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Fair-Sized Projective Modules

PAVEL PRIHODA (*)

ABSTRACT - We investigate a condition on particular chains of ideals that allows us to
determine properties of infinitely generated modules over noetherian rings. The
results apply to semilocal noetherian rings, integral group rings of finite groups
and universal enveloping algebras of solvable Lie algebras of finite dimension.

1. Introduction.

This paper is devoted to the study of infinitely generated projective
modules over associative unitary rings. We are interested in the case in
which the ring has projective modules that are not direct sums of finitely
generated modules. Some general results and examples of rings with such
modules were given in [12]. Our motivation was to find a technique that
could be applied to prove the existence of superdecomposable projective
modules over semilocal rings.

Let us briefly explain the main idea of the paper. According to a well
known theorem of Kaplansky, any projective right module over a ring R is
a direct sum of countably generated right modules, so it suffices to in-
vestigate countably generated projectives, that is, direct summands of a
countably generated free right module F' = RE%V). Supposethat P@ P’ = F.
The canonical projection 7: F — P is given by a column-finite N x N
idempotent matrix A. We say that A represents P (observe that the col-
umns of A generate P). Let I,, be the ideal of R generated by the entries of
A that are below the n-th row. Clearly, P is finitely generated if and only if
there exists k € N such that I; = 0 for every I > k. The other possible
extreme case is when I = I, = --- = R. It is a well-known result of Bass
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[3, Theorem 3.1] that in this case P ~ F provided R/J(R) is right noe-
therian. In this paper, we focus our attention on the case in which the
sequence I; D Iy D ... terminates at an ideal I. It is easy to see that [ is
idempotent. We show that if R is left and right noetherian and the se-
quence I; O Iy D - -- terminates at I, then P contains as a direct summand
any countably generated projective module having its trace ideal in I.
Cf. [3, Theorem 3.1]. The following easy condition assures that any se-
quence of ideals derived from an idempotent column-finite matrix termi-
nates: If 11,1, ... is a sequence of ideals in R such that I, I; = I}, for
any k > 1, then there exists » such that I, =1,,; =.... Call (*) this
condition.

In section 2, we show that over a left and right noetherian ring R sa-
tisfying condition (*), the theory of projective modules “reduces” to the
theory of idempotent ideals in R and the theory of finitely generated pro-
jective modules over the factor rings of R modulo idempotent ideals. This
explains and is related to the statement in the introduction of [3], according
to which “infinitely generated projective modules invite little interest”.

The remaining sections are devoted to presenting some examples. We
prove that (*) holds for semilocal noetherian rings, integral group rings of a
finite group and universal enveloping algebras of finite solvable Lie alge-
bras over a field of characteristic zero. This allows us to prove that:

(i) There exists a semilocal noetherian ring with superdecomposable
projective modules.
(ii)) Indecomposable projective modules over integral group rings of
finite groups are finitely generated.
(iii) Any infinitely generated projective module over a finite dimen-
sional solvable Lie algebra over a field of characteristic zero is free.

Notice that (ii) solves [9, Problem 8.34].

Let us briefly recall some notions and fix the notation. The word “ring”
always means associative ring with an identity and “module” means unital

right module. If M is a module over R, then > f(M)is anideal of R
feHomR(M.,R)
called the trace ideal of M. We denote it Tr(M). If P is a projective module

over R, then Tr(P) is the smallest ideal X of R such that PX = P, and is an
idempotent ideal. Further if X is a subset of a ring R, we denote RXR the
(two-sided) ideal generated by X. In case X = {x} we denote RxR the
smallest ideal of R containing x. Notice that in general the relation
RxR = {rxs | r,s € R} does not hold. Recall the following important result
due to Whitehead:
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Facr1.1[18, Corollary 2.7]. Let I be an idempotent ideal of R finitely
generated on the left. Then there exists a countably generated projective
right R-module P such that Tr(P) = L.

To avoid confusion, we will call the rings which have all left ideals and all
right ideals finitely generated left and right noetherian rings, although
they are often called noetherian rings. Finally, we will call infinitely
generated projective modules the projective modules that are countably
generated but not finitely generated.

2. I-big modules

Let P be a countably generated projective module over a ring R and let
I be an ideal of R. We say that P is I-big if for any countably generated
projective module @ with trace ideal contained in I there exists an epi-
morphism of P onto @. Hence, in this case, P contains a direct summand
isomorphic to Q. Notice that this definition will be applied to countably
generated projective modules only.

REMARK 2.1 (Kilenberg’s trick). Let I be an ideal of a ring R and let P
be an I-big projective module. If @ is a countably generated projective
module with trace ideal contained in 1, then P @ @ ~ P, because Q is a
direct summand of P.

LEmMA 2.2. Let I be an idempotent ideal that is finitely generated as a
left ideal. Then there exists an I-big projective module P such that
Tr(P) = I. Such a module P is unique up to isomorphism.

Proor. By [18, Corollary 2.7], there exists a countably generated
projective module P with Tr(P) =I. Clearly, Tr(P“))=1. If Q is a
countably generated projective module having the trace ideal contained
in 1, then QI = @ and Q is a factor of P, Let P, Ps be I-big modules
such that Tr(P;) = Tr(P2) = I. By Remark 2.1, P; & Ps ~ P;. Similarly,
Py @ Ps ~ Py. Thus Py ~ Ps. O

REMARK 2.3. We have just proved that, for any ideal [ that is a trace
ideal of a countably generated projective module, there exists a unique
countably generated projective module P (up to isomorphism) such that P
is I-big and Tr(P) = I. We will make use of I-big modules over left and
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right noetherian rings. Observe that R is an R-big projective module and
that any R-big projective module has trace ideal R. Therefore any R-big
projective module is isomorphic to R,

We say that a ring R satisfies Condition (*) if for any sequence /1, I5, . ..
of ideals in R such that I I = I},1,k € N there exists » € N such that
I, =1, for any n < k € N. Notice that such a sequence is necessarily a
descending chain.

We will use this condition in the following context: Suppose we have a
countably generated projective module P. Thus P is a direct summand of a
countably generated free module, P & P’ = R®) say. The canonical pro-
jection m: R®™) — P can be written with respect to the canonical basis of
R™ asan N x N matrix A = (a; ;); jex With entries in R. Moreover, A is a
column-finite matrix (that is, for any j € N there exists i € N with a; ; = 0
whenever k > 7). Therefore A? is defined and it is easy to see that A2 = A
(that is, A is an idempotent matrix). Conversely, given any idempotent
column-finite N x N matrix A, the corresponding module P = AR™ is
projective.

Now, let A = (a;;); jex be an idempotent column-finite matrix over R
andlet/, = > Ra;;R, k € N.Foranyk € N there exists an integer

k<ieN,jeN
ny, > k such that a]L ; = O whenever ¢ > n;, and j < k. Since A is idempotent,
we have I, I, = I,,. Hence there exist positive integers m; <mg < ---
such that I, Ly, = Ln,,,. If R satisfies (*), then there exists [ € N such
that I,,, = I,,, for any [ <j € N, in particular, I, = Ly, = L., I, = 12,
ifj > 1. Soif I = NjexIy,;, then I is an idempotent 1deal and I; = [ for almost
allj € N\,

We will say that a projective module P over a ring R is fair-sized if P is
countably generated and the set I(P) := {I | I is an ideal of R such that
P/PI is finitely generated } has a least element. The following lemma
shows that any countably generated projective module over a ring sa-
tisfying (*) is fair-sized. Moreover, the proof reveals the relation between
the smallest element of /(P) and an idempotent matrix representing P.

LEmMMA 2.4. Let R be a ring satisfying (*) and let P be a countably gen-
erated projective module over R. The set{ I | I is an ideal of R such that P/PI
18 finitely generated } has a least element Iy, which is an idempotent ideal.

ProoF. Let A = (a;;); jex be an idempotent column-finite matrix
representing P, and Ik,keN, be the ideals defined above. Set
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Iy = Ngexly. As remarked above, I is idempotent. Let {e; |t € N} be
the canonical free basis of R™) and suppose that Iy =1, = L1 = ...

m—1
Then Y Ae;R + Ply = P, so P/PI, is finitely generated. Let K be an

1=1
ideal such that P/PK is a finitely generated module. Assume
P =ARM™ C R™_ Notice that PK = PN K®, that is, the elements of
PK are exactly the elements of P having all their components in K. If
P/PK is finitely generated, then there exists k € N such that a;; € K
for every ¢ > k and j € . Therefore I, C K. O

Thus if R satisfies (*), every countably generated projective module P
determines a pair (Z, P’), where [ is an idempotent ideal and P’ is a finitely
generated projective module over R/I. More precisely, I is the smallest
ideal of R such that P/PI is finitely generated and P’ is the module P/PI
considered as an R/I-module in the obvious way. If P is a countably gen-
erated projective module, then the corresponding idempotent ideal I is
given by a matrix representing P as I = Ngendy, but the characterization of
I in Lemma 2.4 implies that 7 is independent of the choice of the matrix
(and of the complement P’ in the decomposition P & P’ = R®™).

LEmma 2.5. Let I be an idempotent ideal of a ring R such that I is fi-
nitely generated as a left module and as a right module. If P and Q are I-big
projective modules satisfying P/PI ~ Q/QI, then P ~ Q.

Proor. Let B be the unique I-big projective module having trace
ideal I. Observe that P ® B ~ P by Remark 2.1. If f: P — @ induces an
isomorphism P/PI — Q/QI, then f(P)+ QI = Q. Since Q! is countably
generated and Tr(B) = I, we get an epimorphism /: P & B — @ such that
h|p = f. As f induces a monomorphism P/PI — Q/QI and i(B“) C QI, we
get X = Ker h C PI & B“). Thus X is a direct summand of PI & B®. In
particular, XI = X. Consequently, Tr(X) C I,s0Q & X ~ Q by Remark 2.1.
Finally, @ ~Q ®X ~ P ® B“) ~ P, and @ ~ P follows. O

The following lemma is a straightforward extension of [18, Corollary 2.7].

LEMMA 2.6. Let I be a proper idempotent ideal of a ring R. Assume I
finitely generated as a left ideal. Let P’ be a finitely generated projective
module over R/1. Then there exists an I-big projective module P such that
P/PI~P.
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Proor. We will find a countably generated projective module Py such
thatP()/Pol ~ P

Suppose that P’ is given by an n x » matrix X idempotent modulo 1.
The R-matrix X is a lifting of an idempotent R/I-matrix X. Let
I=1In+---+1i,t,...,5y € 1. Construct a sequence of matrices
A1, As, ... as follows: Ay has ¢; = n columns and r; = In + n rows. The
square matrix given by the first n rows of A; is X, (41);; =0 if
n<t<n+ (G -1 ori>mn+jl, and the remaining entries in each col-
umn are filled with the generators iy, . . ., 7;. That is, the matrix A; written
in blocks is

X
b 0 0 --- 0
06 0 --- 0],
00 0 --- b
where b is the column (iy, . .., i)".

If Aj, 7y, ¢ have been defined, then A;,; has ¢y 1 = 7 columns and
Tiy1 = 7 + by, rows. The n x n top left corner of Ay, is given by the
matrix X and all the other entries in the first v, rows of A;,; are zero. The
remaining I, rows contains %;,...,% placed in each column in the same
“independent manner” as described for A;.

We claim that for any k € N there is a ¢;,1 X 71 matrix By, such that
BiA; 1A, = Ay. Observe that the ¢ x ¢ matrix given by the first ¢, rows
of A, is idempotent modulo 7. We can find an 7, x 7, matrix Cj, such that
Ci A = Ai: The n x n top left corner of Cj, is given by X, the other entries
in the first ¢; columns are zero and the matrix Cj can be completed by
elements of I because I =1t +---+1Ii; and %,...,% are placed in-
dependently in the bottom part of A;. This matrix Cj can be written as
Dy Ay.1, where Dy, is a suitable 7, x 7,1 matrix. (Again we place X in the
top left corner of Dy, and put all the other entries in the first 7, columns of
Dy, equal to zero. The remaining entries can be completed because the
generators of I are placed independently in Aj,;.) Now, since
Ay, = CAy, = DpAp1Ag, put By, = Dy.

View the free module F;, = R% as the set of columns of length c;. Let
Ji: Fr — Fj1 be the homomorphism given by fi(u) = Ay - u for every
u € Fy. By [18, Theorem 2.1], the colimit of the direct system induced by
the fi’s is a projective module Py. Obviously, Py is a countably generated
module. Applying the functor — ®g R/I: Mod-R — Mod-R/I, we see that
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Py/Pyl is an R/I-module isomorphic to the colimit of the system
(R/D" X (R/D" L -, which is easily seen to be X(R/I)" ~ P'. Therefore
P()/P()I >~ Pl.

Finally, by Lemma 2.2, there exists an /-big projective module B such
that Tr(B) = I. Since BI =1, P := Py ® B is an I-big projective module
with P/PI ~ Py/Pyl ~ P'. O

REMARK 2.7. Let us explain the construction in the proof of Lemma
2.6 via an example. Suppose that 7 is a proper idempotent ideal of a ring R
such that I = Ii; + Iip for some 41,12 € I. Let x € R be such that x + [ is an
idempotent element of R/I, i.e., x — «® € I. Then there are t;,t; € I such
that @ = a® + t191 + tais. Further, there are ui,us2,v1,v2 € I such that
U1t + Uzl = 11 and vyt + Vale = 2. Set

X X tl tg xr — 96‘2 tl tg
A1 = il Cl = 0 uyr U2 Ci = 0 u U2 |-
ig 0 V1 V2 0 m V2

Obviously, C1A; = A;. Moreover, all entries of C] are in I. Therefore there
is a3 x 6 matrix T = (t; j)1<i<31<j<¢ Satisfying TA; = C7, where

ii s 00 0 0\"
Ay=[0 0 4 i 0 0] .
0 0 0 0 4 iy

All the entries of T can be chosen in 7, but this is not important. It is easy to
see that C; = B1A4s, where

x 0 0 t11 btz s tia tis lig
Bi={(0 0 to1 l22 23 t2a ta5 tlag

0 0 t31 t32 33 t34 135 U3

SO

x 0 0 4 4 0 0 0 0\’
As=[0 00 0 0 4 i, 0 0] .
0000 0 0 0 i i

The following lemma is, in a sense, a restatement of [3, Theorem 3.1].
We prefer to give a brief but complete proof of the statement for left and
right noetherian rings rather than specifying what should be modified in
the proof of [3, Theorem 3.1] to get a real generalization.
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LEmma 2.8.  Let R be a left and right noetherian ring. Let A = (a; j); jex
be an idempotent colummn-finite matrix. Set I, = > Ra,;R. If there
1>k, jeN
exists ng € N such that I, =1, for every m > ng, then the module
P =AR®™ C R™ is I, -big.

Proor. Set I =1,, and observe that [ is finitely generated as a left
ideal. Let a; be the i-th column of A. We will prove the following claim. For
any n €N there exist meN and n,...,7, € R such that if
171 + -+ A = (6)ien, then I C Y Re;. By induction, deﬁne positive

>n 1+1
integers si,...,si, S7,...,8;, and @1,...,2; € R such that Zszg > Ru;
k =1 i=1
foreveryl <l<kandI C 5 Rux;.
i=1

Put s; =1,s] =nand x; = s, 5, If I C Rxy, we have finished. Other-

wise, suppose we have defined positive integers si,...,s;, si,...,s; and

X1,...,% € R such that I ¢ ZR% Since R is right noetherian, there

exists m; € N such that my > sl and Z ay R= > as jR. Since A is
1< <my
column-finite, there exists m; € N Wlth m; >s; and a;; =0 whenever

it >mjandj < my. AsI C Im«, there exist s;,; > mj, s;11 > myand ;. € B

such that sy st g ZZIRxl Put a1 = sy sia bl
Since R is left noetherian, this process must stop, that is, there exists k
such that I C " Ru;. It follows that there are r,...,7,, € R such that
1<i<k Sk
the si-th component of ) a;r; is a; for any 1 <4 < k. This is obvious for
i=1

k=1. If k>1, note that s; <mj <ss <me < --- <my_1 <5, and
m1— 1
8] <M < Sy < My < < <my_; <s,. Further, Z\as R = Z ag R
m;— J€
and > as R = Z as R if 2<i<k. Moreover, a;; —0 for any
]E\ .7 M 1
1 <j < my and @ > m;. This concludes the proof of the claim.
Now we can construct a sequence pi,pz,... of elements in P,
pi = (¢ji)jen say, such that there exist integers 1=14; <iz < --- with

I CRey+--+Re,,—1) for any k € N and ¢, = 0 for any [ > 4,,. We
proceed by induction again. Put 7; = 1. By the claim, there exists p; such
that I C ) Rc;;. Of course, there exists i3 > ¢; with ¢;; = 0 for every
1> 7:2- JjeN

Suppose we have py,...,p; and iy, ..., %,1. By the claim, there exists
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Pr+1 such that I € 37 Rejjiq. Let 442 > 741 be an integer such that
7>
Cjj+1 = 0 for all j Zii;ﬁrg.

Now, let @ be a countably generated projective module with trace ideal
contained in 7 given by a column-finite idempotent matrix B over R (again,
we consider @ as a submodule of R®™). Since the trace ideal of @ lies in 7, all
entries of B are in 1. Let C be a matrix such that columns of C are given by
P1,P2, ... . The shape of C guarantees the existence of a column-finite
matrix D having all entries in Tr(Q) such that DC = B (it is important to
realize that the elements of D can be chosen in I). Now, let f: R®) — R®)
be given by D. Observe, that @ C f(P) and that if =: R™ — @ is a pro-
jection, then 7f|p is an epimorphism of P onto Q. Hence P is I-big. O

REMARK 2.9. Imitating the proof of [3, Theorem 3.1], we could get the
following. Let R be a ring such that R/J(R) is right noetherian. Let P, I}, be
as above and suppose that [ =1, = I,,;,; = - - - is a finitely generated left
ideal such that I NJ(R) = J(R)I. Then P is I-big. (For I = R we get Bass’
big projectives theorem). Also we could omit the assumption (*) and prove
that P is Nyeniy,-big. We do not give the details because we do not have
applications for this version of Lemma 2.8.

Comparing the definition of I in the proof of Lemma 2.4 and the
statement of Lemma 2.8, we immediately get

COROLLARY 2.10. Let R be a left and right noetherian ring satisfying
(*). If P is a countably generated projective R-module and I is the least
ideal of R such that P/PI 1is finitely generated, then P is I-big.

Obviously, Lemma 2.8 can be applied to study projective (right) mod-
ules over left and right noetherian rings satisfying (*). The following
lemma shows that over these rings we can apply Lemma 2.8 also for pro-
jective left modules. Recall that an N x N matrix A = (a; j); jex is said to
be row-finite if for any ¢ € N there exists j € N such that a;;, = 0 for every
k>7j.

LEmma 2.11. Let R be a left and right noetherian ring satisfying (*).
Let A = (a; j); jen be a row-finite matrix over R such that A% = A. For any
ke Nletl, = >  Ra;;R. Thenthereexistsn € N such that I,, = I, for
any m >mn. JPRIEN
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Proor. Throughout the proof, we will work inside the left module
F = gR™. Let e1, e, ... be the canonical free basis of F'. For any 7 € N, let
a; be the i-th row of A, that is, a; = (a;1,a;2,...) € F. Thus A gives a left
projective module P = FA = > Ra;.Foranyl € Nylet n;: F' — rR! be the

projection given by 7;((x1, %2, le\)) = (a1, . ..,2) (as usual, xR’ is the trivial
left R-module). For any ¢ € N let ¢;: F' — gR be the projection given by
ci((@y, 22, ...)) = ;.

Construct integers 0 =n; <ng < --- and ideals J; D Jz D --- as fol-
lows: Put n; =0 and J; = ) Ra,;;R. Suppose that n; and J; have been

i,jEN
defined. Since R is left noetherian, there exists [ € I\ such that the module
7y, (P) is generated by 7, (1), ..., 7, (). As A is row-finite, there exists

m > ny, such that a;,, =0 for any 1 <1 <[, m' > m. Set ny,; = m. Let
J+1 be the ideal generated by { € R | there exist p € P and 7 € N such
that m,,,(p) = 0 and c¢;(p) = r }. We claim that J;1J;, = Jj41. In order to
prove the claim, it suffices to prove that S C J;1J}, for a set S generating
Jrt1. Let p € P be such that n,, ,(p) = 0. Write p = (0,...,0,7,,,11,...).
Then p =7y, +1(€n,.,+14) + Ty +2(€n, ;. +24) + - - - From the construction
it follows that for any 7 € N there exists p; € P such that =, (p;) = 0 and
Crpy+i(0i) = Cy 4y, +iA) for every j € N. Since ¢, +j(pi) € Jy, the
equation

Yrpr+1 = an_1+z'(]0) = Ty, 1+1Cm.,+1+i((enk ‘ 1+1)A) + Ty +2C0 4 +i((enk , 1+2)A) +--

implies that Jj 1 = Jp11Jp.

As R satisfies (*), there exists m € N such that J,, =J, 1 =
Clearly, J;. C I, for any k € N. On the other hand, I,,,, C J,,. This con-
cludes the proof of the lemma. O

Let R be a ring, let V,.(R) be a set of representatives of the finitely
generated projective right B-modules, V;(R) be a set of representatives of
the finitely generated projective left R-modules, V,(R)" be a set of re-
presentatives of the countably generated projective right modules and
Vi(R)* be a set of representatives of the countably generated projective left
R-modules. In the following theorem we consider V,.(E/R) and Vi(R/R) as
sets containing one element.

THEOREM 2.12. Let R be a left and right noetherian ring satisfying (*).
Let 1d(R) be the set of its idempotent ideals and let S be the disjoint union
L'J]dd(R)VV(R /I). Then there is a bijection ¢:V,.(R)" — S. Moreover, there
exists a bijection between V,(R)* and Vi(R)" extending the classical bijec-
tion between V,.(R) and Vi(R) induced by Homg(—, Rpg).
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Proor. By Corollary 2.10, any countably generated projective right
module P is I-big, where [ is the least ideal such that P/PI is finitely
generated. We know that I is idempotent. This gives a map of V,.(R)" into S.
This map is a bijection by Lemmas 2.5 and 2.6.

Of course, all the results of this section can be formulated for left
modules. We do not know whether condition (*) is equivalent to condi-
tion (*’): Let I, Io, ... be a sequence of ideals such that Il;,; = I}, for
any k € N. Then there exists » € N such that I, = I,,,; = ... Condition (*)
is connected to right modules while (*’) is connected to left modules.
Therefore it would be more precise to talk about condition right (*) instead
of (*). In order to be concise, we have omitted the word “right”, but the
reader should be aware that this condition has to be changed formulating
the versions of the results for left modules. However, we can use Lemma
2.11 and the “left version” of Lemma 2.8 to see that any countably gen-
erated projective left module @ is /-big, where [ is the least ideal such that
Q/1Q is finitely generated. Again,  is idempotent and finitely generated as
a right module, therefore the “left versions” of Lemma 2.5 and Lemma 2.6
give a bijection of V;(R) and the disjoint union Uleld(R)Vl(R /I). The bi-
Jjection between V() and V}(R), then follows from the dualities between
finitely generated projective left and right R /I-modules, where I varies in
Id(R). O

REMARK 2.13. Observe that if R is a left and right noetherian ring
having (*), then every indecomposable projective module is finitely gen-
erated. Although we think that (*) is a very particular property (see [8] for
examples of rings having infinite properly descending chains of idempo-
tent ideals), it seems to occur quite often in natural examples of left and
right noetherian rings.

3. Semilocal noetherian rings.

Recall that a ring R is said to be semilocal, if the factor of R modulo its
Jacobson radical is semisimple artinian. Throughout the paper, J(R) de-
notes the Jacobson radical of R. If P,Q are projective modules, then
P/PJ(R) ~ Q/QJ(R)if and only if P ~ @ [13, Theorem 1.3]. In this section,
we show that semilocal left and right noetherian rings satisfy (*), so that
any countably generated projective module over such a ring is fair-sized.
Further, we show a connection between the pair (I, P/PI) defined in the
previous section and the semisimple module P/PJ(R). Finally, we give an
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example of superdecomposable projective module over a semilocal noe-
therian ring.

Recall that if P is a projective module over R, then the intersection of all
maximal submodules of P, called the radical of P, is rad(P) = PJ(R). If R is
semilocal and Sy, . .., S}, are representatives of the simple R-modules (that
is, for any simple R-module S there exists exactly one 7 € {1,...,k} with
S ~ S;), then for every projective module P there are cardinals 4y, ..., A,
uniquely determined, such that P/PJ(R) = S;’“) DD Sffk). We will write
dim(P) = (44, ...,4). Clearly, dim depends on the ordering of the re-
presentatives of the simple R-modules. Therefore we will always suppose
that with any semilocal ring R we have some fixed ordering on the set of
representatives of the simple R-modules. By [13, Theorem 1.3], two pro-
jective R-modules P and @ are isomorphic if and only if dim(P) = dim(Q).

LEmmA 3.1. Let R be a right noetherian semilocal ring. If I and K are
idempotent ideals of R such that I +J(R) =K + J(R), then [ = K. In
particular, R has only finitely many idempotent ideals.

ProoF. Since R/J(R) has only finitely many (idempotent) ideals, it is
enough to show that I + J(R) = K + J(R) implies I = K whenever I and K
are idempotent ideals of E.

First suppose that I C K are idempotent ideals of R. In particular,
KI =1. Suppose that I+ J(R)=K+JR). Then K =KK + J(R))
= KU +JR)) =1+ KJ(R). Since R is right noetherian, Nakayama’s
Lemma gives I = K.

In general, suppose that I and K are idempotent ideals of R with
I+ JR) =K+ J(R). Then I and I + K are idempotent ideals of R such
that I +J(R)=1+ K+ J(R). By the previous step, I =1+ K, and
therefore K C I. The proof for I C K is similar. O

COROLLARY 3.2. Let R be a right noetherian semilocal ring. Then R
satisfies condition (*).

Proor. Let m:R — R/J(R) be the natural projection. Consider a
descending sequence of ideals in R such that I (I = I;,;. Since
n(l1),n(l),. .. is a descending sequence in an artinian ring R /J(R), there
exists ko € N such that n(ly) =n(l,) for every k>ko. Then I
=l 11 +J(R)) = I%H + I 1J(R) for every k > ky. By Nakayama’s
Lemma, we see that I; is idempotent for any k > ky. Now conclude by
Lemma 3.1.
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The following lemma and its application was suggested by Dolors
Herbera.

LEmMa 3.3. Let P be a projective R-module with trace ideal I and let S
be a simple R-module. The following conditions are equivalent.

@) S s a factor of Ig.
(ii) S is a factor of P.
(i) SI =S.

Proor. (i) = (ii) Suppose that f:I — S is nonzero. Then f(i) # 0 for
some ¢ € I. Since [ is the trace ideal of P, there are homomorphisms
91,---,9k: P — I and py,...,p; € P with g1(p1) + - - - + g1(px) = 2. There-
forefg; # 0forsome 1 < j < k. (Observe that we did not use P projective for
this implication.)

(ii) = (iii) Follows from PI = P.
(iii) = (i) Let f: Rg — S be nonzero. Then f(I) = S, because SI = S. O

ProPOSITION 3.4.  Let R be a semilocal left and right noetherian ring.
Suppose that P is a countably generated projective module. Then there
exists a least ideal I in R such that P/PI is finitely generated.

Moreover, let {Si,...,S;} be a set of representatives of the simple
modules, indexed in such a way that P/PJ(R)~S7'&---&S' &

&S @ @S, m,...,m €Ny, 0< 1<k Then:

@) P s I-big,
(i) S; = Sil if and only if 1 >,
(iii) P/PI/rad(P/PI) ~S!" & - &S}’

Proor. We have seen in Corollary 3.2 that R satisfies (*). By
Lemma 2.4, there exists I such that P/PI is finitely generated and [ is
contained in any other ideal K such that P/PK is finitely generated.
Moreover, P is I-big according to Corollary 2.10. Since [ is finitely
generated as a left ideal, there exists a unique /-big projective module B
with trace ideal I and P @ B ~ P according to Remark 2.1. By Lemma
3.3, if S is a simple module, then S is a factor of P (and hence of
P/PJ(R)) whenever SI = S. Choose an enumeration of the simple mod-

ules such that Si,...,S; are annihilated by / and S;,4, ..., Sy, are factors
of I. Let 0 < /i,..., % < oo be such that P/PJ(R) ~ S & ... @ SY¥.
As remarked above, A, =---=/Jy=00. On the other hand,

SM @ ... @8 is a factor of P annihilated by I, hence a factor of P/PI.
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Thus Ji,...,4 are finite. Suppose P/PI/rad(P/PI)~S}" &---®S/".
Since S' @ ---®S;' is a semisimple factor of P/PI, J; <mn; for any
1<i<!. On the other hand, S" & --- @S}” is a factor of P, so that
n; < J; for every 1 <1 <. O

Recall that a nonzero module is called superdecomposable if it has no
indecomposable direct summand. The following lemma explains our crav-
ing for the existence of superdecomposable projectives over semilocal
rings.

LemMa 3.5.  Suppose that there exists a superdecomposable projective
module over a semilocal ring R. Then R possesses a nonzero decomposable
projective module having all its nonzero direct summands isomorphic.

Proor. By the theorem of Kaplansky, if there exists a super-
decomposable projective module, then there exists a superdecomposable
countably generated projective module. It follows easily that then there
exists a superdecomposable countably generated projective module @ such
that dim(Q) = (m, ..., my), where m; = 0 or m; = wforany 1 <7 < k (use
the additivity of dim). Let @' be a superdecomposable module such that
dim(Q’) has all components in {0, w} and the number of nonzero compo-
nents is as small as possible. Then it is easy to see that dim(Q") = dim(Q")
for any nonzero direct summand of €', so [13, Theorem 1.3] gives that @' has
the required property. O

The following example discovered by Puninski [12] shows that a su-
perdecomposable projective module may exist even over a semilocal noe-
therian ring.

ExampLE 3.6 (cf. [12, Proposition 7.5]). Let 2 =7\27ZU3ZUb7Z
and let Zy be the localization of integers at X. Let A; be the group of even
permutations on the set of cardinality 5. Then the group ring Zs[A5] is a
semilocal left and right noetherian ring with a superdecomposable projec-
tive module.

Proor. Wewillrepeat general arguments of [12] that show that the ring
R = 75[A5]is a semilocal left and right noetherian ring. First, R is a finitely
generated as a (left and right) module over the commutative noetherian ring
7.5, therefore R is noetherian on both sides. Further, R ~ Endgr(Rg), so that
there exists an injective homomorphism ¢: R — End,(R) given by the left
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multiplication of R on R7,. For any g € A5, let 0, € Endz, (R) be given by
0,(r) =rg,r € R. Obviously, Im ¢ consists exactly of the elements of
Endy, (R)that commute with allthe endomorphisms of theset { 0, | g € A5 }.
It follows that ¢ is a local homomorphism, that is,  is invertible in R if p(r) is
invertible in Endy,.(R). Finally, since End;,(R) ~ Mg(Zyx) is a semilocal
ring, the ring R is also semilocal by [4, Theorem 1].

Let I be the augmentation ideal of R, that is, the kernel of the epi-
morphism f: R — Zz,f( > rgg) = ) 1,.Since[A5,A5] = A5, theideal I

9€As g€As

is idempotent [1, Theorem 2.1]. By [12], it can be proved that every non-
zero finitely generated projective module over R is a generator. In fact, we
only need to show that if P is a finitely generated projective R-module,
then Tr(P) cannot be contained in I: Since 75 is a Dedekind ring of zero
characteristic and 2,3,5 are not invertible in 75, P’ = P ®7,4,] Q[45] is a
free Q[As]-module by [16, Theorem 8.1]. If Tr(P) C I, then P'I' =P,
where I’ is the augmentation ideal of Q[A5], a contradiction. Let € be a
projective module having trace ideal /. If @' is a nonzero direct summand of
Q, then @' cannot be finitely generated, and there is a nonzero idempotent
ideal K such that @' is K-big. Therefore @ cannot be indecomposable. [J

REMARK 3.7. In the next section we look closer at the localizations of
7[A5] showing that the augmentation ideal of 7 s[A5] contains no non-
trivial idempotent ideals.

4. Integral group rings, especially Z[A5].

In this section, we prove that an integral group ring of a finite group
satisfies condition (*). The proof presented here is not the quickest one,
but it shows how to calculate idempotent ideals in particular examples. We
apply this method to 7Z[A5] describing all countably but not finitely gen-
erated projective modules up to isomorphism. Qur approach will be ele-
mentary.

First of all, let us introduce the notation we will use throughout this
section. Let G be a finite group and R = Z[G], R, = Z,|G], Ry = Q[G].
For any prime p we have R C R, C R,. If I is an ideal of R, I, stands for
the ideal in B, generated by I and (g stands for the ideal of I generated
by I. That is, I,y = ZI and Iy = (OI. We say that an ideal I C R (or an
ideal I C R,) extends to an ideal K C Ry if K = Q[. If S is a commutative
ring, the augmentation ideal of S[G] is the kernel of the canonical
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homomorphism f: S[G] — S given by f ( > sgg) = > s4. It is denoted by
Aug(S[GY. geG 9<G
In the following we summarize the framework of our calculations.

Fact 4.1. Let G be a finite group and let R = 7[G]. Then

() If I is an ideal of R, then I = Q) for every prime p.
(i) Let I,K be ideals in R. Then I = K if and only if Iy = K, for
every prime p.

(i) If I C R is an ideal, then I is idempotent if and only if Iy is
idempotent for every prime p.

(iv) If I, K are idempotent ideals of R and p a prime not dividing |G,
then Iy = Ky if and only if 1oy = K. In this case, all central
tdempotents of Ry are contained in R, and every idempotent ideal
of R, is generated by a central idempotent.

(v) Let e be a central idempotent of Ry and suppose that, for every
prime p that divides |G|, there is an idempotent ideal I, C R, with
QI, = eRo. Then there exists a unique tdempotent ideal I C R
such that I, = I, for any p| |G| and I,y = eR,, for any p f|G|.

Proor. Statements (i), (i), (iii) and (v) are rather standard. Statement
(iv) follows from the fact that 7,)[G]is a maximal 7Z,y)-order in Q[G] if and
only if p does not divide |G| (see [5, Proposition 27.1]) and using the ma-
chinery of maximal orders.

Here we give another proof of (iv). Let Q C F' be a finite Galois ex-
tension of Q such that F is a splitting field of G. Recall that if ¢ is a complex
character of a simple representation of G over F' (considered as a function

&G — F), then % ( 3 f(gfl)g) is a primitive central idempotent of
eG

F[G]. In order to get tghe set of primitive central idempotent of Q[G],

consider the usual action of Gal(¥ : Q) on the set of primitive central

idempotents of F[G] and take sums of the orbits. It follows that if p is a

prime and p [|G|, then any central idempotent of Ry is in E,.

Let I be an idempotent ideal of R, where p is a prime not dividing |G|.
Then QI is an ideal of R generated by a central idempotent e of R. Since
e € Ry, K =eR, is an idempotent ideal of R,, necessarily I C K because
el = 1. Since QI = QK, there exists k € N such that p*K C I. As ZplGlis
semisimple, idempotent ideals in Z,:[G] are generated by central idempo-
tents for any n € N (combine [2, Proposition 27.1]and [10,22.10]). Moreover,
it is easily seen that if K’ is an idempotent ideal of 7Z,.[G], then p"K' is an



Fair-Sized Projective Modules 157

essential submodule of K'. Now let n: R, — szk[G] be the canonical pro-
jection. Then p*n(K) C n(I) C n(K). By our previous remarks, (/) = n(K).
Since R, is a semilocal noetherian ring and n is an epimorphism with
Ker n C J(R),) (Fact 4.3), I = K follows from Lemma 3.1. O

The following result also follows from [15, Theorem 3].

COROLLARY 4.2. Any integral group ring of a finite group satisfies (*)
and has only finitely many idempotent ideals.

Proor. Since R is a ring of Krull dimension 1, it is enough to see that
R has no descending chain of idempotent ideals. Let I be an idempotent
ideal, let e be a central idempotent of Ry such that eRy, = Q. Then
1) = eR,, for every prime p not dividing |G| by Fact 4.1(iv). If p is a prime
divisor of |G|, then we have only finitely many possibilities for I, by
Lemma 3.1. Therefore, by Fact 4.1(v), R contains only finitely many
idempotent ideals. O

The proof of Corollary 4.2 shows a method of finding idempotent ideals
in R. We can proceed as follows: Take an ideal I of Ry. Let P be the set of
prime divisors of |G|. For any p € P, determine the set M), consisting of the
idempotent ideals of R, that extend to /y. Then there is a bijective cor-
respondence between the idempotent ideals of R extending to I, and the
set [[ M,.

peP

Thus we can now work in semilocal localizations (see [5] or use the same

kind of arguments as in Example 3.6).

Facr 4.3. The natural homomorphism my:R, — 7,[G] is a local
morphism for any prime p. In particular, pR, C J(Ry) and R, is a
semilocal ring.

Let us show the method in the case of G = As, the alternating group on
5 elements. The usual question “Why A5?” has a simple answer. By a result
of Swan [17], non-finitely generated projective modules over integral
group rings of finite solvable groups are free. Therefore there are no
proper idempotent ideals in integral group rings of finite solvable groups (a
direct proof of this was given by Roggenkamp [14]). On the other hand, it is
known [1] that if G contains a perfect normal subgroup H, that is,
[H,H] = H and H 2 G, then the augmentation ideal of H (that is, the kernel
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of the canonical homomorphism Z[G] — Z[G/H]) is idempotent. If there
were no other idempotent ideals in Z[G], then countably generated pro-
jective modules over Z[G] would be induced by finitely generated pro-
jective modules over Z[G/H], where H ranges in the set of perfect normal
subgroups of G. So A; is the first candidate to check. Unfortunately, we
will see that there indeed exists an idempotent ideal that is not the aug-
mentation ideal of a perfect normal subgroup. Hence the structure theory
for big projective modules over integral group rings seems to be more
complicated.

Throughout the next paragraphs, suppose G = A;. The conjugacy
classes of G are the following: c¢; - the conjugacy class of the identity; co -
the permutations that are product of two 2-cycles (the conjugacy class of
(1,2)(3,4)); cs - all 3-cycles; c5 - the conjugacy class of (1,2,3,4,5); and cj, -
the conjugacy class of (1,3,5,2,4).

Let us recall what we know about the semisimple ring Ry. The primitive

1 1
central idempotents of Ry aree; = — > g,e3 = — (6 -2 9+ X g),
60 9eG 20 gecs gecsUe
1

1

_B (4+g§39 — gec%icgg) ,65 = E (5 —&—g%;zg — g;sg) Let Tl, Tg, Tz7 T5
be the corresponding simple modules (e; corresponds to 7). Their dimensions
over Q arel,6,4,5.

We need to calculate the idempotent ideals in Ry, R3, Rs. Set
S; = 7;[As] for 1 = 2,3,5. By Fact 4.3, any simple S;-module can be con-
sidered as a simple R;-module and there are no other simple R;-modules
except for these. In order to find the number of different simple modules
over R;, one can use the following results proved by Berman and Witt (see
[5, Theorem 21.5, Theorem 21.25]).

€2

Facr 4.4. Let G be a finite group of exponent m.

(i) Let ~ be the relation on G given by g ~ h if g is conjugate to h' for
some t € N, (t,m) = 1. Then the number of simple Q[Gl-modules is equal
to |G/ ~|.

(i) Let p be a prime, and Gy the set of p-reqular elements of G. On the
set Gy consider the equivalence ~ defined by g ~ h if g is conjugate to h”
for some j € No. Then the number of simple Z,[Gl-modules is equal to
Gy /[~ |

Thus each ring Ry, R3,Rs has exactly three non-isomorphic simple
modules. Now idempotent ideals in semilocal rings are determined by their
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simple factors (Lemma 3.1). Call a ring T almost semiperfect if for any
simple T-module M there exists a positive integer % such that M" has a
projective cover. The next lemma describes the distribution of idempotent
ideals in R;, for 7 € {2,3,5}. In all the remaining proofs of this section, /;
stands for Aug(R;).

Lemma 4.5. Let i€ {2,3,5}. The ring R; has exactly 3 minimal
idempotent ideals and any nonzero idempotent ideal of R; is a sum of
mainimal idempotent ideals. Moreover, R; is almost semiperfect and any
idempotent ideal of R; is a trace ideal of a finitely generated projective
module. Finally, two minimal idempotent ideals are described as follows:
If I, is the augmentation ideal of R;, then e;R; and (1 — e;)I; are minimal
idempotent ideals of R;.

Proor. We give the proof for i = 5, the remaining cases are similar.
The augmentation ideal I5 C Rj; is idempotent, because Aj is perfect. Ob-
serve e; € Rs5. Therefore also e; R5 and (1 — e5)[5 are idempotent ideals. Let
M1, M2, M3 be the set of representatives of the simple R5-modules and
suppose that M is the module induced by the trivial representation of S;.
Obviously, M1I5 = 0, so M; is not a factor of I5. Since /5 must have at least
two simple factors (it contains two different nontrivial idempotent ideals),
My, M3 are both factors of I5. Choose the notation in such a way that M,
is the unique simple factor of (1 — e5)I5 and M3 is the unique simple factor
of 65R5.

Obviously, esR5 is the trace ideal of the projective module e;R5. Set

1
g = (1,2)(3,4). The idempotent ¢’ = (1 — 65)(1 — §(1 +g)) gives a projec-

tive Rs-module P’ =¢'R; with trace ideal (1 —es5)I5. It follows that
P'/PJ(R5) = M’zc,for some k € N (it is necessary to check that P’ # 0, below
we calculate 7-rank of P’ using the so called Hattori-Stallings map).

On the other hand, the projective module P = (1 — e;)R5 has the radical
factor P/PJ(R;5) = My ® M}. Therefore P" splits in P¥, that is, there exists
a projective module @ such that P¥ = P @ Q. Since Q/QJ(R5) ~ M¥, it
follows that Tr(Q) is an idempotent ideal such that M, is its only simple
factor.

So we have proved that the finitely generated projective modules
Q, P esR; are the projective covers of convenient finite powers of
My, My, M3 and Ry is almost semiperfect. Therefore Tr(Q), Tr(P’) and
Tr(esR5) are the minimal idempotent ideals of R5 and any nonzero idem-
potent ideal of R5 is a sum of minimal idempotent ideals. O
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LEmMa 4.6. The only idempotent ideals of R = 7[As] contained in
Aug(R) are 0 and Aug(R).

Proor. Set I = Aug(R) and let 0 # K be an idempotent ideal of R
contained in /. Then Kj; also is a non-zero idempotent ideal of R; contained
in I;, hence, by Lemma 4.5, QK; is either e;Ry, (e2 + es + e5 — ;)R or
Iy = (e2 + e3 + e5)Ry. Now QK = QK5 = QK = QK. An easy in-
spection gives that the only possibility is Ky = I; for any i € {2,3,5}.
Therefore K = I by Fact 4.1(v). O

For any ¢ € {2,3,5}, let K; be the (unique) minimal idempotent ideal of
R; that is not contained in the augmentation ideal of R;. In order to classify
the idempotent ideals in R that are not contained in the augmentation ideal
of R, we must determine QK,, QK3 and QKj5. Let us prove an auxiliary
general result, which is probably well known.

LEmMMmA 4.7. Let ¢:S — T be a ring homomorphism. If P is a projective
S-module with trace ideal I, then P ®g T is a projective T-module with
trace ideal To(D)T.

Proor. Let X be a set and let 7: S® — S® be an idempotent en-
domorphism of SY such that n(S¥) ~ P. If r is expressed as a column-
finite idempotent matrix A (with respect to the canonical basis), then ¢p(A) is
an idempotent matrix corresponding to the endomorphism ’: 7@ — 7
such that P g T ~ /(T¥). Now Tr(P) (resp. Tr(P ®g T)) is the ideal
generated by the entries of A (resp. p(A)). O

Facr 4.8. Let S be a commutative local ring and let H be a finite

group. Suppose that e = > sph is an idempotent of S[H]. The module
heH
eS[H] is free when considered as an S-module. Moreover, |H|s; = n - 1g,

where n € Ng 1s the rank of the free S-module eS[H].

Proor. This is a consequence of [7, Example 7]. Let us briefly explain
the idea. Let T'be a ring and T'/[T, T] be the group that is the factor of the
additive group of 7" modulo [T, T]1= ({ tits — tet1 | t1,ta € T }>(T7 +)- There
exists a map r: Ko(T) — T/[T, T] defined as follows. Let P be a finitely
generated projective module over 7' and A an idempotent matrix re-
presenting P. Then r([P]) := Tr(A) + [T, T'] (here Tr(A) is the sum of the
diagonal entries in A).
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Since S is a local ring, Ko(S) ~ 7. As S is commutative, 7 is a well de-
fined map of Ky(S) into S. It follows that Im » C Z1s. Now view S[H] as a
free S-module of rank |H|. The left multiplication by e gives an idempotent
endomorphism o of this S-module whose image is eS[H]. Now compute
r([eS[H]]). Consider the matrix of o with respect to the basis {% | h € H }.
All the diagonal entries of this matrix are equal to s;. Therefore
|H|.s1 =n - 1g, where n is the rank of the free S-module eS[H]. O

Now we can continue in 7Z[A5]. In the following proofs /; is again the
augmentation ideal of R; and S; = 7;[A5] for every i € {2,3,5}.

LEMMA 4.9. Let K5 be the minimal idempotent ideal not contained in
Aug(R5). Then QK5 = (e; + e2)Ry.

Proor. Let My, My, M3 be the simple Rs-modules such that M is a
unique simple factor of Kj, My is a unique simple factor of (1 — e5)/;
and M3 is a unique simple factor of esR5;. Let g = (1,2)3,4). Then
e =»1- 65)(1 - %(1 + g)) gives a projective Rs-module P’ = ¢'R; with
trace ideal (1 — e5)/5, so it follows that P'/P'J(R5) = M’g for some k € IN.
Moreover, if P = (1 — e;)R5, then P/PJ(R5) ~ M; @Mé for some [ € I\.
We want to determine k and [. The integer [ is given by the multiplicity of
Mo in S5/J(S5). Any simple Ss-module is absolutely simple, therefore [ is
equal to the dimension of the non-trivial simple representation that is
annihilated by e5. By [18, page 201], [ = 3. Obviously, P’ is a direct sum-
mand of P, and k € {1,2, 3} follows. Using Fact 4.8, we have that the 7Z)-
rank of Pis equal to 35 and the 7 )-rank of P’ is equal to 20. If k¥ = 1, then
P’ would be a direct summand of P, which is not possible. Further, con-
sider the Ss-module P'/P'5R5. This is a vector space over 7 of dimension
20. If k = 3, then P'/P'5R5 ~ M3, where M is an Ss-module which is a
projective cover of My if My is considered as a simple S;-module. Since 3
does not divide 20, this is also impossible. Therefore k = 2.

As we have shown in the proof of Lemma 4.5, Kj is the trace ideal of @,
where @ is a projective module defined by the relation Q © P ~ P%. By
Lemma 4.7, QK5 = Tr(Q ®g, Eo). The module @ ®p, Ry has Q-dimension
10 and contains the trivial representation of Ry with multiplicity 2. The
only possibility (looking at the (Q-dimension of the simple Ej-modules) is
Q@RF,R()ET%EBT%. O

LEmMA 4.10. Let K3 be the minimal idempotent ideal of Rg that is not
contained in Aug(Rs). Then QK3 = e Ry + e5Ry.
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ProOF. Pute=1-e3,9=(1,2)3,4) and h = (1,2, 3,4,5). These ele-
ments of G give idempotents ¢’ = e(l — %(1 + g)) andf’ = e(l — %(1 +h+
SRR+ h4)). Let P' = ¢/Ry, P" = f'Ry and P = eRs. Let My, My, M be
the simple R3-modules such that M; is a unique simple factor of K3, My is
a unique simple factor of els and M; is a unique simple factor of esRs.
Again we want to find k,l € N such that P/PJ(R3) ~ M; @ M, and
P'/P'J(R3) ~ ME.

Consider the module M over Ss given by the obvious action of A5 on the
vector space {(z1,...,25) € Zg | 1 +---+25 =0} (that is, if x € A5, then
(1, .- -,25)% = (Ry1), - - - » Za(5)))- The module M can be viewed as an abso-
lutely simple representation of As over Zg and its dimension is 4. Now
consider M as an R3-module via the canonical epimorphism n: R3 — Ss.
Then M is a simple R3-module annihilated by es, therefore M ~ M,. It
follows that the multiplicity of Mz in Rs/J(Rj3) is 4, therefore [ = 4.

Since P’ is a direct summand of P, k € {1,2,3,4}. Using Fact 4.8, we get
dim,P/P(3Rs) = 42, dimy, P’ /P'(3R3) = 18, dim,P"/P"(3R3) = 36. Now
the only simple factor of P’ and P” is Ms, so that P” ~ P2, Thus P”? is a
direct summand of P, and therefore k € {1,2}. If k = 1, then P*® would be a
direct summand of P and this is not possible, because 42 < 3 - 18. There-
fore k =2 and there exists @ such that P~ P? ¢ Q. The semisimple
module @ ®g, Ry has its ()-dimension equal to 6 and the multiplicity of T4
in Q®g, Ry is 1. The only possibility is @ ®g, Ry ~ T1 & T5. Hence
QTI’(Q) = 61R0 + 65R(). O

LEmMA 4.11.  Let Ko be the minimal idempotent ideal of Ry that is not
contained in Aug(Ry). Then QK3 = e1Ry + e3R + esRy.

Proor. Let My, My, M5 be the simple Ro-modules such that M, is the
simple factor of Kz, My is the simple factor of (1 — e2)I2 and M3 is the simple
factor of eaRs. Lete =1 — e9, ¢’ = e(l — %(1 +9g+ gz)),whereg =(1,2,3).
Put P=eRs, P' = ¢'Ry, so that P/PJ(Rz) ~ M, ®M) and P'/P'J(Rs) ~ ME.

Let F be a field given by adjoining a primitive fifteenth root of one to
7.9. By [18, page 200], the ring F' ® S2/J(S2) has two 2-dimensional simple
modules and they are annihilated by es (because they appear as composi-
tion factors of a representation annihilated by ez). Therefore F' @ My is a
direct sum of these two representations. Thus the Zo-dimension of M is 4,
but the multiplicity of My in Sa/J(S2) is 2. It follows that [ = 2.

Using Fact 4.8, we get that the Z)-rank of P is 44 and Z)-rank of P’
is 32. Therefore P cannot be a direct summand of P and k = 2 follows.
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Then P~P ®@Q for some @ and K, =Tr(Q). By Lemma 4.7,
QKp = Tr(Q ®g, Ro). Observe that @ ®p, Ry has Q-dimension 12 and
contains 77 with multiplicity 1. The only way of writing 11 as a sum of
multiples of 6 and 5 is 11 = 6 + 5. Therefore Q ®g, Ry ~ T1 & T5 ® Ts and
QK5 = (e + e3 + e5)Ry. O

Now we can finish the classification of the idempotent ideals in Z[A5].

ProposiTiON 4.12. The idempotent ideals in R = 7[As5] are
0,Aug(R), X and R, where X # R and QX = Q[As].

Proor. The idempotent ideals contained in Aug(R) were classified in
Lemma 4.5. Let K be an idempotent ideal of R not contained in Aug(R).
Then for any 7 € {2,3,5}, K(;) is an idempotent ideal of R; not contained in
Aug(R;). By Lemma 4.9, we have e € K, by Lemma 4.10, we have
es5 € K and by Lemma 4.11, we have e3 € K(g). It follows that K = Q[As5].

If L is an idempotent ideal of R5 such that QL = Q[A5], then L = R5 by
Lemmas 4.5 and 4.9. Similarly, if L is an idempotent ideal of E3 such that
QL = Q[A5],then L = R3by Lemmas4.5and 4.10. Butif L is anidempotent
ideal of Ro such that QL = Q[As5], then either . = Ry or L = Ky + eaRo by
Lemmas 4.5 and 4.11. Therefore there exists an idempotent ideal X C R
such that X(z) =Ko+ 62R2, X(g) = Rg and X(5) = Rs. ]

Finally, we can classify the non-finitely generated projective modules
over Z[As5].

THEOREM 4.13. The countably but not finitely generated projective
modules over R = 7[As] are the following: Let I = Aug(R) and let X be the
other non-trivial idempotent ideal of R. Let By be the unique I-big pro-
jective R-module with trace I, and let Bx be the unique X-big projective
module with trace X. Apart from these, there is an X-big projective module
P such that P/PX is the unique indecomposable projective module over
R/X. Then:

(1) Any countably generated projective module over R that is neither
free nor finitely generated has a unique decomposition as a sum
Q& F, where Q € {Bx,Br, P} and F is a finitely generated free
module.

(i) By ® B ~ R and B; ® P ~ R,
(i) PoBx ~Pand P®P ~ R @ By.
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Proor. Let M be a countably generated projective module over R.
Since R has (*), there exists a least ideal K such that M /MK is finitely
generated. If K = 0, M is finitely generated. If K = R, then M is R-big and
hence free. If K = I, then M /M1 ~ 7" for some n € Ny, because R/I ~ 7.
Since N = B; @ R" is a countably generated projective module such that 1
is the smallest ideal of the set { L ideal of R | N/NL is finitely generated }
and N/NI ~ M /MI, by Lemma 2.5 and Corollary 2.10, we have M ~ N.
Clearly, for every m,n € N, one has By ® R" ~ B; @ R™ if and only if
m =n.

The remaining case is X = K. Recall that X, = R, for any prime dif-
ferent from 2. It follows that there exists k € N such that 2¢ € X. Now
R/X ~ (R/2R)/(X/2"R) ~ (R2/2"R»)/(X12)/2FR5). Let S = 7x:[As5], let
7: Ry — S be the canonical epimorphism and let X’ = n(X(2)). From the proof
of Lemma 4.11, we know that S/J(S) ~ M; & M% ® My for some n € N (in
fact n = 4, but we do not need this) and the M, M3 are the simple factors of
X'. Now S/J(S)/X" + J(S)/J(S) ~ (S/X")/(J(S/X")) ~ Ma(Ends(Mz)). It
follows that B /X is a homogeneous semilocal ring with an indecomposable
projective module P’ satisfying P? ~ R/X. The module P’ gives a unique
countably generated projective module P such that P is X-big and
P/PX ~P'. Since P& P' ~ R/X, we get P& P ~ Bx & R. The relation
Bx @ P ~ P holds because P is X-big.

It remains to prove the relations in (77). Since a direct sum of an
X-big module and an I-big module is R-big, these relations follow
immediately. O

5. One more application.

Finally let us consider universal enveloping algebras. Let g be a Lie
algebra over a field k and let X be a basis of g. A universal enveloping
algebra of g, denoted by U(g), is a factor of the free k-algebra over X
modulo the relations xy — yx = [x,y] (x,y € X). If g is a nilpotent Lie al-
gebra of finite dimension, then U(g) is a left and right noetherian AR-
domain (see [11, Section 4.2] for the definition). It follows that all infinitely
generated projective modules are free [12, Lemma 8.6]. The AR-property
does not hold for solvable Lie algebras in general, but property (*) does.
This enables us to prove that infinitely generated projective modules are
free over U(g) if g is a solvable Lie algebra of finite dimension and k has
characteristic zero. This concludes the proof of [12, Conjecture 8.5], stating
that a finite dimensional Lie algebra over a field of characteristic zero is
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solvable if and only if any (left and right) projective module over U(Q) is a
direct sum of finitely generated modules.

We say that a ring R satisfies strong (*) if every sequence of ideals
I, 1o, ... C R satisfying I, 11, = I;.,1, k € N has either I, = R for every
k € N or there exists [ € N such that I; = 0. Let us point out the following
straightforward consequence of Bass’ theorem [3, Theorem 3.1].

LEMMA 5.1. Let R be a left and right noetherian ring satisfying (*).
Then the following are equivalent:

() R satisfies strong (*).
(ii) The only idempotent ideals of R are 0 and R.
(iii) Ewvery projective module over R is either finitely generated or free.

LEmMA 5.2. Let S be a noetherian domain and let D:S — S be a de-
riwation on S. Let R = Splx] be the corresponding skew polynomial ring. If
X and Y are ideals of R such that XY = X and X is nonzero, then Y con-
tains a constant polynomial.

Proor. Let K be the (left and right) quotient field of S and D:K - K
the derivation extending D. Then R can be considered as a subring of the
(left and right) principal ideal domain R = Kz[x]. Let X be the ideal of B
generated by X and let Y be the ideal of R generated by Y. Using the di-
vision algorithm one can check that X = {s 'p|0#se€S,pec X} and
Y={ps'|0#scS,pecY}. Considering the degrees of the poly-
nomials, X # 0 implies Y = R. But then Y must contain a polynomial of
degree 0. O

ProprosITION 5.3.  Let S be a noetherian prime algebra over Q satisfy-
g strong (*). Suppose that D: S — S is a derivation on S and R = Splz]
18 the corresponding skew polynomial ring. If every prime ideal of S is
completely prime, then R satisfies strong (*).

Proor. Let 11,15, ... be a sequence of nonzero ideals in R such that
I, I, = I, for every k € N. We have to prove that I = R for every
k € N. For any ideal I C R, consider the smallest ideal ¢(/) of S such that
IC Zc(l)mi. Observe that c(I;1)c() = c(Ix,1) and c(I}) # 0 for every
i=0
k € N. Therefore the strong (*) in S implies c¢(I;;) = S for every k € I\.
Now let @ be a prime ideal of S invariant under D. On S/@ define
Dqg:S/Q — S/Q by Dg(s+@Q):=D(s)+@Q,s €S. Consider the ring
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Rq = S/Qp,[x] and the canonical projection ng: B — Rgq. Observe that ng

is an epimorphism with kernel @' = > Qx'.
i=0

We claim that for any prime ideal € C S invariant under D and for any
k € N we have ng(l},) = Rq. Then we conclude applying the claim to @ = 0.

Suppose the claim is not true that is the set M = {Q | @ is a prime
ideal of R invariant under D such that ng(l;) # Rq for some [ € N} is
nonempty. Let P be a maximal ideal of M. Let n:S — S/P be the ca-
nonical projection. Observe that P cannot be a maximal two-sided ideal
of S: Since ¢(I) = S, np(Iy,) # 0 for every k € N. Applying Lemma 5.2 to
np(l1),np(ls),. .. we get S/P Nnp(ly) # 0. Therefore if S/P is a simple
ring, then 1 € np(I}) for every k € .

In general, Lemma 5.2 gives L; = np(I;) N S/P # 0. Put L), = n~1(Ly)
and notice that L} is anideal of S invariant under D.If L) = Sforeveryk € N,
thennp(I},) = Rpforeveryk € N, acontradiction to the choice of P. Therefore
suppose that L; # S for some ! € IN. Let Py, ..., P, be the minimal primes of
L;. As S is a Q-algebra, applying [6, Lemma 3.3.3], Py, ..., P,, are primes
of S invariant under D properly containing P. In particular, np,(I}) = Ep,
or R=1,+P, for every i=1,...,m. Then R=I;+P})---UI;+P,,)
=1+ P;---P,, also. Further, by [11, Theorem 2.3.7], there exists n € N
such that (Py---P,)" CL). Note R=R" =1+ (P;---P),)", therefore
Rp = np(R) - np(ll) + RPLlRp = np(ll). So RP = np([l), a contradiction
again. O

LemMA 5.4. Letk be a field of characteristic zero and let g be a solvable
Lie algebra of finite dimension over K. Then U(Q) satisfies strong (*).

Proor. First suppose that k is algebraically closed. Then g is com-
pletely solvable by [11, Theorem 14.5.3]. That is, there exists a basis

x1,...,%y, of g over k such that g,, = kxy + - - - + ka,, is an ideal of g for
every m =1,...,n. Then U(g,,,1) can be seen as a skew polynomial ring
over U(g,,) form=1,...,n— 1.

Recall that each prime ideal of U(g,,) is completely prime by [11,
Theorem 14.2.11], therefore we can apply Proposition 5.3.

In general, let k be an algebraic closure of k. Let I, I, . . . be a sequence
of nonzero ideals in U(g) such that I}, 1/}, = I, for every k € IN. Consider
R =U(g) @ k >~ U(g ® k) and the ideals I}, = I;, ® k. It is easy to see that

L1 = I 11, for every k € N. By the preceding step, I, = R for every
k € N. But this is possible only if I;, = U(Q). O
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COROLLARY b.5. Let g be a finite dimensional solvable Lie algebra
over a commutative field of characteristic zero. Then

(i) Every idempotent ideal of U(Q) is trivial.
(i) The universal enveloping algebra of g satisfies (*).
(iii) Every projective U(Q)-module that is not finitely generated is free.
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