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Maximal Mordell-Weil lattices
of fibred surfaces with p, = q = 0.
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Dedicated to Professor Yoshihara Hisao
on his sixtieth birthday

ABSTRACT - Slope inequalities are given for fibred regular surfaces with
geometric genus zero according as the Clifford index of a general fibre.
In the case where the slopes attain the minimums, such fibred surfaces
are rational, whose constructions are described. Furthermore, the max-
imal Mordell-Weil lattices of the fibred rational surfaces are completely
determined.

1. Introduction.

We shall work over the complex number field C. Let X be a smooth
projective surface with p, = g = 0, where p, and q respectively denote as
usual the geometric genus and the irregularity of X. Let f : X — P! be a
relatively minimal fibration whose general fibre F' is a smooth projective
curve of genus ¢ and of Clifford index c. After Shioda ([13]) introduced and
developed the theory of the Mordell-Weil lattice, several attempts have
been made to clarify the Mordell-Weil lattices for higher genus fibrations.
For example, the cases where ¢ = 0,1 and 2 are respectively studied in
[12], [11] and [8], where the maximal Mordell-Weil lattices are completely
determined (see also [7]). The present article is an extension of them.

THEOREM 1.1. Keep the same notation as above. Assume that ¢ > 3.
Let r be the Mordell-Weil rank of f : X — L. Then the following hold:
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(1) When g > (c+ 2)(c +3)/2,
r<2c+2)g+c+1/(c+1).

If the right-hand side is an integer, then there exists f which attains the
equality except when c¢ is odd, g is a multiple of (¢ +1) and g < (¢ + 1)%

(2) When (c+ 1)(c+2)/2 < g <(c+2)(c+3)/2
r <39 —(c+3)c—4)/2.

For all g, there exists f which attains the equality.
Furthermore, in both cases, X is a rational surface if r attains the
above maximum.

We consider fibred rational surfaces whose Mordell-Weil ranks attain
the maximums as in Theorem 1.1. Then we have an explicit description of
the Néron-Severi group NS(X). Thus, for such fibrations, the Mordell-Weil
lattices are completely determined and the corresponding Dynkin dia-
grams are expressed in terms of ¢ and g. In particular, for the case (1), they
are certain extensions of Eg (see Theorem 3.7).

In order to show Theorem 1.1, we apply the same method as in [8],
where we take a reduction (Y, @) of (X,F) and give a lower bound for
(Ky + G)*. In Theorem 2.3, we have two slope inequalities, which give
upper bounds of the Mordell-Weil rank as in Theorem 1.1. If » attains the
bound, then any fibres of f must be irreducible. In the first of §3, we show
such fibrations are indeed constructed from (Y,G) with the minimal
(Ky + G)? under the suitable conditions.

When g < (¢ + 1)(c + 2)/2, which Theorem 1.1 does not cover, we have
a loose bound r < ((2c+ 8)g + 6¢ +8)/(c +2) in the same way as in
Theorem 1.1. The proof of Theorem 2.3 shows that the case where
g < (c+ D(c+2)/2 is complicated. If ¢ > 4 and g = (¢ + 1)(c + 2)/2, then
there in fact exist two kinds of fibred rational surfaces with the minimal
slopes whose structures are distinct for the plane curve models of F'. One of
them is a plane curve of degree (¢ + 4) having (c + 2) double points as its
singularity. Another G is near to a multi-anti-canonical divisor on ¥ which
is obtained by blowing [P up at five points.
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2. Slope inequalities

Let X be a smooth projective surface withp, =g =0andf : X — Pla
relatively minimal fibration of curves of genus g > 2. We briefly review
basic notation and results of such fibred surfaces while considering
the adjoint bundle Ky + F according to [8, §1]. It is known that
Ky o= Kx + 2F is nef and we have (Kx + 2F).C = 0 for an irreducible
curve C on X if and only if C is a ( — 2)-curve contained in a fibre of f.
Since py =q =0, we have that Kx +F =Ky » —F is also nef and
W(X,Kx +F) =g. Remark that X is automatically a rational surface
when (Kx + FY < 29 — 2 (see [8, Lemma 1.1]).

LeEmMA 2.1 [cf. [8, Lemma 1.2]]. Let C be an irreducible curve on X
such that (Ky + F).C = 0. If (Kx + FY? > 0, then C is a smooth rational
curve satisfying one of the following:

1) Cis a (— 2)-curve contained in a fibre.
@) Cis a (- 1)-section, i.e., a (— 1)-curve with F.C = 1.

Suppose that there exists a (— 1)-curve E with (Kx + F).E = 0 and let
U+ X — Xj be its contraction. Since F.EE =1, F'; := (1), F is smooth on
X;. Furthermore, we have uj(Kx, + I'1) = Kx + F'. If there exists a (— 1)-
curve Ey with (Ky, + F1).E1 = 0, then, by contracting it, we get the pair
(X2, F5) with Fs smooth and Ky, + F2 pulls back to Ky + F. We can con-
tinue the procedure until we arrive at a pair (X,,, F',,) such that we cannot
find a (- 1)-curve E, with (Kx, +F,).E, =0. We put Y :=X, and
G :=F,.If u : X — Y denotes the natural map, then u*(Ky + G) = Kx + F
and G = u F' is a smooth curve isomorphic to F. The original fibration
f: X — P! corresponds to a pencil Ay C |G| with at most simple (but not
necessarily transversal) base points. When (Kx + F)? > 0, Kx + F is nef
and big. This implies that, Y is the minimal resolution of singularities of
the surface Proj(R(X, Kx + F')), which has at most rational double points
by Lemma 2.1, where R(X,Kx + F) = &P H°X ,n(Kx + F)). Therefore,

n>0
such a model is uniquely determined. We call the pair (Y, G) the reduction

of X, F).

We consider the rational map @i, p :X — P91 defined by
|Kx + F|. If |Kx + F| is composed of a pencil, then f : X — P! is a hy-
perelliptic fibration (cf. [8, Lemma 1.3]). Furthermore, we have the
following:
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ProposiTION 2.2 [cf. [8, Lemma 1.3 and Proposition 1.1]]. Assume
that 0 < (Kx + F)? < 2g — 5. Then @, | defines a birational morphism
onto the image, which factors through the reduction of (X, F).

Before proceeding further, we recall here two important invariants of a
smooth projective curve C of genus ¢g(C) > 4. The gonality gon(C) of C is
given as the minimum of the degrees of surjective morphisms of C to P!
The existence theorem on special divisors (e.g. [1]) implies that
gon(C) < (g(C) + 3)/2. The Clifford index of C is defined as

Cliff(C) = min{deg L — 2h°(L) + 2 | L € Pic(C), h°(L) > 1, hX(L) > 1}.

These two invariants are closely related to each other. It is known that
Cliff(C) = gon(C) — 2 or gon(C) — 3 and in the latter case we have infinitely
many géon(c)’s on C. For this and further properties, see [2].

We now return to the situation we are interested in. The slope of f is
defined by ir = K}Z( B /degf.Ky spi- We have the following lower bounds:

THEOREM 2.3. Let X be a smooth projective surface with p, =q =10
and f : X — P! a relatively minimal fibration of genus g and of Clifford
index ¢ > 3. Let (Y, G) denote the reduction of (X, F). Then the following
hold:

When g > (c + 2)(c + 3)/2,

@1 G254 —D/c+1)—Qc+4)/g.

If Js attains the equality n (2.1), then Y is the Hirzebruch surface Xq of
degree d.
When (c + 1)(c+2)/2 < g <(c+2)c+3)/2

2.2) dr 25+ (c+3)c—4)/2g).

If )¢ attains the equality in (2.2), then there exists a blow-down
v: (Y,G) — (]Pz, Go) such that Gg is one of the following:

(i) a curve of degree (3¢ + 6)/2 with four (c + 2)/2-ple points and a

¢/2-ple point, where ¢ is even and g = (c + 1)(c + 2)/2,

(i) a curve of degree (3c + 5)/2 with five (c + 1)/2-ple points, where
cisodd, c>5and g=(c+ D(c+2)/2

(iii) a curve of degree nine with four triple points, where ¢ = 4 and
g =16,

(iv) a curve of degree (c+4) with (n+ 1) double points, where
g=C+Dc+4)/)2—nand -1<n<c+1
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In particular, X is a rational surface if A attains the equality in (2.1)
or (2.2).

In order to show Theorem 2.3, from gis = (Kx + F Y+ 4(9g — 1) and
Proposition 2.2, we only have to prove the following:

PROPOSITION 2.4. Let Y be a smooth rational surface and G a smooth
wreducible curve of genus g and of Clifford index ¢ > 3 on Y. Assume that
(Ky + G).E > 1 for any (— 1)-curves E on Y. Then the following hold:

When g > (c + 2)(c + 3)/2,

Ky + Gy >2c(g—c—1)/(c+1).

If the equality sign holds, then Y = 2.
When (¢ +1)(c +2)/2 < g < (¢ +2)(c +3)/2,

Ky +GPF>g+(—c—4))2.

If(Ky + G)? attains the equality, then there exists a blow-down vy : (Y,G) —
— (IP%, Gy) such that Gy is a curve with the same degree and singularity asin
(i)—(iv) of Theorem 2.3.

First of all, in the case Y = P?, it is well-known that G is a smooth plane
curve of degree (c+4). Therefore, we have g = (c+2)(c+3)/2 and
Ky +GP? =(c+ 1% =g+ (2 —c—4)/2. Next, in the case ¥ = X, we
describe explicitly as follows:

Lemma 2.5. Let G be a smooth irreducible curve of genus g and of
Clifford index ¢ > 3 on 2. Let Ay be a section with Ag = —dand I afibre of
2. Assume that 49.G > 2 when d = 1 and 4y.G > I'.G when d = 0. Then

G~ (c+2)40+(c+2)d/2+1+g/(c+ DT,

where the symbol ~ means the linear equivalence of divisors. Furthermore,
(Kx, + G)? = 2¢(g —c—1)/(c+1) holds and (c,g,d) satisfies one of the
Sfollowing:
(i) c is even, g > (c+ 1)2, g s divided by (c+1) and 0 <d <

<2(g +c+D/((c+ D+ 2)).

(i) ¢ is odd, g > (c+ 1% g is divided by (c+1)/2 and 0 <d <
<2(g+c+1)/((c+ 1)c+2)) with d =2g/(c + 1) mod 2.

(i) ciseven, (c+1)c+4)/2 <g<c(c+1) gis divided by (c + 1)
and d = 1.
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(iv) ¢ is odd, (c+1)c+4)/2<g<(c+1@2c+1)/2 g is an odd
maltiple of (c +1)/2 and d = 1.

Proor. Under the assumptions, I".G = gon(G) = ¢ + 2 holds (see [9]).
Remark that 4y.G > 0 since G is irreducible. The rest of statements follow
from a standard calculation. O

Let V be a smooth rational surface which is neither P nor >, and D a
smooth irreducible curve of genus g > 7 on V. Assume that Cliff(D) > 3
and (Ky + D).E > 1 for any (— 1)-curves £ on V. Then we can find at least
one base-point-free pencil of rational curves on V. We choose among them
a pencil |R| of rational curves with R?=0 in such a way that
a := (Ky + D).R is minimal. We call a the minimal ruling degree of (V, D).
Note that we have DR =a +2 > 5since Ky.R = —2. Lety : V — P! be
the morphism defined by |E|. We take a relatively minimal model of V with
respect to y and consider the image of D. Then we perform a succession of
elementary transformations ([5]) at singular points of the image curve to
arrive at a particular relatively minimal model (V#, D¥), called a #-mini-
mal model in [6], enjoying several nice properties which we collect below.
The natural map v : (V,D) — (V# D#) is a minimal succession of blowing-
ups which resolves the singular points of D#. We assume that V# ~ X, and
D# ~ (a +2)4y + bI'. Let p;, 1 <1 < n, be the singular points of D# in-
cluding infinitely near ones, and let m; be the multiplicity of D# at p;.
Assume for simplicity that m; > mg > --- > m,, > 2. Since |R| is chosen so
that (Ky + D).R is minimal, we can assume that the following are satisfied
(see [5] and [6]):

#1b>(@+2dwhend>0,and b > a+2whend =0,
#2)b>a+2+m; whend =1,
(#3) m1 < (a+2)/2 and m; < min{(a +2)/2, b — (a +2)} whend = 1.

We say that (V# ,D#) is of general type if 2b — (a + 2)d > 2(a + 2).
Otherwise, i.e., when d = 1 and 2b < 3(a + 2), the pair is called of special
type. If this is the case, by contracting the minimal section, we get a model
of D which is a plane curve of degree b with a (b — a — 2)-ple point and n
other singular points of respective multiplicities m; (< b —a — 2).

At first, consider the case where (V#,D¥) is of general type. Set
O =b—(d+2)a+2)/2, where b’ > max{0, (d — 2)(a + 2)/2}, and where
b € Zorb € 7[1/2] according as a is even or odd. Then we have

2.3) D* ~(a+ 24+ ' + (d+2)a+2)/2)T.
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LEMMA 2.6. Keep the notation and assumptions as above. Then the
Sfollowing hold:
When g > (a + 1)2,

(Ky +D)* > alg—a —1)/(a + 1).
If a is even and g < (a + 1)% then
(Ky + D)* > 2a(g — 1)/(a + 2).

When the equality sign holds here, b’ = 0 and m, = (@ + 2)/2.
Ifais odd and g < (a + 1), then

(Ky + DY* > 2g(a — 1) /(a + 1) + 2,

When the equality sign holds, b’ = 0 and m,, = (@ + 1)/2.

Proor. From a standard calculation, we have (Ky+ D)=
=2a(a+b")— > (m; — 1)% and
= n
2.4 29 =2(a+1(a+1+0b)-— z:w%(m7 —1).
i=1

Therefore, we have

(Ky + D) —M(q— (@+Da+1+10b)) —2a(a+b)

—Z(ml—1)<1——>

which is non-negative. Hence

@25) (Ky+D)y > 2(m”1®_1—1)(g —(a+D(@+1+b")) +2a(a +b).

If the equality sign holds here, then m; = - -+ = m,,. On the other hand,

20mp — 1)

/ / 2
- (q—(a+1)(a+1+b))+20t(a+b)—( ar1?” 2“)

~2(my —a—1)(g—(a+1)(a+1+D))
B mi(a +1)

is positive from (#3) and (2.4). Thus (Ky + D) > 20(g —a—1)/(@+1)
holds.
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In the rest of the proof, we assume that g < (@ + 1)%. We restrict our-
selves to the case where a is even, since the other case is quite similar.
Then (#3) and (2.4) imply that
2(my — 1)

/ / 2a /
o (g—(a+1)(a+1+b))+2a(a+b)—m(g+b -1

_ 2@2m; —a —2)(g—(a+1(@+1+0b))

mi(a + 2)
is non-negative. Therefore we have
(2.6) (Ky + D)’ > 2a(g + b — 1)/(a +2)
from (2.5). Thus (Ky + D)* > 2a(g — 1)/(a + 2). If the equality sign holds,
then ¥ =0 and m; = --- =m,, = (a + 2)/2. O

Next, we consider the case where (V# D7#) is of special type. Let
my = b — (a + 2). Then we have

@7  Df~(a+2d+@+2+m)l, 2<m<(a+2))/2

LemMA 2.7.  Keep the notation and assumptions as above. Then the
following hold:

When (o + 1)a +4)/2 < g < ala + 1) or (a + 1)2a + 1)/2 according as
a s even or odd,

(Ky + D)* > 2a(g — a — 1)/(a + 1).
Ifala+3)/2<g<(a+1)a+4)/2 and a is even, then
(Ky +DP > g+ (a* —a—4)/2.

When the equality sign holds, (mgy,n)=2,(a+1)(a+4)/2—g) or
(a7 n, m5) - (67 5) 3)
If g < ala +3)/2 and a is even, then

(Ky + D)* > 2g(a — 2)/a + 4.

When the equality sign holds, m, = a/2 and n > 4 + 4/(a — 2).
If (a+1)a+2)/2 <g<(a+1)(a+4)/2 and a is odd, then

(Ky +Df > g+ (a® —a —4)/2.

When the equality sign holds, (mg,n) = 2,(a+a+4)/2—-g) or
(n,my) =4, (@ +1)/2).
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If g < (@ + 1)(a+2)/2 and a is odd, then
(Ky + D)* > 2g(a — 1)/(a + 1) + 1.

When the equality sign holds, m, = (o +1)/2 and n > 4.

ProOF. From a standard calculation, we have

(Ky +DP = a+2my— Da— Y. (m; — 17,
2.8) o

29 = (a+ D@+ 2me)— S mim; —1).
=1

In the same way of (2.5), we have

2myg — l)g N a® + (1 — mo)a — 2mg + 2my

29  (Ky+DF>
my

If the equality sign holds here, then my = m; = - - - = m,,. By an argument
similar to Lemma 2.6, we have (Ky + D)2 > 2a(g —a—1)/(a + 1).
When g > (a® + a + 4my) /2,

2mg—1) @+ (1 —mo)a — 2m2 + 2my ( a? —a— 4>
g+ ~(9+—5—
mo my 2
_ 2g — a® — a— 4mgy)my — 2)
B ZWL()

(2.10)

is non-negative. Remark that (a® + a + 4my)/2 increases as mgy grows.
Consider the case where g > a(a +3)/2 or (a + 1)(a +2)/2 according
as a is even or odd. From (2.10), (#3) and (2.9), we have
(Ky + DY > g + (a® — a — 4)/2. Furthermore, if mo = 2, then (Ky + D)* =
g+ @ —-a—-4)/2 and n=(+1)a+4)/2—g. When my#2 and
Ky +D¥ =g+ @ —a—4)/2 hold, my=m;=---=m, and 2¢g=
= a? + a + 4my. Hence, then, we have my = --- = m, = a/2 or (a +1)/2
since g > ala + 3)/2 or (a + 1)(a + 2)/2 according to the parity of a. These
and (2.8) imply n = 4 + 4/(a — 2) or 4 according as a is even or odd.

In the rest of the proof, we may consider the case where g < a(a + 3)/2
and a is even, since the other case is similar. Recall that my < a/2. When
g < ala+1+my)/2,

— 2 1- —2m2 + 2 —
2(myg 1)g+a + (1 —mp)a — 2m§ + 2my B <2a 4g+4>
mo my a

(29 —ala +1+mg))(2mo — a)
- amy
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is non-negative. Since a(a + 3)/2 < ala + 1 + my)/2 for any my, it follows
from (2.9) that (Ky +D)* > 2¢(a —2)/a +4. If (Ky +D)? attains the
equality, then my = - - - = m,, and 2my — a = 0. O

As a corollary of Lemmas 2.6 and 2.7, we have the following.

LEMMA 2.8.  Let V be a smooth rational surface which is neither P? nor
24 and D a smooth irreducible curve of genus g > 7 on V. Assume that
(Ky + D).E > 1 for any ( — 1)-curves E on V and the minimal ruling de-
gree of (V,D) is a > 3. Then the following hold:

When g > (@ + 1) (a +4)/2,

(Ky + D)* > 2a(g —a — 1)/(a + 1).
When (a 4+ D(a+2)/2 < g < (a+1(a+4)/2
(Ky + D) > g+ (a® —a —4)/2.

If (Ky +D)* attains the equality, then there exists a blow-down
vo : V — P2 contracting ( — 1)-curves E; such that D is one of the following:

3
i) D~ (Ba+6)/2v; 2(1) — (@ +2)/2) Y~ E; — (a/2)E4, where a
is even and g = (a + D)(a + 2)/2, =0

4
(i) D~ (Ba+5)/2)057 Q) — (a+1)/2) > E;, where a is odd,
a>5andg=(a+1)a+2)/2 =
3
(i) D ~ Yoy 2(1) — 3> E;, where a = 4 and g = 16,
i=0
(iv) D~ (a+Dvj2(1) =23 E;, where n=(a+1)(a+4)/2—g)

=0
and (@ + 1)@ +2)/2 < g <(a+ D(a+4)/2.

Furthermore, Cliff(D) = a if (V, D) is one of them.
When g < (@ + 1)(a + 2)/2,

2a(g — 1)/(a + 2) if a is even,

2.11 Ky + Dy’
( ) (Ky + D) Z{Zg(a—l)/(a+1)+1 otherwise.

Proor. Wheng > (a + 1)(a + 4)/2, from Lemmas 2.6 and 2.7, we have
(Ky +DP > 2a(g —a —1)/(@+1). When g < (a+ D(a+2)/2, the in-
equalities (2.11) also follow immediately. Suppose that (V, D) satisfies one
of (i)—(iv). Then we have Cliff(D) = a from [8, Proposition 2.2], since a > 3
and D? > (a + 2)%
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For the case where (@ + D(a+2)/2 <g < (a+ 1)a+4)/2, we may
restrict ourselves to the case where a is even, since the other case is similar
and simpler. When ¢ > (a® + 3a + 4) /2, we have

20(g —1)/(@+2) > g+ (@®—a—4)/2,

where the equality sign holds if and only if ¢ = (a? + 3a + 4)/2. Thus
Lemmas 2.6 and 2.7 imply the statement for g > (a® + 3a + 4)/2. Fur-
thermore, if

(g, (Ky + DY) = (¢ + 3a+4)/2,0> + a), (@ + D(a+2)/2,a>+a—1)

and (V#, D7%) is of special type, then (mg,n) = (2,(a+ 1)(a+4)/2 —g)
from Lemma 2.7.

In what follows, we consider the case where (V#, D#) is of general type.
At first, we concentrate on the case where g = (a? + 3a + 4)/2. Then we
only have to determine the pair (V,D) satisfying (Ky + DY =a®+a. It
follows from Lemma 2.6 that such a pair satisfies & =0 and
my, = (a + 2)/2. Furthermore we have n =4 — 4/a from (2.4). Thus a = 4

and n = 3 follow. Therefore D ~ 6v*4y + (6 + 3d)v*I" — 3 23: E; and we
have d < 2 because v*4y.D = 6 — 3d > 0. Remark that D# hlas1 no singular
points on the minimal section 4y of V# in the case where d = 2. Hence the
case where d = 1 covers the cases where d = 0, 2.

We next consider the case where g = (a + 1)(a + 2)/2. It follows from
(2.6) that

Ky +DF>ad*>+a+2ab —1)/(@a+2) >a*+a—1

when b > 1. Hence we can assume & =0. If D# has at least four
(a + 2)/2-ple points, then (2.4) shows g < (@ + 1)(a + 2)/2. In the same
way as in Lemma 2.6, we have (Ky + DP>a?+a+2—n for (V,D)
whose D# has just #' (a+2)/2-ple points with #' =0,1,2,3. If
(Ky +D¥? =a®+a+2—n holds, then Myy1 = -+ =My, = a/2. Fur-
thermore, (K + D)? attains the minimum a2 +a —1 at %' = 3. In fact,
(2.4) and (g, Ky + DY) = ((a+1)a+2)/2, a? + a — 1) imply that D# has
exactly three (a + 2)/2-ple points and a a/2-ple point as its singularity.
Thus

3
(d+2)(a+2)U*F_a+2 B _%E,
2 2 2

and we have d < 2 since v*4y.D = (@ +2)(1 — d/2) > 0. We can show that

D ~ (a+2)v" 4y +
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the case where d = 1 covers the cases where d = 0,2 similarly as in the
previous case. O

Keep the situation as in Lemma 2.8. Furthermore, we consider the
case where 4 <c+1<a<2c—2. When g > (c+ 1)(c+2)/2, we have
Ky +Df¥ >g+(®—c—4)/2 from Lemma28 We also have
(Ky + DY > 2¢(g — ¢ — 1)/(c + 1) when

g<@+a+4)/2—(@—c)2c—-2—-a)/c—1)
or g > (c+ D(a+ 1). For (V, D) satisfying
2.12) Ky + DY <2c(g—c—1)/(c+1)
and
213) (@+D@+4/2—(a—-0c)@c—2—-a)/(c—1)<g<(c+D+1),
we have the following:

LEmma 2.9. Keep the notation and assumptions as above. Then
Cliff(D) = a.

Proor. Assume that (V,D) satisfies (2.12). Then it follows from
Lemma 2.6 that (V, D) has a #-minimal model of special type. We recall
2.7). First of all, we show that (V, D) attains maximum of n at my = 2 as

follows: Take a smooth irreducible curve B € |D + Z (m; — 2)E;| for a fixed

(V,D). We consider (V, B) and its #-minimal model (V# B#). Remark that
B# has just n double points as its singularity. Then (Ky + B)® =
= (Ky + D) + Z mi(m; — 2) and 29(B) = 29 + 3 (m; + 1)(m; — 2). These
i=1
and (2.12) 1mply that '

2

1 n
(c —my)(m; — 2).
F1

Clg<B> 2 —

Sincec > (a +2)/2 > my > my > --- > m,, > 2, the right-hand side is non-
negative. Hence (V, B) also satisfies (Ky + BY < 2c(gB) —c—1)/(c+1)
From (2.12) and (2.8) with m; =2, we have n <(a—c)2c—2—
—a+ 22 —my))/(c — 1). In the end, at my = 2,

(2.14) n<(a—c)2c—2-a)/(c—1).
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We now vreturn to the proof of Lemma29. We have
D*>4+2+29—29/(c+1)—n from (212) and (Ky+D) =
=2(Ky +D).D + K% — D*> =49 — 4 + 8 — n — D?. Therefore (2.13) and
(2.14) imply that

DZ—(a+2)224(a+2—(a—c)(2c—2—a)/(c—1))>O.

Hence Lemma 2.9 follows from [8, Proposition 2.2]. O

PRrOOF OF PROPOSITION 2.4. By Lemma 2.5 and the argument just before
Lemma 2.5, we can assume that Y is a smooth rational surface which is nei-
ther P? nor X ;. Now the assumption implies that the minimal ruling degree a
of (Y, G) is greater than or equal to c¢. From Lemma 2.9, in the case where
a > ¢, we have (Ky + G)? > max{g + (> —c —4)/2,2c(g —c — 1)/(c + 1)}
when g > (c 4+ 1)(c + 2)/2. For the case where a = ¢, Lemma 2.8 implies
Proposition 2.4. O

3. Mordell-Weil lattices

We briefly review the theory of the Mordell-Weil lattice due to Shioda.
Let X be a smooth projective surface with p, =¢=0and f : X — Pt a
relatively minimal fibration of genus g. We assume that it has a section. Via
f, we can regard X as a smooth projective curve of genus ¢ defined over the
rational function field K = C(P'). Let 7 7 be the Jacobian variety of a
generic fibre.7 of f. The Mordell-Weil group of f is the group of K-rational
points 7 -(K). It is a finitely generated abelian group, since X is a regular
surface. The rank of the group, which we denote by 7, is called the Mordell-
Weil rank. It follows from [13, Theorem 3] that r is given by

r=p)-2-3 -1,

tep!

where p(X) denotes the Picard number, that is, the rank of NS(X), and v,
denotes the number of irreducible components of the fibre f~1(¢). In par-
ticular, we have r = p(X) — 2 if f has irreducible fibres only.

There exists a natural one-to-one correspondence between the set of K-
rational points .77 (K) and the set of sections of f. For P € .7 (K) we denote
by (P) the section corresponding to P which is regarded as a curve on X.
We specify a section (O) corresponding to the origin of 7 ,(K) and call it
the zero section. Shioda’s main idea in [13] is to regard 7 -(K) as a Eu-
clidean lattice endowed with a natural pairing induced by the intersection
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form on H%(X). Let T be the subgroup of NS(X) generated by (O) and all
the irreducible components of fibres of f. With respect to the intersection
pairing, the sublattice T is called the triwvial sublattice and its orthogonal
complement L = T+ c NS(X) is called the essential sublattice. Via the
natural isomorphism of groups 7 -(K) ~ NS(X)/T in [13, Theorem 3], we
obtain a symmetric bilinear form (,) on 7 -(K) which induces the struc-
ture of a positive-definite lattice on 7 -(K)/ 7 (K)o (see [13, Theorem
7]). The lattice (7 -(K)/ 7 > (K)or, (, )) is called the Mordell-Weil lattice of
the fibration f : X — P!. Shioda shows that if all the fibres of f are irre-
ducible, then the Mordell-Weil lattice of f is isomorphic to L~, where the
opposite lattice L~ is defined from L by putting the minus sign on the
intersection pairing on L (see [13, Theorems 3 and 8]).

As to fibred surfaces with p, = ¢ = 0 of Clifford index ¢, we can bound
the Mordell-Weil rank by Theorem 2.3 in the same way as in [8, Lem-
ma 3.1] (see also [12, Theorem 2.8], [11, Proposition 2.2] and [7, Theo-
rem 3.4]):

LEmma 3.1. Let X be a smooth projective surface with p; = q =0,
f: X — Pl arelatively minimal fibration of genus g and of Clifford index
¢ > 3. Let r be the Mordell-Weil rank of f. Then the following hold:

1) »<2(c+2)g+c+1)/(c+ 1) when g > (c+ 2)(c + 3)/2.
@) r <3g—(c+3)c—4)/2when (c+1)(c+2)/2<g<(c+2)c+3)/2

If v attains the maximum, then all fibres of f are irreducible and the
reduction of (X, F) is obtained by Pk, p|. In particular, X is a rational
surface when r attains the maximum.

In what follows, we restrict ourselves to the case when r attains the
maximum. Namely, we let f : X — P! be a fibred rational surface of genus
¢ and of Clifford index ¢ > 3 whose Mordell-Weil rank attains the max-
imum value given in Lemma 3.1. Suppose that we are given such a fibra-
tionf: X — P! and let (Y, G) be the reduction of (X, F'). Then f gives us a
pencil 4¢ C |G| all of whose members must be irreducible. Note also that all
the base points of 4y must be transversal ones since Ky . is ample.
Conversely, if we are given a pencil 4 C |G| which has only transversal
base points and all fo whose members are irreducible, then we get a fi-
bration with the desired properties by blowing up Bs.

Let the situation be as in (1) of Lemma 3.1. Then Y =X, from
Theorem 2.3. We show that the case (c+1)c+2)d=2(¢g+c+1) is
impossible. This can be seen as follows: If (¢ + 1)(c + 2)d = 2(g + ¢ + 1),
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then 4y.G = 0. Hence the pull-back to X of 4 is a rational curve con-
tained a fibre of f, which is inadequate in our situation. Therefore, we
have (c + 1)(c+2)d < 2(g + ¢+ 1).

Let (Z4,G) be as in Lemma25 with g > (c+2)(c+3)/2 and
(c+ 1)(c+2)d < 2(g + ¢+ 1). Then G is very ample. Hence we can find a
pencil 4 C |G| whose members are all irreducible and which has exactly G
transversal base points. In fact, we can take it as a Lefschetz pencil (see
[4]). Then the fibration f : X — P! obtained by A has Mordell-Weil rank
which attains the equality as in (1) of Lemma 3.1.

DEFINITION 3.2. Let (¢,g9,d) be as in (i)—(iv) of Lemma 2.5 with
g>(€+2)(c+3)/2 and d<2(g+c+1)/((c+1)c+2). A fibration
f : X — P!of genus g and of Clifford index ¢ > 3 obtained by blowing up 2y
as above is called a fibration of type (c, g, d,0).

Let the situation be as in (2) of Lemma 3.1. From Theorem 2.3, there
exists the blow-down vy : (Y,G) — (]PZ, Gy) constracting (n+1) (— 1)-
curves Ky, E1,...,E, such that Gy is as in (i)—(iv) of Theorem 2.3, where
n =4 for (i) or (ii), and where n = 3 for (iii). Put p; = vo(&}). If p; is an
infinitely near point of py, then the pull-back to X of £y — E; is a rational
curve contained in a fibre of f from (Ey — E1).G = 0, which contradicts the
irreducibility of f. Furthermore, in the quite same argument, we have the
following:

ProrosITION 3.3.  Keep the notation and assumptions as above. If
n > 1, then a configuration of (n+1) points py,...,p, satisfies two
conditions as follows: The first condition is that py,...,p, expect the
c/2-ple point py as in (1) of Theorem 2.3 are mnot infinitely near
points. For each case of (1)-(iv), the second condition 1is the
following:

(i) Any three points of po, . . . , p3 are not colinear, though py may be
an nfinitely near point.
(i) Any four points of po, ..., ps are not colinear.
(i) po,...,ps are in general position, that is, any three points of
them are not colinear.
(iv) Any (c+4)/2 or (c +5)/2 points of o, ..., pn are not colinear
according as ¢ is even or odd.

We use the following theorem in order to show the next lemma.
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THEOREM 3.4 ([10]). Let S c PIg®-9&+1 po nondegenerate, line-
arly normal, smooth regular surface of degree deg (S) and of sectional
genus ¢(S). Let wx,...,x; be distinct (k+1) points of S for
k < deg(S)—29(S) —2. Let o be a blowing up at xo,...,x; of S and

k
E; =67 (x)). Set H = 0*5(1) — Y E;. Then H is very ample if and only if

1=0
Sforalljwith1 <j <k+ 1, any distinct j points of {xy, . . ., xx } do not lie on
any 1rreducible reduced curve of degree j on S.

LemMaA 3.5.  Let Dy be a plane curve with the same degree and singu-
larity as in (1)—(iv) of Theorem 2.3. Assume that a configuration of sin-
gular points py, ..., pn of Dy satisfies the two conditions as in Proposi-
tion 3.3. Let vy : (V,D) — (P%,Dy) denote the composite of blow-ups at
n + 1 points py, . . ., pn. Then D is very ample.

Proor. Put E; = vy 1(pj). At first, we consider the case (i). We remark
that | — Ky| is free from base points, because py, . . ., p4 are in almost gen-
eral position (see [3, Theorem 1 of III in p. 39]). Consider the surface ob-
tained by blowing ? up at py, . . ., ps in general position. Then the anti-bi-
canonical map is an embedding to P*?. Let S be the embedded surface to P*?
and ¢ : V — S the blow-down contracting E,. Since no line is on S,

3
H = 6"(—2Kg) — By = 6057 2(1) =2 " E; — By

is very ample from Theorem 3.4. Therefore D = H + (¢/2 — 1)( — Ky) is

also. We can treat the case (ii) in the same way by setting

H = 4,0 (1) — Z E;. For the case (iii), it is obvious.
=0

Let the situation be as in (iv). Since the case where c is even is similar
and simpler, we restrict ourselves to the case where ¢ is odd. Let S be P>
7 2((c +5)/2)|. Then irreducible reduced curves whose
degree is at most (n + 1) come from only lines on P?. Therefore Theo-

rem 3.4 implies that H = vj7 (2((c 4 5)/2) — Z E; is very ample. Hence we
only have to show that i=0

c+3
(D — H| = |=5=05 (1) — ZE‘

is free from base points. If any (c + 3)/2 points of py, ..., p, are not co-
linear, then we can see similarly that D — H is also very ample by applying
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Theorem 3.4. Thus we suppose that po, ..., pe11)/2 lie on aline ly 412

Furthermore, we concentrate on the case where n = ¢ + 1, since the other

cases are similar and simpler. Remark that any p;, (c+3)/2<i<c+1

Let [; be aline tﬂfough p;. In particular, we denote the line through p; and

Pite+1)/2 OY lijve+12, 1 <1< (¢ +1)/2. Consider the strict transform of
(c+1)/2

(lo + > liﬁiﬂcﬂ)/z) by vg. It is disjoint from the strict transform of

i=1
l07‘,_,(c+1>l/2 if [y is distinet from Iy (.11)/2. Furthermore, |D — H| is free from

base points on E since we can choose [y for any directions at py. In the

same way, |D — H| is also on the whole of v*ly . (.+1)2- Next, consider
c+1

eeny

lo,. 2+ > L. Then |D—H| is free from base points on
i=(c+3)/2
V' \ vo*ly,...c+1)/2 since we can choose [; for any directions at p;. O

From Lemma 3.5, for any cases as in Proposition 3.3, we can show the
existence of the fibrations similarly as in the previous case. Hence we can
take a pencil 4 C |D| enjoying the desired properties, as a Lefschetz pencil
for example. In particular, 4 has (3g — (¢ + 3)(c — 4)/2 — n) transversal
base points.

DEFINITION 3.6. Let (V,D) be as in Lemma 3.5. If V is obtained by
blowing up 7 + 1 points of P, the corresponding fibration f : X — P! of
genus g and of Clifford index ¢ as above is called a fibration of type
(c,g9,1,m).

3.1 — Type (c,g,d,0)

Here we determine the Mordell-Weil lattices for fibrations f : X — P!
of type (c,g,d,0). For this purpose, we use the following notation. We
denote the pull-backs to X of 4y and I” by the same symbols. Furthermore,
we denote by e1, ez, ..., e, the disjoint ( — 1)-sections of f coming from the
base points of Ar, where r =2(c+2)(g +c+1)/(c +1). Then we have

r

NS(X) ~ ZAy & I’ & @ Ze; and
i=1

(c+2)d g r
(8.15) F:(c+2)A0+( 5 +1+C+1)F—Zei.
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We take e, as the zero section (0). The sublattice 7' 40 CNS(X) gener-
ated by e, and F is the trivial sublattice. Let L. 440 be the orthogonal
complement of T q0). Then the Mordell-Weil lattice (7 -(K), (,)) is iso-
morphic to L gq,0) -

Recall then that the degree d of the Hirzebruch surface is an invariant
of the fibration.

THEOREM 3.7.  For a fibration of type (c,g,d,0), the lattice L. ga0)~ s
isomorphic to a positive-definite wunimodular lattice of rank
r=2(c+2)g+c+1)/(c+1) whose Dynkin diagram is given by the
following:

Figure 1 in the case when (¢ +2)d/2 — g/(c + 1) = 0(mod ¢ + 2)

Figure 2 in the case when (c +2)d/2 —g/(c + 1) = 1(mod ¢ + 2)

Figure 3 in the case when (c+2)d/2—g/(c+1) = 1 4 (mod ¢ + 2) with
1<¢<c¢—1,

Figure 4 in the case when (c +2)d/2 —g/(c+ 1) = ¢+ 1(mod ¢ + 2)

GEDISERS IS
1 2 c c+1 c+2 c+3 c+4 r—2

Fig. 1

1 D 2] r
' ! (c+1)(c+2) +D
r—{—2 r—{
9@99@ OO O ) e ©)
14

c ct+1l c+2 c+3 ct+4 r—0—3 r—0—1 r—0+1 r—2

Fig. 3
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In particular, Legq0) depends on only 2g/(c 4+ 1)mod (c + 2) in the
case when c is odd, and on the combination of g/(c + 1) mod (c + 2) and the
parity of d in the case when c is even. Here the numbers in the circles
denote the self-parings of elements, and a line between two circles shows
that the paring of the corresponding two elements is equal to (— 1). Fur-
thermore, L. g0y s an odd lattice in the case when c is odd (see Table 1)
and the parity of the lattice is the same as that of (d + g + 1) or of (g + 1)
respectively in the case when ¢ =2mod4 (see Tables 2 and 3) or
¢ = 0mod4 (see Tables 4 and 5). In particular, even and odd lattices both
occur for a fixed g > (c + 1)% in the case when ¢ = 2mod 4.

Table 1. - L g0 is an odd lattice in the case when ¢ = 1mod 2.

2¢/(c+1)mod ¢ + 2 Dynkin diagram
0 Figure 1
1 Figure 3 with ¢ = (¢ — 1)/2
2 Figure 4
2i+1 @=12,...,c—3)/2) Figure 3 with £ = (¢ —1)/2 — @
2j G=2.3,...,(c—-1)/2) Figure 3with{ =c+1—j
c Figure 2
c+1 Figure with ¢ = (c+1)/2

Table 2. — L. 440 is an even lattice in the case when ¢ = 2mod 4.

g/(c+1)mod ¢ +2 d Dynkin diagram
0 odd | Figure 3 with ¢ = ¢/2
1 even | Figure 4
h (h=2/4,...,¢/2-1) odd Figure 3with ¢ =c/2— L
1 (1=3,5,...,¢/2) even |Figure3with/=c+1-1
c/2+1 odd Figure 1
¢/2+1+5 (j=1,8,...,¢/2-2) even |Figure3with(¢=c¢c/2—j
c/2+1+k (k=2/4,...,¢/2-1) odd Figure 3with f =c+1—k
c+1 even | Figure 2
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Table 8. — L g4,0  is an odd lattice in the case when ¢ = 2mod 4.

g/(c+1)mod ¢ +2 d Dynkin diagram
0 even | Figurel
h (h=1,3,...,¢/2-2) odd Figure 3 with £ =¢/2 — h
) (1=2/4,...,¢/2-1) even |Figure3with{=c+1—-1
c/2 odd Figure 2
c/2+1 even | Figure 3 with £ =¢/2
c/2+2 odd Figure 4
c/2+2+) (G=1,3,...,¢/2—-2) even |Figure3with/=c¢/2-1—j
¢2+2+k (k=24,....c/2—1) odd | Figure 3 with ¢ =c —k

Table 4. — L 44,0 is an even lattice in the case when ¢ = Omod 4.

g/(c+1)mod ¢ + 2 d Dynkin diagram
1 even | Figure 4
h (h=1,3,...,¢/2-1) odd Figure 3 with £ =¢/2 — h
) (1=3,5,...,¢/24+ 1) even |Figure3with/=c+1—1
c/2+1 odd Figure 1
c/2+1+) (G=2/4,...,¢/2-2) even |Figure3with{=c¢/2—j
c/2+1+k (k=2/4,...,¢/2) odd Figure 3with  =c+1—k
c+1 even | Figure 2

Table 5. — Lcg4,0 is an odd lattice in the case when ¢ = O mod 4.

g/(c+1)mod ¢ + 2 d Dynkin diagram
0 even |Figurel
h (h=0,2,...,¢/2-2) odd Figure 3 with £ =¢/2 — h
7 (i=2,4,...,¢/2) even |Figure3withl{=c+1—1
c/2 odd Figure 2
c/2+2 even |Figure3with/=c/2-1
c/2+2 odd Figure 4
c/2+2+) (G=2/4,...,¢/2-2) even |Figure3withl/=c/2-1—j
c/2+2+k (k=2/4,...,¢/2-2) odd Figure 3with { =c¢ — k
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Proor. Let us keep the notation as above. In particular, F' is given by
(3.15) and (O) = ¢,. Take the following elements from L g q.0):

c+2
Ga=T=) e, &=e—ey 1<i<r—2 i#r—c—1).

We take &, and &,_._; from L. 40y according to the following rule:
1) Ife; =d/2—g/((c + D(c+ 2) € Z, then put

Sr=dy+el —er, o1 =€ 1~ €.
@) If ez =d/2 —g/((c+ 1)(c+2) —1/(c+2) € 7, then put
S=do+cel, &o1 =€ c1—€rc
@ Ifecs=d/2—g/((c+1D(c+2)— A+ 0/(c+2) € 7, then put

r—1

& =do+c3l + Z i, Croe-1=€r—c—1— r_c.
i=r—{

@) Ifes=d/2—g/((c+1)c+2)+1/(c+2) € Z, then put
ér = AO + C4F — €1 — (F + (O)), frfcfl =F+ (O) — €r¢.

Here the numbering of the &;’s corresponds to that of the vertices in Figures
1,2, 3, 4 according to 2g/(c + 1) mod (¢ + 2) with d = 2¢/(c + 1) mod 2 in the
case when c¢ is odd and to the combination of g/(c + 1) mod (¢ + 2) and the
parity of d in the case when c is even.

Then these together with F', (O) clearly form a basis for NS(X) over Q
in either case. While we see that {&,&,,...,&,} forms a Z-basis for
Lga0 ,we divide our argument between the case (4) and the other cases.
At first, we restrict ourselves to the case (3), since the cases (1) and (2) are
quite similar. Consider the matrix representing the base change from
(A, Tyeq,ez,...,e.)t0(8,, ¢ 1,81,8s,...,¢ 9, F,(0)). Then it is easy to see
that, off the (r + 1)-th row, it is an integral triangular matrix all of whose
diagonal entries are equal to one, and we have

zg 2 c+2
F:€y71+(6+2)€¢+ <—+2+€>év 1+ <—+1+€)Zkik

+1
r—{—1
+ 3+ le+2) — k) + Z ((c+3)r —k) —c—2)& — ().
k=c+3 k=r—t

For (4), we only have to note that the matrix representing the base
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Change from (A07 F7 €1,62,... 767") to (67’ + F + (O)a é’r‘—la 517 527 s 751‘—0—27
€r_c1,8r_c,---,r_1,(0)) is an integral triangular matrix, all of whose
diagonal entries are equal to one, and we have

F=—e_.1+@+2 +F+()

r—c—3
fr H—Z( +c+2-— k)f/rk Z (r—c—2-k),— Z e, —(0),
k=c+3 k=r—c
o1 —F—0)=—¢, ¢, &=—e1te (=r—c,...,7r—2).
Hence in either case {¢;, &, ..., &} forms a Z-basis for L g4 and we

obtain the corresponding Dynkin diagrams.

As to the last statement, we consider the case when ¢ = 2mod4 only,
since the other cases are similar. We note that the self-pairing numbers of
¢;’s are always even except for &,, while the parity of that of &, varies even if
we fix g > (c + 1)°. Consider for example the case when g is divisible by
(¢ + 1)(c + 2). If d is even then &,2 = 29/((c + 1)(c + 2)) + 1is odd, and if d
is odd then ¢&,2 = 2¢/((c + 1)(c +2)) + (c +2)/2 is even with £ =¢/2. O

3.2 - Type (C,ga 17”)

We shall determine the Mordell-Weil lattices for fibrations f : X — P!
of type (¢, g,1,n) with (¢ + 1)(c +2)/2 < g < (¢ + 2)(c + 3)/2. When n > 0,
the reduction Y is obtained by blowing I’ up at po, . . . , p, corresponding to
singular points of G as in Theorem 2.3. Furthermore, the configuration is
as in Proposition 3.3. Let ¢; be the inverse image on X of p; (¢ =0,...,n).
We denote by [ the pull-back to X of aline on P2 and let e,m+1<1<rbe
the disjoint ( —Vl)—sections of f coming from base points of ;. Then

NS(X) ~ Zl @ & Ze;. We take the last ( — 1)-section e, as the zero section
i=0

(0). Then (0) énd F' generate the trivial sublattice 741, C NS(X). Let

Lic41x) be the essential sublattice obtained as the orthogonal complement

of T(c,g,lﬁn)'
We first consider the case where Gy is as in (iv) of Theorem 2.3. Then

F = (c+4)l—2i:e7;— i €;.
=0 i=n+1

THEOREM 3.8. Let (c+ 1)(c+2)/2 < g < (c+2)(c+ 3)/2. For a fibra-
tion of type (c,g,1,m) with n = (c + 1)(c +4)/2 — g, the lattice Lg1.) 1S
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isomorphic to a positive-definite odd wunimodular lattice of rank
r =39 — (¢ + 3)(c — 4)/2 whose Dynkin diagram is as in Figure 5.

Fig. 5

Proor. Take the following elements from L4 1,), whose numbering
corresponds to that of the vertices in Figure 5:
Ci=e1—e¢ A<i1<r—-1,1#n+1),
r—1
i1 =€n —eny1 —eny2, & =—1l+ Z ;.
i=r—c—4

Then we can show that the above elements form a Z-basis for L. 41 ) in the
same way as in the case (3) in the proof of Theorem 3.7. |

Secondly, we shall determine the Mordell-Weil lattices for fibrations of
type (¢, (c + 1)(c +2)/2,1,4). If ¢ is even, then

3¢ 16 ¢+2 3 ¢ c*+5¢+9
F = 5 [ — B ;ei_é&l_ lz:; €, (O):ecz+5c+9-

THEOREM 3.9. For a fibration of type (c,(c + 1)(c + 2)/2,1,4) with an
even number ¢, the lattice L i1yc+2)214) 1S 1S0morphic to a positive-
definite odd unimodular lattice of rank ¢ + 5¢ + 9whose Dynkin diagram
is as in Figure 6.

2 +5c+8

Fig. 6

Proor. Take the following elements from L (ci1)c+2)/2,14), Whose
numbering corresponds to that of the vertices in Figure 6:
E=e1—e (1=1,236,7,...,c2+5c+8),
c/2+4
Ei=e3—es—e5, C5=e4— Z i, Ceinerg =1 —eo—e1 —es.
=5
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Then we can show that the above elements form a 7Z-basis for
Lic(c+1)c+2)/21,4) in the same way as in the case (3) in the proof of Theo-
rem 3.7. U

Next, we consider the case where ¢ is odd, g = (c+ 1)(c+2)/2,d =1
and n = 4. Then

3¢+5 c+1 4 c2+5c+9
F= 2 l— B € — Z ei, (0) = ez 549
=0 i=5

THEOREM 3.10. For a fibration of type (c, (c + 1)(c + 2)/2,1,4) with an
odd number ¢, the lattice L c11yc12)/214) 1S 1s0morphic to a positive-de-
finite odd unimodular lattice of rank ¢ + 5¢ + 9 whose Dynkin diagram is
as i Figure 7.

6 7 (c+7)/2 9

2(:2+7(:+13
2
202 47¢415 c+15 c+13 H5c+9  2¢247c+19 2 45c+8
2 2 2 2

Fig. 7

Proor. Take the following elements from L 1)c+2)/2.14), Whose
numbering corresponds to that of the vertices in Figure 7:
S=e1—e 1<i<c+bc+8, i#b, 2c%+Tc+15)/2),
(c+9)/2

G=es— Y e, Coritertnz = Ceciteyz — E+ (),
i

Cziborg =L — €0 — €1 — €2 — € 70415)2-

Then we can show that the above elements form a 7-basis for
Licc+1)c+2)/2,1,4 in the same way as in the case (4) in the proof of Theo-
rem 3.7 O

In the last, we shall determine the Mordell-Weil lattices for fibrations of
type (4,16,1,3). Then

3 48
FZQZ—SZ@i—Zei, (0)2648.
1=0 1=4

THEOREM 3.11.  For a fibration of type (4,16,1,3), the lattice L1613
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18 1somorphic to a positive-definite even unimodular lattice of rank 48
whose Dynkin diagram is as in Figure 8.

48

Om®)

ORCEONE
o~

2—Q2 ) ) R ®)
5 6 8§ 9 a7

Fig. 8

Proor. Take the following elements from L 141 3), whose numbering
corresponds to that of the vertices in Figure 8:

éi =€i-1—6 (i:172737576a"'a47)7 64 = €3 — €4 — €5 — €,
Cig=1—ey—e — ez

Then we can show that the above elements form a Z-basis for L 141 3) in the
same way as in the case (3) in the proof of Theorem 3.7. O
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