th feature the accuracy of the best measuring instrument, i.e. 

its dispersion, be equal to X -. Then for two éléments of the sample of which 

the results of measurements of the i-th feature do not differ more than by 2X. 

/after normalizing by 2/ i.e. generally for éléments x, and x ô(x,,x ) < 2X., 

when considering only the i-th feature, we cannot s ta te with high probàbility, 

that they differ really. In this case the sdf /proposed hère/ has a property of 

"gluting",i.e. that between points x . and x . on the i-th axis there appears 
K,1 1,1 

then only one maximum. If however, it is â(x,,x..) > 2X. and in the vicinity of 

points x. ., x- . there are no other sample éléments, sdf has a local minimum 

between x . and x1 . /this property may be gêneraiized on 1R /. 
K y 1 i f * 

The information about the dispersion of the measuring instrument appears 

clearly in sdf : when we hâve only one élément of the sample, we hâve no 

information about this dispersion. Therefore sdf in this case has an infinité 

dispersion. If we hâve only two éléments of identical values of the i-th feature 

/when considering only the i-th feature/, sdf has the smallest dispersion for 

this case, i.e. equal to X.. On the contrary, if we know the accuracy of the 

measuring instrument for each investigated feature of continuous type, we know 

thereby the constant value of parameter X. /i = 1,2,...,m/ for it, and we may 
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normalize the adéquate axis of the Cartesian coordinate System with their help. 

It enables the élimination of parameters in the normalized sdf formula (3)+(4). 

The rotational form (4) of individual distribution on R was assumed because 

it seems to be natural and because was analytically convenient /it makes easier 

to prove the theorem ; compare the proof of lemma 1/. 

In the formula (3) defining the distribution attributed to sample S^ /"sample 

alloy"/ the assumption of a product instead of a sum, which appears in the poten­

tial functions method, is essential and should be alsoexplained. Because, as we 

mentioned already when analysing the assumption 2, the parameter X has a gnosio-

logical sensé and therefore must be constant, the sum of the assumed distributions 

attribued to points of S is not a consistent estimate of f(x) /see formula (2)/. 
n 

In the lemma 2 we show that in the case when f(x) - 0, the product defined by 
(3) and (4) is convergent to zéro for n -+<», according to the criterion (2), 

m 
while the sum potential functions /when remain positive on the whole space R 

also in the limit/ is then convergent to the positive number. 

The introduction of a product of individual potential functions to sdf may 

be moreover motivated probabilistically : the probàbility defined by sample 

density on any elementary interval is in sdf proportional to the probabilities 

defined on this interval by distributions of ail individual points. 

2 - APPLICATIONS OF THE METHOD 

The problem of calculation in practice of the normalizing coefficient 

C (S ), which must be so chosen as to make the function (3) the sdf, still remains. 
m n 

Because of analytical difficulties each time calculation of this coefficient is 

a serious problem of a data processing nature. However, for the discrimination 

and pattern récognition this may be neglected, as for thèse purposes it is 

enough to compare the .values sdf defined on différent points x e TR , and the 

constant coefficient does not exert an influence on thèse comparisons. 

The point of using alternatively the method of statistical discrimination 

and taxonomy dépends on the interpreation of S set. If we consider this set 

as a random sample, then the problems presented at the beginning appear. If we 

do not hâve additional information, we consider this set deterministically and 

then the taxonomy and particularly the so called "cluster analysis" should be 

used [2]. One should emphasize hère that the application of sdf defined by 

formulae (3) and (4) appear to be an improvement in both thèse domains ; 
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particularly the hypersurfaces of an equal density /aequidensae/ and also 

minimal /démarcation-/ hypersurfaces are analytically of a simplest form in this 

case, as they are polynomials of low degree and the coefficient may be then 

neglected. 

In this paper because of the lack of place we shall focus our attention only 

on the problem of sdf convergence to f(x). The algorithmic part of presented 

method and some examples of its applications /to pattern récognition and biology/ 

will be the thème of a next paper. 

3 - THE CONVERGENCE PROBLEM 

Very gênerai theorems are desired concerning the distribution of maximum 

sdf déviation from f(x), analogically to A.N. Kolmogoroff*s theorem for empirical 

distribution functions /see e.g. [6]/. However, the sdf defined by formulae 

(3)+(4) is not réceptive to the use of traditional methods of probàbility cal-

culus as e.g. the method of characteristic functions. Therefore the author 

cannot présent such theorem for sdf at this stage of investigations. The sdf 

dérivâtive has however a convenient analytical form, which was used in the proof 

of the lemma 2. 

The presented two lemmas are useful in proving theorems concerning the stochas 

tical convergence of sdf. The lemma 2, independent on this meaning, is useful in 

pattern récognition problems. The theorem is limited only to the local conver­

gence of the dérivâtive1s sign of one of two factors in which sdf may be facto-

rised, to ff(x). This factor is based on the internai part of S , set, relative 

to the optional area A on which f'(x) has the constant sign. If however, the 

author1 s hypothesis based on the lemma 2, that the second factor of sdf (based 

on the external set S -S ) does not exert an influence within the limits of A 
n n 

on the derivative's sj.gn of sdf, then the thesis of the presented theorem is 

generally true, i.e. sign tf1 (x|S ) converges stochastically to sign f'(x). 

Définition 

The function ¥(x,x.)» where x c R , will be called the rotation-potential 

function, if it is continuous and has the point, referred to as x. /the index 

i will be used in sets/, which will be called the centre, and satisfies two 

following conditions : 
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For two optional points x1, x" e 3R is satisfied : 

1°) when ô(x!,x.) - 6(x1,,xJ, then ¥(x\x.) - ^ x ^ x . ) , 

2°) when ô ^ x . ) > ô(x",x.), then H'(x',xi) < Y(x",Xi), 

where 6 means the Pythagorean distance formula. 

Lemma 1 

Let the set of n points S * {x.,x2,...,x }, xi e R , be divided by the 

(m-I)-dimensional hyperplane H in two subsets : S. = S n Z and S« » S n Z , where 

Z. , Z? mean semispaces obtained by the section of KP with H. S. has n^ and 

S_ n« éléments /n ~ n.+n»/. 

Let n. > n« and in S n éléments are symmetric to ail éléments of S-, rela­

tive to H /additional assumption/. Let to each x. the rotation-potential function 

be assigned /see définition/, with the centre in x-. For the set S the function 

Ç is defined : 

(5) Ç(x,S) = c[Y(x,Xj) « ?(x,x2) ©...® ^(x,xn)], 

in which © means addition or multiplication. 

Then, for two optional areas : y c j and u« c Z , symmetric relative 

to H, the inequality is fulfiled : 

(6) \\i} Ç<x,S)dx > I uf2 c(x,S)dx. 

When ® means in this formula the multiplication, the constraint ¥. > 0 is 

necessary. 

The_proof : 

Let Sj be the subset of S symmetric, relative to H, to S2 and let D be the set-

difference : D = S-S'-S . It is easy to see that for each pair of points xT,x", 
'1 ~2* 

(5), the inequality is fulfiled 

where x' e Z. and x" e Z«» symmetric relative to H, due to the définition and 
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(7) Ç(x',D) > Ç(x",D). 

Consequently it is fulfiled 

(8) Ç(x*,S) > Ç(x",S), 

because, as the conséquence of (5), Ç(x,S) may be decomposed in factors or sum 

éléments (*), and due to the additional assumption it is Ç(xf,Sj) = Ç(x",S2). 

This gives, after intégration, the thesis. 

Lemma 2 

Let S be the sample of n éléments drawn from the population with the unknown 

d.f. f(x), where x € !Rm and let A c ]R be the area of m-dimensional measure 

y (A) £ 0, such that for x e A is f (x) - 0. Then the sdf defined by the formulae 

(3) and (4), for area A c A, such that for optional e > 0, u(A)-u(A ) < e, 

fulfils the equality 

(9) vx £ A* V o lim P<«M*IS„> < n > - i. 

The proof 

Let the hyperplane H. be orthogonal to the j-th axis of m-coordinates System in 

3R . Let H. eut this axis in the point with the coordinate x . We shall assume 

J ° 

at the first stage of proving, that f(x) = 0 for ail points x e TR , such that 

theirsj-th coordinate x > x . It will be shown now, that for thèse points in 

this case is valid (9). 

The dérivâtive of (x|S ) for j-th variable is of the form : 

(ÎO) <f(x|Sn) = -2 «fO^V S 
n x -x. 

i 

1=1 1+ Z (xk+x^)2 

k=l 1 

Let {X^} be the matrix of random variables such, that for constant i (i.e. in 

the row) they hâve the joint distribution defined by f(x), instead rows hâve 

identic and independent each other distributions. If we put for optional xJ > xJ 

(*) The constant coefficient c in (5) may be omitted hère. 
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Y"? = x J - X-3, and 
i î 

tf - [1 + S (x k-xh2]" !, 
k-1 

it results from assumptions that 

P{0 < Y?} = 1, and OS Y t i 1, 
î î ' 

for i - 1 , 2 , . . . , n . 

It is easy to see, that for optional distribution of Y. fulfiling given 

condition, is valid (*) : 

n 
(11) V lim P{ Z Y? < u} - 0. 

U)<» . . i n-x» i=l 

For the product of random variables Y-?Y. is also fulfiled : r i l 

P{Y-?Y* < 0} - 0, 
1 1 ' 

and when the formula (II) for the random variable Y*?Y. i s used i t r e s u l t s , that 
i l 1 X 

for xJ > xJ i s val id : o 

nN . 
(12 ) V l im P{ Z Y^Y. < y } = 0 , 

w<°° . . 1 1 
n-H» i = I 

which shows that in this case the second factor (the sum) in (10) is uncons-

trained, when n •+ », with probàbility 1. 

Because ̂  is the product of functions, which for assumed x-es are /with 

probàbility 1/ decreasing, limited from below by 0, and also différentiable, u> 

must be in this interval in the limit decreasing or everywhere equal to zéro. The-

refore |<P'(x|S )| must be in the limit constrained and by virtue of (10) it 

must be so, that for xJ > xJ and n-*- », ¥-* 0. 
o * 

When none hyperplane such as H. (1 s j < m) exists, there exists the area 

A c A, surrounded with the set of (m-I )-dimensional hyperplanes H.,H9,...,H1 

(*) For pattern récognition problems the Cauchy distribution with the cutted out 
"window" (the area A on which f(x) ~ 0) is of interest. By virtue of lemma 2, 
this "window" may be reproduced using sdf. 
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(1 > 1), of which measure p(A ) is optionally close to the measure y (A). 

In this case the complementary area to A , relative to 3R , may be divided in 

parts (e.g. by aid of other hyperplanes) where each part is adjacent to one 1 

hyperplanes so, that for H. ail x. e S , belonging to such part of 1R , create 

the set S . Then occurs : n 

(13) Z* . Sj = S . 
j=»l n n 

For each S , the proper rotation of coordinate s system may be performed so, 

that for ail x. e SJ, x. < xJ with probàbility 1, as in the case described at the 
î n î o K J ' 

beginning. Then also occurs : 

1 
(14) <f (x|Sn) - c _IÏ cj>(x|s^), 

and for each factor in (14), with the adéquate H., for n •* », it is possible to 

carry out the previous presented proving. 

Wich the product (14) corresponds the set-product of semispaces equal to A 

and for ail SJ the formula (12) is fulfiled, which shows that for the product 

(14) *f -> 0, for n -+ ». 

Theorem 

Let f(x), for x e 1R , be the differentiable d.f. of population and let 

A c ]R be the optional area on which the derivative fr(x), taken in the defined 

direction, has everywhere the same sign /not equal to zéro/. Let S be the random 
n 

sample drawn from this population and H be the optional, (m-l)-dimensional hyper-

plane orthogonal to defined derivative1s direction, cutting the interior of A. 

For the area A c A symmetric relative to H and for the set S * S n A is 
— J n n 

then valid : 
0 5 ) Vx€H Um P { s iSn Y'frlO " S ign f , ( x ) } - ' » 

n-w» 

where prime means the derivative in the assumed d irec t ion . 

The_groof_: 

The area A may be divided into elementary cubes : 

1 . 1 . 
(16) A - Z k] + Z A}, 

j-l j-l Z 
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so that i t i s poss ib le the form the pairs : A ,̂ A2, situated symmetrically 

r e l a t i v e to H. Let us consider i n i t i a l l y one, optional pair of adjacent cubes. 

Let e . g . f ' ( x ) < 0 in the direct ion from A*j to Ai. Then 

(17) [ . f (x)dx > [ . f (x)dx. 

*1 2 
Probabilities in (17) will be signed e., e (e. > e 2 ) . Let ̂ S1 be the set 

of éléments x. e S for which x. e A,, having n, éléments, and ̂ S2 be the set i n .il* & I n 
of x. e S for which x. e A^, having n éléments (i = l,2,...,n). When n is 

growing unconstrainable it is easy to see, on the basis of Borel's theorem 

(see e.g. [8], p. 270) in respect to the Bernouilli's scheme, that in this case 

n e n e2 

and in conséquence with probàbility 1 the inequality n. > n. is valid. 

Then, due to the lemma I, for optional pair of symmetric, relative to H, areas 

B|, B2 e ]R
m, with probàbility 1 : 

(19) f Ç(x, jSI + V ) d x > [ Ç(x, V + jS2)dx, 
\ n n J B 2 n n 

by addit ional assumption concerning the symmetry of S2 and some subset of •'S1. 

agreeable to the lemma 1 (as we shal l show this assumption appears to the 

overf luous) . 

When B. , B2 are adhèrent through points x e H, (19) g ives , for p(B.+B?) + 0, 

where p means the diameter of the s e t , the inequality 

(20) vxeH C ' U s W ^ ) <0, 

where the d e r i v a t i v e ' s d irect ion i s orthogonal to H. 

Let now n ->-«and 1 -+ » simultaneously, so that 

(21) max p(A-î) •+ o. 
l£j<l 
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In this case the additional assumption may be omitted, because the symnetry 

inside the elementary cubes lost the importance. Then for ail j = 1,2,...,1 

the inequality (20) is valid, for optional established x e H, with probàbility 

1, and therefore it is also valid with probàbility 1 for the total subset S , 

which gives the thesis in this case : 

(22) V x e R lim r ( x | S n ) < 0 . 
n->» 

This ends the proof in the case when f'(x) < 0 in the assumed direction. 

In the reciprocal case, it is sufficient to change the turn of the dérivât ive1 s 

direction vector and the further proof runs identically. In the formula (15) 

appears, under the probàbility sign, the équivalence, because négation of the 

sentence on the right side causes négation on the left side too. This ends the 

proof. 
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