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Levi Curvature with Radial Symmetry: a Sphere Theorem
for Bounded Reinhardt Domains of C?

GIULIO TRALLI

ABSTRACT - We study bounded Reinhardt domains of C2, whose Levi curvature
depends on the distance from the origin. We prove that a radial decrease of the
Levi curvature forces the domain to be a ball.

1. Introduction.

The notion of Levi curvature for a real manifold was implicitly in-
troduced by E. E. Levi in 1909 to characterize domains of holomorphy of
(2. Since then, it has played a crucial role in the geometric theory of
several complex variables.

Let &D = {z € C?: F(z) = 0} C C? be a real manifold, boundary of the
domain D = {z € 2 : Fl(z)<0}. We assume F is a real-valued function
with continuous second-order derivatives and such that

oF oF
oF (6—21@),8—22@)) — (Fy(p), Fop) 0 ¥p € aD.

Let us denote by T;,'(GD) the complex tangent space to 9D at the point p,
T, (OD) = {(h1,he) € C* : lyFy(p) + hoFa(p) = 0},

which is a complex line generated by the unitary vector

w = (U, u) = — Fo(p), F1(p)).

1
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Using the notation F) ;, instead of ER the Levi curvature of 0D at the
point p is the real number i9%k

1 < _
K,(0D) = > F; iy

The domain D is strictly Levi-pseudoconvex iff the Levi curvature is strictly
positive at any point of dD. The Levi curvature is independent of the de-
fining function F' (see, e.g., [5]): nevertheless, it implicitly depends on the
orientation of dD. Moreover, by direct computation we obtain that

. 0 F F
sdet | 1 Fii Fiz |
F|

p Fy Fy1 Fys3

(1) K,(0D) = —

It is easy to compute the Levi curvature of the sphere of radius R, boundary
of the ball

Dp = {Z € 2. |21|2+‘22|2<R2}.
We have
1
K,(0Dg) = 7 Vp € 0Dp,

that is the Levi curvature of the sphere is constant at any point. Spheres are
not the only hypersurfaces with constant Levi curvature: if we consider the
cylinder

Cr = {z € C? : (Re(z1))*+(Re(22))? <R?},
we readily get

1
KjCr) =55 Vp€dCk.

In [1] Hounie and Lanconelli proved that a bounded Reinhardt domain of
(2 with C? boundary of constant Levi curvature is a ball. We would like to
stress that Cg is neither bounded nor Reinhardt.

The notion of Levi curvature has been extended to real hypersurfaces
embedded in complex spaces of higher dimension by considering the Levi
form of their defining function, which is the biholomorphic invariant part of
the Hessian form (see, e.g., [3]). In analogy with the real case, in the case of
C"*1 one defines K9 to be the Levi curvature of order j (1 <j < n) by
taking the jth elementary symmetric function of the eigenvalues of the
Levi form: for details we refer to [5]. The Levi curvature of order 7 (the
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product of the n eigenvalues) is called the total Levi curvature: in the case
n = 1 it coincides with the definition introduced above.

The knowledge of the Levi curvature provides less geometric in-
formation than the Gauss curvature because the Levi form is only a part of
the second fundamental form. Nonetheless, the problem of characterizing
hypersurfaces with constant Levi curvature has been studied by many
authors. In [2] Hounie and Lanconelli extended their previous result and
proved that a bounded Reinhardt domain of C"*! with C2 boundary of
constant Levi curvature and with rotational symmetry in two com-
plementary sets of variables is a ball. In [6] Monti and Morbidelli proved
that the only Levi umbilical hypersurfaces in C"*! (for n > 2) with all
constant Levi curvatures are spheres or cylinders. In [4] Martino and
Montanari proved a “Soap Bubble Theorem” for a bounded star-shaped
domain with smooth boundary: if the jth Levi curvature K¢ is a positive
constant and if the mean curvature of the boundary is bounded from above
by (K9, then the domain is a ball.

In this paper, we consider a bounded Reinhardt domain containing the
origin and we suppose it has a prescribed strictly positive Levi curvature
depending on the distance from the origin. Under suitable and quite nat-
ural conditions on the prescribed curvature function, we prove that the
domain must be a ball. In Section 2 we use the intrinsic additional sym-
metries of Reinhardt domains to express the condition of assigned Levi
curvature by the second order singular ODE:

2) sff” = st — HGs +)(f + 5/ —ff".

In Section 3 we prove an existence and uniqueness result of solutions to (2)
with a given initial value. Assuming the function H in (2) is nonincreasing
and using a tecnique basically introduced in [1], in the last section we prove
the following theorem, which is the main result of this paper.

THEOREM 1.1. Let D C C2? be a bounded Reinhardt domain contain-
ing the origin. Let us assume that 0D is of class C* and it has an assigned
Levi curvature given by

K.(OD) = H(|z1[*+|22|"), z € 8D,

where H 1is a strictly positive function defined in an open interval con-
taining {min ||2|/%, max ||z||2} . Let us suppose in addition that the function
z€dD z2€0D

H is nonincreasing. Then 0D is a sphere centered at the origin and its
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radius r > 0 satisfies
1
3) HG?) = -

NotE 1.2. We would like to stress that (3) yields a necessary condition
for the function H to express the Levi curvature of some domain satisfying
our requirements. Indeed, (3) implies the existence of a number a > 0 such
that H(a)v/a = 1.

2. Levi curvature depending on the radius.

Let us denote by D ¢ C a bounded Reinhardt domain containing 0 and
such that 9D is a real manifold of class C%. A domain D C C? is called a
Reinhardt domain (with respect to the origin) if

(21,22) €D = (e21,€22) € D

for all s,t € R. The interest in Reinhardt domains in several complex
variables is related to the fact that the power series expansion about 0 of
any holomorphic function converges normally on such domains (see, e.g.,
[3]). By the definition of Reinhardt domain, we get that D is completely
determined by its intersection with the real plane {Imz; = Imz2 = 0}.
Therefore, to study D we consider the set

C = {(x1,202) € R? : (21 + 10,3 + 10) € HD},

which is a planar curve of R Symmetry properties of Reinhardt domains
force C to be invariant with respect to (x1,x2) — (+ x1, = 22). In a neigh-
borhood of a point (a,0) € C (we can suppose a > 0 because 0 ¢ 9D), C is
thus described by the equation x; = g(x2), where g is an even function of
class C* Let us represent the set C locally as a? =f(x3), where
f(s) = g>(\/s). The fact that ¢ is even and the regularity of ¢ allow us to
state that f(s) = g?(\/s) defines a C? function in a right neighborhood of 0
(see [1] for a proof of this fact). Therefore, in a neighborhood of (a + 0, 0)
the points of 9D satisfy F(z1,22) := |z1|2—f(|z2|2) = 0. If the region boun-
ded by C lies below the graph of f, F' is exactly the defining function of 0D
(at least locally): then, because of the relation (1), the Levi curvature of 0D
is given by

FEf(s)s +£(5)) — sf(s)?

(4) K(z1,22) = >3 .
(f(s) + sf'(s)") s=leaf?
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On the other hand, if the region bounded by C lies above the graph of f, the
defining function of 0D is —F and the Levi curvature is given instead by

OS5 +1/$) — sf'(s)?

(5) K(z1,29) o3 :
(f(s) + sf(s)")? s=lal?

Let us suppose that D has an assigned strictly positive Levi curvature
which depends on the squared distance from the origin, i.e.

K(21,22) = H(j21 [*+]22 ).

Since 9D is of class C*, the Levi curvature K is a C2 function, so that H is of
class C2, too.

Let us define ¢t = sup{a > 0: (a,0) € C}. Since each half line outgoing
from 0 intersects C, t is the supremum of a non-empty set and it is finite
because of the boundedness of D. Let us represent C just in a neighbor-
hood of (¢, 0). Then, we can take f as above and the region bounded by C lies
below the graph of f. Because of (4), f has to satisfy the second order ODE
described by (2): therefore

S =8~ Hs+ A + 5~ 1F

After noting that f'(0) <0, we stress that f’ cannot vanish at a first point
s1 > 0 such that f(s;) > 0: otherwise, the equation (2) would imply that
f"(s1) <0, contradicting the fact that f is decreasing in [0, s1]. Hence, there
is a maximal interval [0, S) in which we have f’(s) <0 and f(s) > 0 (note that
S < + oo because of the boundedness of D).

REMARK 2.1. Straightforward calculations show that the inverse
function of f satisfies the same differential equation. This result is also a
consequence of geometric arguments. In fact, the graph of the inverse
function is obtained from the graph of f by exchanging the coordinates, i.e.
by performing a unitary transformation in C2 such as (21, 20) — (€522, €i'z1)
(for s,t € R). On the other hand, complex linear unitary transformations
preserve the distance from the origin and it has been proved in [2] that
they are the only biholomorphisms that also preserve the Levi curvature.

We can now prove the following proposition.

PrOPOSITION 2.2. With the previous notation, we have
fS) =0.
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Proor. By the maximality of S, it follows that f(S) = 0 or f'(S) = —oc.
Suppose that £(S) > 0 and f'(S) = —oo: we will show that this leads to a
contradiction. The inverse function 4 is strictly decreasing in the interval
[£(S), f(0)] = [«, f] and from our assumptions we get 4’(z) = 0. Thanks to
the last remark, % satisfies

(6) ohl" = oh'® — H( + h)(h + oh®¢ — hh/,

so that we get 2" (o) <0 and we can continue & to an interval [o — &, o] in such
away that // is strictly positive on it. Let us denote by f; the inverse function
of the restriction of the function % to the interval [0 — ¢, o]: f; is then strictly
increasing in some interval [S — 6, S] and .lirg}i f1(s) = 4 oco. Furthermore,

the region bounded by C lies above the graﬁl of f1 (since f1(S — &) < fi(S) =
=o=f(S)< f(S — J)) and, as a consequence of (5), we have

shifl = sfi® + H(s + f)(fi + sfIF — fif].

Let us extend the graph of f; to the left as far as possible, until we reach an
interval [sg,S], remaining always in the first quadrant with non negative
slope. First of all, we note that it is not possible that f(s2) = 0: in this case,

1
we have that f](sz) = 0 > 0, contradicting the equation (6) which implies

1 (0) < 0. Moreover, it must hold that s; # 0: otherwise, the region bounded
by C in the first quadrant would be included between the graphs of f and f;
and the symmetry of C with respect to both axes would contradict the fact
that D is connected and contains the origin. Finally, f{(sz) = + oo cannot
occur: at the point f(sg) the inverse function % would have &' = 0 and (be-
cause of (6)) 1" < 0; this would contradict the increase of . Therefore, f; can
be defined in a maximal interval [sg, ST, so that f; is increasing, the graph of
/1 is contained in the first quadrant and f](s2) = 0.

Summing up, supposing that the tangent of C' becomes vertical at the
point S, we can follow the graph of f; until a point s; € (0,S), where the
tangent of C becomes horizontal. We may iterate this construction building
up a function fo defined in [s3,s2]: necessarily s3 > 0, f is strictly de-
creasing in the interval (ss,s2) and f;(s3) = —oo (vertical tangent). This
process can be continued indefinitely obtaining a spiral contained in C,
formed by the graphs of functions f, fi, 2, f3, . . ., so that each graph cor-

responds to a monotonic clockwise turn of g of the tangent to C. Then C,

seen as a subset of C'2, cannot be contained in the boundary of a regular
domain.
This contradiction proves that f(S) = 0. O
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We have so proved that f is strictly decreasing in a maximal interval
(0, S) and its graph hits the s-axis at S. Taking g(s) = 1/f(s2), the connected
component of C containing (£,0) is properly represented in the first
quadrant by the graph of g and the behavior on the other quadrants follows
from the symmetry of C with respect to the coordinate axes. The following
proposition states that there are no other connected components.

PRroPOSITION 2.3. The set C is connected.

Proor. Let us suppose that another connected component of C exists
and let us denote it by C'. The set C’ cannot contain points such as (a, 0) or
(0, b): we would obtain the same contradiction of the last proof (taking into
account that (@, 0) would not be the highest point of this form). On the other
hand, if we consider the function ¢ which locally defines C’ (in the same way
as f previously), we find that ¢ cannot increase or decrease: since C’ does not
intersect the axes, this would cause again the generation of a spiral. Hence, a
connected component of C without the point (¢, 0) does not exist. O

REMARK 2.4. Let us deal with the smoothness of f. The C? regularity
at s = 0 was already discussed. The regularity about s = S follows from the
regularity of f~! at s = 0. At a generic point sy € (0,S) the ODE (2) is not
singular, so that the unique solution of the Cauchy problem

o P f HGHO + s

s sf
f(s0) =ag
f'(s0) =aq

is of class C* in a neighborhood of s (because H is of class C?).

Summing up, after assuming that f represents C in a neighborhood of
(t,0), we deduced that f belongs to C2([0,S]), that determines completely
C, that satisfies the second order ODE

sff" = sf® — H(s +)(f + 5 — £,
and it is such that
f&) >0 for 0<s<S, f(S)=0, f(s)<0 for 0<s<S.

With regard to the ball of radius R centered at the origin, the related
function is f(s) = R —s. It satisfies the equation and all the previous
properties.
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3. A second order singular ODE.

Let us focus our attention on the ordinary differential equation (2). It is
a second order ODE which is singular at s = 0. We begin with a local ex-
istence and uniqueness result.

ProposiTION 3.1. Let H be a locally Lipschitz-continuous function
defined in an open interval I. Let a € I be a strictly positive number.
Then, there exist 6 >0 and a unique solution f € C*([0,d]) N C?(]0,d[)
satisfying the equation

Sff// _ Sf/2 . H(S +f)(f + Sle)% _ff/a
and such that £(0) = a.

Proor. Since f(0) > 0, the differential equation may be rewritten as

sf?  H(s +(f + s

(S,)/: ’_|_3”:7 :G(S, 78,2),
f) =1 +sf 7 7 fosf
3
where G(t,x,y) = % - W is locally Lipschitz-continuous in the

open set Q = {(t,x,y) € R :2>0,64+y>0,t+axc I'}. We thus reduce
the problem to that of demonstrating existence and uniqueness of a function
f € CY(0, 6]) (for some J > 0) satisfying

(1) fl=y / G0, (), of (e))do,
0

and such that f(0) = a. Because of the continuity of G, we have that sf’ € C?,
so that f is of class C? away from s = 0.

To proceed with the proof, we can argue in analogy with the classical
proof of the Cauchy-Lipschitz’s theorem. Let us consider the operator 7'

defined by
S a
TM@zé/G(ma+/umﬁmﬁw9dm

0 0

where u is a continuous function such that the right-hand side is well de-
fined. It is not difficult to show that for every M enough large there exists
dy > 0 such that, if we define Y = Y5 = {u € C([0,]) : supjg 5|u| < M}
for0<d<dy,weget T : Y—Y and T is a contraction on the Banach space
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Y. By the Banach’s theorem, there exists only one continuous function %
defined in [0, 6] (for some J > 0) which is a fixed point for the operator 7.

Hence, if we set
S

f@s)=a+ /u(t)dt,

0

for s € [0, 6], we get that f is the unique function belonging to C*([0, 6]) such
that £(0) = a and satisfying the integral equation (7). O

COROLLARY 3.2. Let f, f : [0, 51 — R be two solutions of class C2 of the
equation (2), such that they are strictly positive in [0, S[. Let us assume

that f(0) = f(0) > 0. Then f = f.

ProoOF. By Proposition 3.1, f = f in an interval [0, ], for a suitable
0 > 0. On the other hand, for s # 0 the equation (2) is non-singular (pro-
vided that the solution does not vanish). Then, for the uniqueness of the
solution of a Cauchy problem, we have f = f in [0, S[, so that, by continuity,
uptos=2_S. O

4. A uniqueness result: a sphere theorem.

Let f be the function of Section 2. Here we show that the equation (2)
determines some initial conditions for f. This fact, together with the result
of Section 3, will give us a uniqueness result.

To this end, we will use the following crucial result proved in [5].

THEOREM (COMPARISON PRINCIPLE) 4.1. Let Dy and Dy be strictly
Levi-pseudoconvex domains of C2 with connected boundaries. Let us as-
sume that D1 C D and 0D, N Dy # (). Moreover, we suppose that the Levi
curvature of Dy is greater than or equal to the Levi curvature of D1. Then
D1=D,.

Firstly, we show that f(0) determines f/(0) and f”(0).

LEMMA 4.2.  The first and second derivatives of f at s = 0 depend on f(0)
wn the following way:

10 = ~H(fO) T,
70 =5 (1~ HGOWFD) ( GH70) - HF0) VD))
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Proor. The identity concerning f’(0) simply follows from putting
s = 0 in equation (2). With regard to the second one, we note that, for
0<s<S, we have

P ff A HG AN + s
f sf :

As s — 0", we can apply L’Hoépital’s rule to the second term in the right-
hand side, since the numerator vanishes at s = 0 for the first identity. Then,
at s = 0, we get

//_f_/z_l
F=F"7

from which we obtain

_1+1(0)

Vf0)
= (1 — H( f(O))\/f(O)) @Hz(f(o)) —H'(fO)\/f (0)) .

f/l

(% + £+ B+ I+ SHORS 72,

2"(0) = (HG©0r0 + SH GO 0)

O

Before proceeding, let us suppose that the Levi curvature of 9D is
nonincreasing as a function of the distance from the origin, i.e. we assume
the condition

(8) H <0.

We can now prove the following proposition.

ProPOSITION 4.3.  The function f satisfies

H(f(0)vf(0) =1,
or equivalently f'(0) = —1 (or f"(0) = 0).
Proor. Let wus argue by contradiction. We first suppose

H(f(0))/f(0) > 1. Then, by the previous lemma and the hypothesis (8) on
the function H, we get f/(0) < — 1 and f”(0) <0. Let us define

sp = max{s € [0,S]:f"(6) <0 for 0 <o < s},

and put
2:[0,81 = R, A(s) = f(s0) +f'(50)(s — 50) = o — fis.
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Since f is concave in [0, s¢], we have
B=—f'(s0)>—f(0)>1, and Ais)>f(s) for 0<s<sp.
In particular, o = 4(0) > f(0) > 0. Let us now consider the function

As), se 0<s<s
9:[0,S]— R, g(s)=

f(s), se sp<s<8.
The function g is of class C? and g(s) > f(s) for all s € [0, S]. Therefore,
Dy = {(z1,22) € C*: [ <f(zal*} € Dy = {(a1,22) € O : [’ <g(|22*)}.
For z = (21,22) € 0Dy and s = |zz|2, we define

K(s) = K.(0D,).

By the formula (4), for 0 < s < sy, we obtain

ofp
(a2 + ps(f— ¥
Since f§ > 1, K is strictly decreasing in [0, s¢], so that
K(s) > K(sp) = H(so + f(s0)) for 0 <s < so.

K(s) =

If 59 < S, the last equality follows from the fact that f and g are equal up to
the second derivative at sq. If s = S, f and g are equal at sy only up to the
first derivative, but they vanish at s, so that the curvature does not depend
on the second derivative. However, the function s — H(s + f(s)) has first
derivative H'(s + f(s))(1 +f’(s)) and it is increasing in [0, so]. Therefore,

K(s) > H(s + f(s)),

for all s € [0, S]. Then, we may invoke the Comparison Principle and state
that Dy = D,. Hence, f = g and K(s) = H(s + f(s)) for all s € [0, S]. Since K
is strictly decreasing and H(s + f(s)) is increasing in the interval [0, s¢], it is
a contradiction. This prove that H(f(0))/f(0) < 1.

On the other hand, if we argue as above we reach a contradiction also

assuming H(f(0))/f(0)<1. O
We close this section by giving the proof of our main theorem.

Proor oF THEOREM 1.1. In Section 2, we showed that 0D can be re-
presented by a function f satisfying

1" = o — His +1)f + DL~ £f"
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In Proposition 4.3, we proved that the initial value f(0) = a must satisfy
H(a)\/a = 1. By inserting the function f(s) = a — s in (2), we get

0=s—H@a+a—s=al — Ha)a).

By Corollary 3.2, it follows that f(s) = a — s is the unique solution such that
f(0) = a. Therefore, the set C is completely determinated by the equation
#3 = a — x5, which represents a circle of radius \/a. Hence, 9D is a sphere
of radius /a centered at the origin. O
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