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Signs in Weight Spectral Sequences,
Monodromy-Weight Conjectures, Log Hodge Symmetry
and Degenerations of Surfaces.

YUKIYOSHI NAKKAJIMA (*)

ABSTRACT - In this paper we study signs in various weight spectral sequences. After
these studies, we prove that the p-adic, the l-adic and the co-adic monodromy
filtrations and the weight filtrations on the first log cohomologies of proper
simple normal crossing log surfaces do not necessarily coincide. Conversely we
prove that the log hard Lefschetz conjecture for the first log I-adic cohomology of
aprojective simple normal crossing log variety implies the coincidence of the two
filtrations on the first log l-adic cohomology of it. We also study the log Hodge
symmetry.

1. Introduction.

This paper is a continuation of my previous paper [Nakk3]. The paper
[Nakk3] is mainly about the p-adic weight spectral sequence of a proper
SNCL(=simple normal crossing log) variety over a log point s by the use of
log de Rham-Witt complexes ((Mo], [Nakk3]) (SNCL variety is also called
a strict semistable log scheme over s); this paper is about the l-adic and the
oo-adic weight spectral sequences of it ((Nak3], [F'N]) as well as the p-adic
weight spectral sequence of it. This paper except the Introduction consists
of two parts.

In the Part I of this paper, we study signs in various weight spectral
sequences and we discuss fundamental related topics.

In [Mo] Mokrane has constructed the p-adic weight spectral sequence
of a proper SNCL variety over the log point of a perfect field of char-
acteristic p > 0. Though some points in the construction are incomplete
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and mistaken, these have been completed and corrected in [Nakk3]. It has
been thought that, in [St2], Steenbrink has constructed an analogue in a
case where the base field is the complex number field. However the 7-
structure and the Q-structure of the cohomological mixed Hodge complex
in [loc. cit.] depend on the choice of local charts a priori. In [FN]
(cf. [KwN]), Fujisawa and Nakayama have constructed a cohomological
mixed Q-Hodge complex in an intrinsic way, and they have proved that
their cohomological mixed Q-Hodge complex is isomorphic to Steenbrink’s
one over . In [Nak3] Nakayama has constructed the l-adic weight spec-
tral sequence of a proper SNCL variety over a log point.

Unfortunately, except the oo-adic weight spectral sequence in [GN] and
the p-adic weight spectral sequence in [Nakk3], there are some non-good
choices, incomplete parts or mistakes in signs in the weight spectral se-
quences. Especially we correct the description of the boundary morphism
between the E;-terms of the [-adic weight spectral sequence of Rapoport-
Zink ([RZ]).

Let x be a perfect field of characteristic p > 0. Let s, be the log point
whose underlying scheme is Spec . Let V be a complete discrete valuation
ring of mixed characteristics with residue field x. Endow Spf V' and Spec V/
with the canonical log structures and denote the resulting log (formal)
schemes by (Spf V)ean and (Spee V)., respectively. Let X be a proper

SNCL variety over s, and denote by X the underlying scheme of X. In the
Part II of this paper, we study different and common points between the
following three sets of objects with respect to the (non)coincidence of the
monodromy filtration and the weight filtration on the log [-adic and the p-
adic cohomologies of X:

(1) {X | there exists a formal proper strict semistable family X
over (Spf V)., with canonical log structure such that X ~ X xgprv,, Sp},
(See (6.2) below for the (glefinition of the canonical log structure on the
underlying formal scheme X over SpfV.)
(2) {X | there exists an algebraic proper strict semistable family X’
over (Spec V)ca, with canonical log structure such that X' ~ XX (specv),,, spth
3) {X | X is projective over x}.

Let s, be the log point whose underlying scheme is SpecC. Set
4:={te C||t| <1}, endow 4 with the canonical log structure defined
by the origin of 4 and denote the resulting log analytic space by 4., We
also have three analogous sets of objects over s, and 4., by replacing
“formal proper strict semistable family over (Spf V)...” (resp. “algebraic
proper strict semistable family over (SpecV)..,”) in (1) (resp. (2)) by
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“analytic proper strict semistable family over 4..,” (resp. “analytic
proper strict semistable family which is obtained by the analytification of
an algebraic proper strict semistable family over a smooth algebraic
curve over C”).

Then we have the following table for the (non)coincidence of the
monodromy filtration and the weight filtration:

coincidence l-adic p-adic oo-adic

@ No in general No in general No in general
0D Fo) YesifdimX<2 |YesifdimX<2 |Yes

3) YesifdimX<2 |YesifdimX<1 |Yes

As to (2) and (3) in the general l-adic and p-adic cases, the coincidences
have not yet been proved, which are, what is called, the l-adic and the p-adic
monodromy-weight conjectures, though some affirmative results have been
obtained ([D4], [RZ], [Fa], [Ful], [Nak3], [Tt1], [1t2], [Nakk2], [Nakk3], ...).

In this paper we give the answers for (1) in the table above for the l-adic

and the p-adic cases for the case dim X=2 for certain X’s which have
appeared in [Ue]: the monodromy filtration and the weight filtration on the
1st and the 3rd log l-adic etale and log crystalline cohomologies of X do not
coincide. These X’s are counter-examples of [Mo, 6.2.4] (in the co-adic case,
the analogous noncoincidence for one of them is well-known ([C1])). They
are also counter-examples of Chiarellotto’s conjecture ([Ch]).

Rapoport %nd Zink have given the answer for (2) for the l-adic case in
the case dim X< 2 ([RZ]); Mokrane has given the answer for (2) for the p-

adic case in the case dim X < 2 for the 0, 2, 4-th log crystalline cohomologies
([Mo]); we give the answer for the 1st and the 3rd log crystalline co-
homologies (see also (6.8) (4) below).

The answer for (3) for the 0, 2, 4-th log l-adic cohomologies in the case
dim X< 2 is given by the same proof as that in [RZ] (cf. [Mo]); we deduce
the coincidence for (3) for the 1st and the 3rd log l-adic cohomologies of X
from the log l-adic hard Lefschetz conjecture for the 1st log l-adic coho-
mology (see (9.5) below for the precise statement of the conjecture). Re-
cently Kajiwara has proved the log l-adic hard Lefschetz conjecture for the
1st log l-adic cohomology ([Kal]). Consequently we know the answer for (3)
for the l-adic case in the case dim X< 2. Though the answer for (3) for the
p-adic case in the case dim X= 2 has not yet been given, we would like to
discuss it in the future (In the case dim X= 1, we can check the coincidence
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directly as in [Mo] and [Nakk3] or we can reduce the coincidence to that for
(2) by using log deformation theory in [Kk1].).

As to the oo-adic case for (3), M. Saito’s proof in [SaM] has given the
answer (cf. [St2]); one can deduce the answer for (2) in the oo-adic case
from that for (3) by using Chow’s lemma and the semistable reduction
theorem.

Over s, we give the following table for the log Hodge symmetry:

log Hodge symmetry oo-adic

1) No in general
(1.0.2) ® Yes

6)) Yes

Here we replace “algebraic proper strict semistable family over (Spec V)ean”
in (2) by “analytic proper strict semistable family over 4.,, whose fiber for
any t € 4is algebraic”.

Other results in this paper are the following.

We prove the [-adic and p-adic local invariant cycle theorems for the 1st
log l-adic and p-adic cohomologies of a projective SNCL variety without
using the log l-adic and p-adic hard Lefschetz conjectures. These include
an affirmative answer to Chiarellotto’s conjecture ([Ch]) for the 1st log p-
adic cohomology of it. We also give a new proof of Fontaine’s conjecture
(=Coleman-Iovita’s theorem ([CI])) on the criterion of the good reduction
of an abelian variety over a local field of mixed characteristics.
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NOTATION. (1) For a log scheme (resp. log analytic space) X in the sense
of Fontaine-Illusie-Kato ([Kk1], (resp. [KN])), we denote by X the un-
derlying scheme (resp. underlying analytic space) of X and by My the log
structure of X.

(2) Following Friedman ([Fr]), for a morphism X —S of log
schemes, we denote by /1}} /s (= w}( /s in [Kk1]) the sheaf of the relative
logarithmic differential forms on X/S of degree i (7 € IN).

(3) (S)NC(L)=(simple) normal crossing (log).

CoNVENTIONS. We make the following conventions about signs (cf.
[BBM], [Co]).
Let A be an exact additive category.
(1) For a complex (E*,d*) of objects in A and for an integer =,
(E*{n},d*{n}) denotes the following complex:

- ., Lo
.. g1l d:" ot dq_)w ol dit" o

q—1 q q+1

Here the numbers under the objects above in .4 mean the degrees.

For a morphism f:(E*,dy) — (F*,d}) of complexes, f{n} denotes a
natural morphism (E*{n},dy{n}) — (F*{n},d5{n}) induced by f. This
operation is well-defined in derived -categories: for a morphism
f:(&*,dy,) — (F*,d}) in the derived category D*(A) (x = b, +, —, nothing)
of complexes of objects in A, there exists a naturally induced morphism
f{n}:(E*{n},dy{n}) — (F*{n},dy{n}) in D*(A).

(2) For a complex (E*,d*) of objects in A and for an integer #,
(E*[n], d*[n]) denotes the following complex as usual: (E*[r])? := E9+" with
boundary morphisms d*[n] = (— 1)"d**".

For a morphism f:(E*,d3) — (F*,d}) of complexes, f[n] denotes a
natural morphism (E*[n],dy[n]) — (F*[n],dy[n]) induced by f without
change of signs. This operation is well-defined in derived categories as in (1).

(3) ([BBM, 0.3.2], [Co, (1.3.2)]) For a short exact sequence

0— (&, dy) L #*,d3) L (G, dy) —0

of bounded below complexes of objects in A, let MC(f) := (E*[1],d3[1]) @
(I*,d3) be the mapping cone of f. We fix an isomorphism “(Z°[1], d3[1]))&
(F*,dy) > (x,y)— g(y) € (G*,d,)” in the derived category D" (A).

Let MF(g) := (F*,d}) ® (G*[ —1],d%[ —1]) be the mapping fiber
of g We fix an isomorphism “(&°,dy) > x+—(f(@®),0) € (F*,d})a®
(G°[ - 11,dg[ —1])” in the derived category Dt(A).
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(4) ([BBM, 0.3.2], [Co, (1.3.3)]) In the situation (3), the boundary
morphism (G*,d?,) — (E*[1],dy[1]) in D" (A) is the following composite
morphism

(G*,dg) <— MC(f) 25 (B, dyl1) iy (B*[1],dg[1]).
More generally, we use only the similar boundary morphism for a triangle
in a derived category; we do not use the classical boundary morphism in
e.g., [Hal] of a triangle.

(5) Assume that A has enough injectives. Let F: A— B be a left
exact functor of abelian categories. Then, in the situation (3), the boundary
morphism 9: R1F(G*, d,)) — R F((E", dy;)) of cohomologies is, by de-
finition, the induced morphism by the morphism (G*, d¢,) — (E°[1], dg[1])
in (4). By taking injective resolutions (I*,dy), (J*,d}) and (K*,d) of
(E*,dy), (F*,d}) and (G*,d7,), respectively, which fit into the following
commutative diagram

0 —— (I°d}) —— (J*,d}) — (K*,d}) —— 0

(1.0.3) | | |

0 —— (E%dy) — (F%dy) —— (G*,dg) —— 0

of complexes of objects in A such that the upper horizontal sequence is exact,
it is easy to check that the boundary morphism 0 above is equal to the tra-
ditional boundary morphism obtained by the lower short exact sequence of
(1.0.3). (For a short exact sequence in (3), the existence of the commutative
diagram (1.0.3) has been proved in, e.g., [NS, (2.7)] as a very special case.)

(6) For a complex (E*,d*) of objects in A, the identity id: £ — EY
(Vq € Z) induces an isomorphism HI(E*, —d*)) — HI(E*,d*)) Vq € Z)
of cohomologies. We sometimes use this convention.

(7) We often denote a complex (£°, d*) simply by (£°,d) or E* as usual
when there is no danger of confusion.

(8) Let (7,R) be a ringed topos. For two complexes (E*,dj) and
(F*, dy) of R-modules, the tensor product of (&°, d},) and (F'*, d},) is defined
as follows as usual:

(B*®F°)" := (P E'erF! (nc )
p+q=n
with a boundary morphism d”|(E,7®R Fo) = d% ®idpe + (— DPidgy ® d‘},.

(9) ((BBM, p. 4], [Co, p. 10]) Let (7,R) be a ringed topos. For two

complexes (E*,dy,) and (*,d},) of R-modules, set

Homj(E*, F*) := | [ Homg(E?, F*™).
q
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Then Homj,(E®,F*) becomes a complex with the following boundary
morphism:

(1.0.4) d":=[[C=D""df, + di™): Homl(E*, F*) — Homy ™ (E*, F*).
q

(Note that this boundary morphism is different from that in [Hal, p. 64].)
For a morphism f:(7,R)— (7', R’) of ringed topoi and for a bounded
above complex E*® of R'-modules (resp. a bounded below complex F** of R-
modules), there exists a canonical isomorphism

(1.0.5) RHomg (Lf*(E*), F*) — RHomg (E*, Rf.(F*))

in DT(I'(7',R)) by the proof of [B, V Proposition 3.3.1].

(10) ([Co, (1.3.15)]) Let A be a not necessarily commutative ring. Let M
and N be left A-modules. Let {(P*,d})},., (resp. {(I*,d})},-,) be a pro-
jective (resp. injective) resolution of M (résp. N). Then we have two nat-
ural isomorphisms

(1.0.6) Hom} (P*,N) — Hom}(P*,I*) < Hom}(M,I*)

in the derived category D(A) of complexes of left A-modules. Following
([Co, (1.3.15)]), we fix an isomorphism

(1.0.7) Homy(P*,N) — Hom}(P*,N)
of complexes of A-modules as follows:

Homy(P~",N) 3 f—(— 1)"""V/2f c Hom, (P*, N)=Homy (P~", N) (neN).

Part L. Signs in weight spectral sequences.

2. Weight spectral sequences.

In this section we recall four weight spectral sequences of a proper
SNCL variety over a log point: the [-adic weight spectral sequence, the p-
adic weight spectral sequence by the use of log de Rham-Witt complexes
and two co-adic weight spectral sequences in [FN]. We have to pay careful
attention to the identification of the E;-terms of the weight spectral se-
quences with classical cohomologies. In the [-adic case, two identifications
are possible by cycle classes of smooth divisors and by the log Kummer
sequence (see (5.16) below for the two identifications); in the p-adic case, an
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identification is possible by the use of the Poincaré residue isomorphism.
In the co-adic case, three identifications are possible by the methods
above. These three methods naturally give different descriptions of the
boundary morphisms between the Ei-terms of the weight spectral se-
quences. Because we would like to give the same description of the
boundary morphisms and because we use the Poincaré residue iso-
morphism as the most basic tool as in [D2] and [Nakk3], we twist the other
identifications by signs in the l-adic and the oc-adic cases.

(A) l-adic case

Let x be a field of characteristic p > 0 and let s := (Spec x, M) be a log
point with standard chart N 3 1+——0 € . Let [ # p be a prime number.
Let X /s be a proper SNCL variety (see [Nakkl, §2] for the definition; in
this paper, we do not assume that X is of pure dimension, geometrically
connected, nor that the irreducible components of X are geometrically

irreducible.). Set X := X ®, Ksep. Let X0 (resp. X ™) (r € Z>1) be the
disjoint union of all r-fold intersections of the different irreducible com-

ponents of X (resp. X). Then X is a SNCL variety over 5. Set also
X; = liln lim (X ®7n ZINYEY) by abuse of notation, and

 Hp (X5, 7)) = 1imH{gg X5, 2/ (h e Z)

and
Hlog ot Xz, Q1) := Hlog ot X5, Zp) @7, O (h € 7).

See [Nakl1] for the definition of the log etale cohomology.
Let X be the log etale site of X and Xlog the log etale topos of X

([Nakl, (2.2)]). Let ¢ = set:X ot —>X ot be the forgetting log morphism of
topoi. Fix a total order on the irreducible components of X. Then, by the

proof of [Nak3, (1.8.3)], we have an isomorphism R"e (7 /I") —
(20— r) . Here, in the target of this isomorphism we omit the no-

tation of the dlrect image of a natural morphism X ) — X for simplicity

of notation. Let us recall this isomorphism.
Let m be a pos1t1ve integer which is prime to p. Let M< Tlog be a sheaf of
monoids on X.° ot Which is associated to the presheaf U+— I’ (U My)

(U € %) (KN, p. 169]). Let Mz be the log structure of X in Xet Then

the log Kummer sequence

2.0.1;m) 0— (Z/m)D) — M, ME 0
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in ):(L‘;g ([KN, (2.3)]) gives an isomorphism
(2.0.2;m) (ME/0R) @z (Z/m)( 1) = Rle(Z/m).

Furthermore, the cup product Rle*(%/m)®r—>RVe*(’Z/m) induces
an isomorphism /\TRls*(Z/m) — R"¢.(7/m). The isomorphism
R'e,(7/m) — (Z/m)(fr))%(‘) in the proof of [Nak3, (1.8.3)] is the

inverse isomorphism of the following composite isomorphism
r
@03m) (Z/m)(=n = NMP /0P @y (Z/m)(- D} =

N\R'e.(Z/m) = R'e.(Z/m).

By [Nak3, (1.4)] we have the following spectral sequence

@040 E" = P HL¥ X BRI (/1M + 1) =
j>max{—k,0}
Hjy o (X5, 7,/1")

for a positive integer n. Using the identification (2.0.3;1") and taking the
projective limit with respect to n, we obtain the following [l-adic weight
spectral sequence of X /s:

@050 E = P HyT XD 7y -k =
j>max{—k,0}

Hh

log-et X§7 ‘Z’l)

However we do not use this spectral sequence in this paper. Instead of using
(2.0.3;1"), we use the following isomorphism

(~1) 7+k
(2.0.6;) 2/ -2 —k— 1)%2]%1) = (ZJIN( -2 —k — ))_{(MH)

(ZO 3"

N R2j+k+18 (A/ln)
for the sheaf R¥*¥+1¢,(7/1") in the direct factor of the E-term of (2.0.4;1)
and we use the following l-adic weight spectral sequence of X /s by the use of
the identification (2.0.6;():

@0.7;0) B = P HL¥'X @D 2)(— j—k) = H].

log-et X§7 7).
j>max{—k,0}

In (5.16.5) below, the reader shall know the reason for making the twist by
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the sign (— 1Y by remembering the introduction in this section. Ten-
sorizing (2.0.7;1) with Q;, we obtain the following /-adic weight spectral
sequence of X /s:

@08 B = P HLF X @D 0)(—j— k)= Hy (X5, Q).
j>max{—k,0}

The weight spectral sequence (2.0.8;1) is isomorphic to (2.0.5; )®7, Q.
By [Nak3, (2.1)], (2.0.8;1) degenerates at K.

Let T be a basis of 7;(1) and T e 7q4(—1) the dual basis of 7. On
H{f)g_et(Xg, 7.), there exists an operator v; := (T —id)® T* H{log_et(Xg, 70 —
— H{g g_et(Xg, 70— 1) ([Nak3, (2.4) (1)], cf. [112, p. 39]), which we call the I-
adic quasi-monodromy operator. By using the [-adic Steenbrink complex of
X /s (85 below) and by interpreting v; by an endomorphism of it (ef. the p-adic
and oo-adic cases below), we see that v; is nilpotent. Hence, on H' ﬁ)g-et X5, Qy),
the [-adic monodromy operator

Ny :=logT ® T:H}, (X5, Q) — HI!

log- log-et X§7 QZ)( - 1)

is well-defined.

K. Kato has conjectured the following, which we call the [-adic mono-
dromy weight conjecture ([Nak3, (2.4) (2)]) (this is a generalization of a
well-known conjecture):

(2.0.9;D): If X is projective over k, then the monodromy filtration on
H!  ..(X5 Q) and the weight filtration on H? _ (X;, () coincide. That is,

og-et log-et
the morphism
Njigrl JHi o, Q) —grf Hl (X, O)(— 1) (r € Z0)

is an isomorphism. Here P is the weight filtration associated to the spectral
sequence (2.0.8;1) such that gerﬁ)g_et X:, Q) = E’}O‘;f}“
Nakayama has reduced (2.0.9;]) for any base field x to (2.0.9;]) for a

finite field ([loc. cit., (2.4) 4)]).

(B) p-adic case

Assume that « is a perfect field of characteristic p > 0. Let W be the
Witt ring of x and K the fraction field of W. Let s = (Specx, M;) be a log
point and let X /s be a proper SNCL variety. Let W% be the “reverse” log
de Rham-Witt complex of X defined in [Hy] and [HK] and denoted by
W5 in [loc. cit.]. Then, in [Nakk3, (7.19)], I have completed the proof of
[HK, (4.19)] which claims, as a special case, that there exists a canonical
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morphism

2.0.1; ) Hy vy

X/W) — H"X, W A%)

and that it is an isomorphism. See [Nakk3, (7.19)] for details.

Let WA?( (1,5 € N) be a W(Oyx)-module defined in [Mo, 3.8] with the
filtration P = {P}},., which is the projective limit of the filtration in [Mo,
3.21]; to take the projective limit of the filtration is a nontrivial operation; I
have completed it in [Nakk3, §8]. By following the proof of [RZ, (1.7)], our
boundary morphisms of a p-adic double Steenbrink complex WA} are as
follows:

WAy
(2.0.2;p) (_1)%[
way SO gy i

Let WA% be the p-adic single Steenbrink complex associated to WAY. Let
WAX (@ € N) be a W(Ox)-module defined in [Hy, (1.2)] and [Mo, 2. 3] and
denoted by WwX in [loc. cit.]. Let 8 € I'(X, WAX) be a global section de-
fined in [Hy, (1.2.2)], [Mo, 3.4 (3)] and [Nakk3, (8.1.3)]. Then, by [Mo,
Lemme 3.15.1], the morphism 0A: WAy — WA, of complexes induces a
quasi-isomorphism

ONWA, = WAS.

(For the proof of [Mo, Lemme 3.15.1], we need the second isomorphism in
[Mo, 1.3.3]; in [Nakk3, (6.28) (7)] we have given the precise proof for the
second isomorphism in [loc. cit.].) Hence we have a composite isomorphism

2.0.3;p) X/W) = H"X, WAX) = HMX,WAY).

log -Crys

Let us also recall the p-adic weight spectral sequence of X /s in [Nakks3,
(9.11.1)], which is a correction of the p-adic weight spectral sequence in
[Mo, 3.23] (The construction of the weight spectral sequence in [Mo, 3.23] is
incomplete. See [Nakk3, §6~11] for details (cf. (2.2) (1) below).).

Consider the following exact sequence

(2.0.4;p) 0— grl WAy — (Py/Py_2)WAY — gri WAy — 0.

Fix a total order on the irreducible components of X. Then we have

@05p) glWAy — P (—j—k), (= 1) {2 — k)

jZmax{fk.O}

X(27+k+1)
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by [Nakk3, (9.9)]. Hence we have
2.0.6;p) H'X, grf WAy )= €D H'" ¥ "X, (W5, (-1 d)(~j—F)

X@ j+k+1)
j>max{—k,0}
h—2j—k . .
@ H (X W'Qx(z+k 1))( —J —k)
j>max{~k,0}
_ @ H’Z{y?*k(X (2j+k+1)/W)( —j—k).
Jzmax{-k0}

Here we have obtained the middle equality by using the Convention (6).
Using the identification (2.0.6;p), we have the following p-adic weight
spectral sequence of X /s:

@0.7:p) B = @ HE I XD W) j— k)= H]y o X /W),

crys

j>max{—k,0}
Tensorizing (2.0.7; p) with K, we obtain the following p-adic weight spec-
tral sequence of X /s:

2.0.8: p) E lc Btk _ @ ng zj k(f( (2j+k+1)/W)( —j—k) @w Ky =>
j>max{—k,0}

X /W) @w Ko.

log crys

Mokrane has practically conjectured that (2.0.8;p) degenerates at Ey
([Mo, 3.24]). If x is a finite field, one can immediately prove this conjecture
by using the purity of the weight [CL, (1.2)] or [Nakk3, (2.2) (4)] as in [Mo,
3.32]. In [Nakk3, (3.6)] we have generalized this fact: (2.0.8; p) degenerates
at Ky for any perfect field « of characteristic p > 0.

By following [Nakk3, (11.3.6)] (cf. [HK, (3.6)]), let

Ny H! X/W,)(=1)

log-crys (X / Wn) — H r

l(l)g-crys
be the boundary morphism obtained from the following triangle

dlogtA

RO.(Cxyw, w,oup)(— DI =11 — RO.W,, ®w, 1y Cx/w,) —

+1
RO.(Cx/w, w,m) —

(see the notation in [HK, (3.6)]; the 6 above is not the 6 in this paper). Here
we have used the Convention (4) and (5). Let

Ny H! oo (X W) — HY

log-crys log-crys

X/W)(—-1

be the p-adic monodromy operator obtained from {Nj,},c,.  (cf.
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[HK, (3.6)]). Let v,: WA, — WA%(— 1) be a morphism of complexes de-
fined by a family of morphlsms (— D™ proj.. WAY — WAL
(1,5 € N) ([Nakks, §11], cf. [St1, (4.22)], [RZ, (1. 6. 2)]); the morphlsm v in
[Mo, 3.13] is not a morphism of complexes if dim X > 2; see [Nakk3, (11.9)]
for more details). Denote also by v, the induced morphism

(2.0.8.1;p) H"X,WAS) — H"(X, WA$)(— 1)

of cohomologies. Then, under the identification (2.0.3; p), N, = v, ((Nakks,
(11.4) (2), (11.10)]). In[Nakk3, (11.7)] we have proved the following: let k be a
positive integer. Under the identification (2.0.6; p), the induced isomorph-
ism
@082p) v O HTTAWR, (—j-k)
j>max{—k,0}
Hh 2] k(X WQ. )( _j _ k)

){(2 j+k-+1)
J>max{—Fk,0}

by the isomorphism vf: grf WAy — gr® WA%( — k) is the identity if & is
even and ( — l)h+1 if k is odd. In the l-adic case and the oo-adic case stated
later, one can prove the obvious analogues.

Let G be the sum with signs of Gysin morphisms defined in [Mo, 4.10]
and p the sum with signs of induced morphisms by closed immersions
defined in [Mo, 4.12]. Then the boundary morphism between the E;-terms
of (2.0.7; p) is as follows ([Nakk3, (10.1)]):

(2.0.8.3; ) S (-G +(~ 1 p)
j>max{—k,0}
B = @D HIEEHX S W — k)
j>max{—k,0}
—>E’i§+1’h+k _ @ ngry? k+2()°((2j+k)/W)( —j —k+1).

j>max{—k+1,0}

Here we omit the shift {x} in [loc. cit.] for the morphisms G and p. Note that
[Mo, 4.13] is wrong and the proof of it is incomplete; see [Nakk3, (10.2) (4),
(5)] for more details.

The following conjecture is the p-adic analogue of (2.0.950) (cf. [Mo,
3.27)): .

(2.0.9;p): If X is projective over x, then the monodromy filtration on

log_CWS(X /W) @w Ko and the weight filtration on H’ X /W) ow Ko

coincide.

log -Crys
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(C) c-adic case

Let s := ((Spec C),,, N & C*) be a log point and let X/s be a proper
SNCL analytic variety. Though it has been thought that Steenbrink has
first constructed the weight spectral sequence of X /s in [St2], we follow
the formulation in [FN] which stems from that in [RZ] and [SZ]
(cf. [KwN]) because some constructions in [St2] obviously depend on the
choice of local charts of X (e.g., L}) in [St2, (4.5)]); Steenbrink’s con-
struction alone is incomplete because we cannot discuss, for example, the
functoriality of his weight spectral sequence; the Z-structure (resp. Q-
structure) of the Steenbrink complex may (resp. might) depend on the
choice of local charts of X; in [FN], Fujisawa and Nakayama have shown
that Steenbrink’s construction over Q does not depend on the choice of
the local charts by constructing an isomorphism from his complex over Q
to their complex.

Let us first construct a spectral sequence over Z which is closely re-
lated to the weight spectral sequence over Q in [FN]. We change some
signs in some morphisms of complexes in [SZ] and [FN] to obtain the same
description of the boundary morphism of the co-adic weight spectral se-
quences (2.0.7; 00) and (2.1.10) below as that of the [-adic weight spectral
sequence (2.0.5;1); see (555) and (5.10) below.

Lete= ,stOp:Xl"g — X be the real blow up of X (KN, (1.2)], (cf. [KwN,
p. 404-405]) (we do not use the notation 7 in [KN] for the real blow up
because we have to use the standard notation 7 for the canonical filtration
later (see, e.g., (4.5.2) below)): as a set,

f@)
| f (@)

where S':= {z € C | |¢| = 1}. Then there is a natural map X'°¢ — S' of
topological spaces. Let R 3 2+ exp (27v/—1x) € S! be the universal cover
of S'. Take the fiber product X, := X°¢ xg R ([Us], ef. [KwN, pp. 404-
405)). Let 7: X, — X8 be the projection. Let I*, be an injective resolution
of Zxe. Set J%, := (en),n~1(I%) (cf. [FN, §3]). Note that n~1(I%) is an in-
jective resolution of 7x_ by the local property of the injectivity ([KS,
(2.4.10)]). Let T:J%, — J*, be the induced automorphism by the covering
transformation R 3 x——ax +1 € R over S!. We consider the following
morphism

ng:{(x,h)pc eX,he Homgp(./\/t%}?x,Sl) such that h(f)= (fe (9}}_&)},

§:=—@nvV—1)"NT —id): J, — J5(—1)

of complexes. Let MF(J) be the mapping fiber of o: MF(9) :=
=5 (D[ —1]; MF©)! := JL ® JL (= 1), d(x,y) = (dw, —dy + 6(x)).
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Let
(2.0.1; 00) 0: MF(0) — MF(0)(D[1]
be a morphism of complexes on X defined by
(@, ) — 0, —2) ((x,y) € MF(9)%)

(in [SZ, (5.12)] and [FN, (1.2.2)], the morphism (x,y)+— (0,x) was con-
sidered). Define a double complex A? as follows: the component A

(ie7,jeN) is, by definition, MF(&)H—J-H(]—I—1)/(T]MF(5))Z+J+1(j—‘rl)
where 7, means the canonical filtration on the complex MF(6). Following
the proof of [RZ, (1.7)], consider the following boundary morphisms of A*:

"
AizH-

(2.0.2; 00) <_1)ioq
Al (-1t A,

Let A?, be the single complex of A®%’. Consider a composite morphism
ty:dy 5 x— (0, —x) € MF(O)D)[1]/7oMF(0)(D)[1] -, A

of complexes. By the proof of [FN, (3.17)], the morphism H(O): H'(J 5)—
Hh(J >)(—1) (h € Z) of cohomologies is the zero. Hence, by the argument
of [SZ (5.13)], u, is a quasi-isomorphism. Therefore H"X A %) =
= H"X,J) = H' (X, 7). Let {Py},.., be the following filtration on A%,
defined by

2.0.3;00) PrAY:= ({(tyjis1+)MF(©0)} (G +1) /(G MF ()™ (j +1).
Then we have the following spectral sequence

(2.0.4;00) E kohtk — @ H'2 X HE T MEFQ)G + 1)) = H' (X0, 7).
j>max{—k,0}

By [FN, (3.2)] the following sequence
0—e ) —J, =8 —0

is exact. In particular, the morphism J: J%, — J%,( — 1) is surjective. Hence
the morphism Ker ¢ > x+— (x,0) € MF(©0) is a quasi—isomorphisom (the
Convention (3)). Fiix a total order on the irreducible components of X. Then
we have a canonical isomorphism

(2.04.1;00) R'e.(Zxe) «— /\(M)g(p/(ﬂ})( —7) = Z(—7) (r e 7o)

X0
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by [KN, (1.5)] and [Nak3, (1.8.1)] (cf. the proof of [Nak3, (1.8.3)]). Putting
these together, we have the following:

(2.0.5;00) H"(MF(9)) = H'(Ker 0) =H'(e.(I%)) = R"e.(Zxue) = 7 = 7).
As in the [-adic case, we make the following identification:
(2.0.6;00) H¥ T (MEF(6))

. -1tk
@050) 7 2~k =Dy — A2 —k—1)

X+t "

Using (2.0.4; c0) and the identification (2.0.6; c0), we obtain the following
spectral sequence

2.0.7;00) B = (P 2R (X @D Gy — HY(X.,, 7).
' j>max{—k.0}

Tensorizing (2.0.7; o0) with Q, we obtain the following spectral sequence

(2.0.8;00) B = () HFEHX @D 0)(— j— k) = H' X0, Q).
j>max{—k,0}
DEFINITION 2.1. (1) We call the cohomology H"X,7) (resp.
H"(X,.,Q)) the log Betti cohomology of X /s with coefficient 7 (resp. Q).
(2) We call the spectral sequences (2.0.7;00) and (2.0.8;00) the
weight spectral sequences of H"(X..,7.) and H"(X,,, Q), respectively.
(3) We call the filtrations on H"(X.., 7) and H"(X., Q) induced by
the weight spectral sequences (2.0.7; 00) and (2.0.8; c0), respectively, the
weight filtrations.

If X is algebraie, (2.0.7; 00)®7,7; is canonically isomorphic to (2.0.7; [) by
the proof of [FN, (7.1)]. In (5.10.1) below, we shall describe the boundary
morphism between the Ei-terms of (2.0.7;00) by the sum with signs of
Gysin morphisms and the induced morphisms of closed immersions.

By the proof of [RZ, (1.7)], the morphism §: A%, — A% (— 1) is homo-
topic to a morphism v.,: A% — A?% (— 1) induced by a family of morphisms
(- D™proj : AY — AT (1) (i € Z,j € N). (See (3.6.5) below why
the sign (— 1)"7"! does not appear.) Hence 6: A%, — A% ( — 1) is nilpotent.
Therefore the morphism

2.1.1) Ny = —@Qav-1)"logT:A%, @, 0 — A% (- 1) ®, 0

is well-defined. Let E7", (r € Z>1) be the E-term of the spectral sequence
(2.0.8;00). Since (— 1)"proj(PyAY) C Py sAL " (~1), the morphism
vk E;&h*k — E’;:’;C*k( — k) is equal to N* : B kh+k —>E’,’,f:i’/o’k( —k).
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Let us recall another more traditional Steenbrink complex defined in
[FN, §3] (cf. [SZ, §5]) and another more traditional weight spectral se-
quence.

Set I?, :=I*, ®,, Q. Then I7, is an injective resolution of Qxie. Set

= (en), ’1(1 ). Let B(J¢)) := U Ker(T — id)° ®,, Q be a subcomplex of

J : Then Fujisawa and Nakayama have proved that the inclusion
B(J Iy ¢, is a quasi-isomorphism ([FN, (3.5)], cf. [SZ, (5.9)]); thus we
have H'"X,,,0Q)=H"X, B(J?))) and the well-defined morphism

(2.12) N, := —@nvV—-1)"log T: BUJ) — BUJL)(— 1)
induces a morphism

213) Ny:H'X.,Q) = H'"X,B(J?) — H'X,BU))(— 1) =

= H'" (X0, O)(— 1),

which we called the monodromy operator. Let MF (N ,) be the mapping
fiber of the morphism N..: B(J?,) — B(J?,))(— 1). Let

2.1.4) 0: MFo(Noo) 3 (2, ) — (0, —2) € MFo(WNVoo)(DI1]

be a morphism of complexes on X. Set

2.15) AY(NL) := MFoWN)™ (i + D/(GMF (N ) G+ 1)
(iteZ,7€eN)

and consider the following boundary morphisms:

A (Noo)
(2.1.6) <_1m[
AG(Nw) 22 45,
Then A?}(N) is a double complex. Let A?,(N ) be the associated single

complex to AP(N) (cf. [SZ, (5.12)], [FN, (3.6), (3.16)]). By [FN, (1.14),
(8.17)] (cf. [SZ, (5.13)]), the following composite morphism

@17 uy:BUL) S (0, —x) €
€ MF (Vo )D[1]/7oMF o (Vo )D[1] —= A?,(No)

is a quasi-isomorphism as in the integral version above. On the other
hand, the morphism ¢:J% — J%(—1) induces surjective morphisms
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5’(2:J(’) —J8(—1) and dq: B(J}) — B(J)(— 1). By using dp, we have
a double complex A?;(dp) and the associated single complex Ag ()
to Af(o) (cf. [FN, (6.2)]). Note that Ker(d: /!, —Jo(=1) =
=Ker(Ny:B(J?)) — B(J{,))(—1)) and that the morphism N :B(J?) —
— B(J?))(— 1) is surjective. Hence we have H"(MF(N.)) = R"e.(Qxoe)
(r € 7). As in (2.0.3; 00), set

2.18) PALNL) =
{(@g1x41 + HMF (N DY TG + 1) /(GMFo (N ) G+ 1).

Then, using the following identification

2.0.5;00)00

(2.1.9) HFHH(MF (N ) =HA 1 MEF(],)) Q(—=2j—k—1).

X@i+k+1)
(—1ytk

— (-2 -k-1

L
X@j+k+1)?

we have the following weight spectral sequence

@1.10) E;MF = @ H'WE X Q) j - k) = H'(Xo, Q).
j>max{—Fk,0}

In (5.10.2) below, we shall describe the boundary morphism between
the E1-terms of (2.1.10) by the sum with signs of Gysin morphisms and the
induced morphisms of closed immersions.

Fujisawa and Nakayama have proved that the weight spectral sequence
(2.0.8; 00) is isomorphic to the weight spectral sequence (2.1.10) ([FN,
6.5)].

Following the method of [SZ], Fujisawa and Nakayama have proved in
[FN] that, if the irreducible components of X are compact and Kéhler or
the analytifications of proper smooth schemes over C, H"(X,,, Q) has a
natural mixed Q-Hodge structure (and in particular, H"(X,,7) has a
mixed 7Z-Hodge structure) and that the spectral sequence (2.1.10) with
signs which are different from our signs is a spectral sequence of mixed Q-
Hodge structures. Because we have to recall some fundamental objects in
[SZ] and [FN] for the proof, we shall also show this fact in §3 below with the
change of signs in [SZ] and [FN].

The spectral sequence (2.1.10) degenerates at E> by the yoga of weights
in mixed Hodge theory if the irreducible components of X are compact and
Kéhler or the analytifications of proper smooth schemes over C. As a
corollary, (2.0.8;00) also degenerates at K2 under the same assumption
because (2.0.8; co) is isomorphic to (2.1.10) ([FN, (6.5)]).
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IOSy the argument due to M. Saito [SaM, §4] (cf. [St2, p. 117]),
if X is projective, the monodromy filtration with respect to N
and the weight filtration on H"(X,,Q) coincide: the morphism
No: By — By"™(—k) is an isomorphism. Here Ej'_ is the
Es-term of the spectral sequence (2.1.10).

REMARK 2.2. (1) There are many non-minor mistakes and many
unproven facts in the theory of log de Rham-Witt complexes and p-adic
Steenbrink complexes in published papers. In [Nakk3, §6~11], we have
corrected all mistakes and checked all unproven facts in [Hy], [HK] and
[Mo] which are needed in this paper except counter-examples (6.8) (2) and
(4) below.

(2) In [FN], Fujisawa and Nakayama have proved that their method
and Kawamata-Namikawa’s method give the same cohomological mixed (-
Hodge complex on X up to canonical isomorphisms.

3) (cf. [RZ, A1.7)], [SZ, (5.14)]) Let f: E* — E* be an endomorphism
of a complex of objects of an abelian category. Let MF(f) =
=s((E*,dg) — (E*,—dg)) be the mapping fiber of f. Let d be the boundary
morphism of MF(f) and let 6: MF(f) > (x,%)— (0,2) € MF(f)[1] be a
morphism of complexes. Consider a double complex G** defined by
G = MF(f)"7*1) (t;MF(f )"+ with the following boundary morphism

G+l
d
Gii d Gi+Ld,
Let &: 7 x 7. — {41} be a map. Let H: G¥ > (x,y) — (e(i,j)y,0) € G
be a morphism. Then, for (x,y) € G¥, we have the following formulas:
(OH + HO)(x,y) = 0(e(i,9)y, 0) + H(O0, x)
= (e(t,j + D, &, ))y)
and
(dH + Hd)(x,y) = d(e(i,5)y, 0) + H(dx, —dy + f (x))
= (i, Ny, f(y) + e(i + 1,)( — dy + f(x),0)
= ((e(,)) — e + 1 )dy + et + 1,7) f (@), &(2,7) f ().
Hence (0H + HO)(x,y) = + (x,y) and (dH + Hd)(x,y) = + (f(x),f(y)) and

the term before dy vanishes for any (x,%) € G¥ and for all i,j if and only if
e(,j +1) = e(t,7) = et + 1,)) for all 7,5. Let G* be the single complex of
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G**. If e(t,j) =1 (resp. &@t,j) =—1) for all 7,5, then the morphism
G* > (x,y)— (f(x),f(y) € G* is homotopic to the morphism v: G* — G*
defined by —proj.: GY — G*~1+1, Thus I think that the statement [SZ,
(5.14)] and the proof of [loc. cit.] is not right in signs: the sign ( — 1P+ in
[loc. cit.] must not appear.

3. Steenbrink mixed Q-Hodge complex.

Let s := ((Spec C)n, N @ C*) be a log point. Let X be a proper SNCL
analytic variety over s. Fix a total order on the irreducible components of X
as in §2. In this section, as a corollary of (3.8) below, we show that (2.1.10) is
a spectral sequence of mixed Hodge structures if the irreducible compo-
nents of X are compact and Kihler or the analytifications of proper smooth
schemes over C. The proof of (3.8) is essentially the same as that in [FN]:
in [loc. cit.] Fujisawa and Nakayama have already obtained (3.8) with signs
which are different from those in §2 and this section. We add only (3.2)
below to [FN]. We shall use (3.2) for an argument about a sign ((4.6) below)
which gives an influence to almost all results in §4 and §5: only to give the
uniform descriptions of the boundary morphisms of the E-terms of the p-
adic, the l-adic and the oo-adic weight spectral sequences ((2.0.8.3;p),
(5.5.1), (56.10.1), (5.10.2) below), we have changed and change signs in [SZ]
and [FN]. We also add (3.5) below to [St2]; (3.5) is an easy corollary of (3.2)
and (3.4), and a complement for [St2, (4.6), (4.7)], though our statement in
(3.5) is different from [St2, (4.6), (4.7)] whose proofs seem mistaken (see
(3.6) (2) below).

First let us recall some complexes in [SZ] and [FN]. 5

By abuse of notation, we sometimes omit the symbol o in the notation X
below. Let I?, (resp. I?.) be an injective resolution of Qyxue (resp. Cyioe). Let
us recall natural morphisms 7: X, — X8 and & = gyop: X168 — X in §2. Set

Jo, = (em).n 1) and J?. = (en).n '(I7). Let B(J?) == |J Ker(T —id) be
e=1

a subcomplex of J¢, and B(J?.) a similar subcomplex of /2.
In this section we denote A?)(N) in §2 by A*(J{,). Let MF-(N,) =
= MF(N4)® be the mapping fiber of the morphism

N, =—-Cnv/-1)"" log T: B(J!.) — B(J{)(—1).

As in (2.1.5), by using the canonical filtration on MF~(N,), we have two
complexes A**(J.) and A*(J). As in (2.1.8), A**(J) and A*(J.) have fil-
trations P’s.
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By [FN, (1.14), (3.17)], a composite morphism
(3.0.1) B(J2)> x+— (0,—2)€ MF (N )D[1]/5oMF c N )D[1] — A7)

is a quasi-isomorphism. By [FN, (3.5)], the natural inclusion B(J?.) = J &
is a quasi-isomorphism. Hence, using the quasi-isomorphism (3.0.1), we
have an isomorphism

(3.0.2) feidt S AR

in the derived category D*(Cyx). Using the quasi-isomorphism (2.1.7), we
have an analogous isomorphism

(3.0.3) Tt AN

in D" (Qy), which we denote by the same symbol z.,. We also have a natural
morphism J?, — J¢. of complexes. This morphism induces a morphism
A*(Jf) — A°(J}) of complexes and we have the following commutative
diagram
Ho
J§g —— A*(J)

(3.0.4) l l

[;lf
Jg —— A*(JE).

Let ;13(/(‘, be the log de Rham complex of the log analytic space
X /((Spec C)an, C*). Let ¢t be a global section of M; whose image in
I'(s, M;/O;) = N is the generator. Set u := @rny/—1)7! logt. Let

Clul @c Ay = (- — Clul ®c Ay, — Clul ®c Al — )
be a complex with the following boundary morphism:

7 7 7
3.05) d> ) = @av-D"Y @l dlogt Awp) + > ullde
=0 j=1 J=0

where ul!:= (i)' (jeN) is a divided power of u. The complex
Clul @c Ay s is the linearization of Ay /i with respect to the variable u
(cf. [BO1, 6.11 Lemmal)); because we have to consider the first term on the
right hand sigle of (3.0.5), we use the notation Clu] @ 713( /c and do not use
the notation A% /C[u] in[SZ]and [FN]. By [KN, (3.8)] and [F'N, (3.3)] (cf. the
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proof of [FN, (3.5)]), we have the following commutative diagram:

Je 22— B(JQ) «>— R(en).m (AY®) = Clu] ®c Ay /c

(3.0.6) T T T

Cx

Cx — A% c

Here AX /L = (’) Re-1(0y) & (AX /) (vecall the definition of the sheaf Olog
in [KN, 3.2)]) and the right vertical morphism : is a natural 1nc1u510n
A5, /C < Clul ®c Ay s and the upper horizontal morphism 7 is a natural
quasi-isomorphism. By abuse of notation, we also denote by A the composite
quasi-isomorphism Clu] ®¢ ;13( o —J¢.. Let MF(NV ;) be the mapping fi-
ber of the following morphism

3.0.0 N;:=-Cnv-1)"'d/du: Clul @ Ay, — Clul @c Ay,o(—1)

of complexes. Let 0 be a morphism MF(N>) 3 (x,y) — (0, —x) € MF(N;)
(1) [1] of complexes on X. By using the canonical filtration on MF(N ), we
have a double complex A**(Clul ®c AX /C ) and a single complex
A*(Clu] ®c AX/( ) == s(A*(Clu] ®@c /1X/L .)). By using the canonical fil-
tration on MF(V5) again, we have the filtrations P’s on A**(C[u] ®¢ AX /c )
and A*(Clu] ®c¢ AX /C 2) (cf. 2.1.8)). In [FN, (3.7)] Fujisawa and Nakayama
have essentially proved that the quasi-isomorphism 2 induces the following
filtered quasi-isomorphism

(3.0.8) (A*(J2), P)—(A*(Clu] ®c Ay ), P).
Let x5, be the following composite morphism
3.0.9) Clu] ®c 71;(/(j > x+— (0, —x) € MF(N )(D)[1]/7MFWN )(D)[1]
= A(Clul @c Ay )
of complexes. Then we have the following commutative diagram
A(Jg) " A*(Cl ®c Ky )
(3.0.10) we| [

A ~
Jo —"— Clu®chy.c.

Next, consider the following morphism

3.0.11) ¢MF(N,) =
= (Clul @c Ay)) @ (Clul @c Ay, (= DI = 1) — A G €N)
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of abelian sheaves on X defined by the following formula
(3.0.12) &'(w, 1) = wy + dlogt Ay,
r . " . ~. .

where o = Y ullw; and n = Y- ully; (w; € Ay, 5; € Ag), r,7" € N). Be-

J=0 J=0 ’
cause the formula ¢(x,y) := oy — dlogt A yo in [SZ, p. 530] does not give a
morphism of complexes and because we claim that the formula (3.0.12) is a
right formula as in [FN, (3.9.1)], we give the following proof without
omission.

PROPOSITION 3.1.  The family ¢ := {¢'},cn gives a morphism of com-
plexes.

Proor. Indeed, we have the following formula:
¢ d(w, ) = ¢ dw, —dn + N(o))
=it ((271\/ ! Z wNdlogt A wj + Z wda;,
j=1 =0

— eV ul Ndlogt Am— > ulldy - @V 1) Y u[f—”wj)
=1 =0

. j=1
=2nV —1)71dlogt A w1 + day

+dlogt A {—@nvV—-1)"dlogt Ay — dg — @V —1) e}

=dwy — dlogt A dyy = dé'(w, ). -

Since N is surjective, the natural inclusion morphism 7 Ay /o2
> w+— (w,0) € MF(N ) is a quasi-isomorphism (Convention (3)). Since ¢ o7
is the identity, ¢ is a quasi-isomorphism (cf. [SZ, p. 531], [FN, (3.10)]). Con-
sider the following composite filtered morphism

3.1.1) (MFO ), 7) 2 (A0, 0) = (A P).

Here P = {P}},.., is the weight filtration on A5 Jc defined in [St2, p. 113];
however there is a mistype in [loc. cit.]: we have to replace “W,, Q0 =
image of ! @ Q7™ in Q0 in [loc. cit.] by “W, Q) = the image of
W™ @ QI in Q.

LEmma 3.2.  Let
3.2.1) grieIt) — gridy . (k € 7=0)
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be a morphism in D' (Cx) obtained by the following natural diagram
(3.2.2) (.U, 1) — (MFc(Nw), T) (MF(N ),7)
= (Ay)es 1) = ()0, P).

If k is a positive integer, then the following composite morphism

(3.2.3)
20410057 821

(=B —  Rre(Cyw) < gria Ak Y @l Ay (k) — 2

XV‘) X® /C

i DT (Cy) is the following composite morphism

1
= U ST I/S

(3.24) <o .

X(k)( k)= C

Proor. Recall the sheaf Ly, of the logarithms of local sections of
e {MED) (KN, (1.4)]): Ly is the fiber product of the following natural
diagram

et (MF)

!

Cont xiog( , vV—IR) —=2— Cont s ( ,S?),

where Contyu( , T) is the sheaf of continuous functions on X'°¢ with values
in T for a topological space T. Then we have an exact sequence

(3.2.5) 0— Z(1) — Ly — & {(MDP)—0
on X2, By [KN, (1.5)], the boundary morphism of Re,((3.2.5)) and the cup
product induce an isomorphism

(3.2.6) Ziw =\ MP/OY) = R'e.(Z(r) (€ Zsy).

First we prove (3.2) for the case k = 1.
Let {X,,},, be the irreducible components of X. Because the problem is
local on X, we may assume that there exists a section ¢, € I'(X, Mx) (Ym)

whose image t,, € I'(X, Ox) defines the closed subscheme X,, of )O( . Let
U = {U;}, be an open covering of X'°¢ such that each U; is so small that
there exist sections T),; € I'(U;, Lyw) such that exp (T,,;) = & )|y
Set U;:=U;NU; and Uy, :=U;NnU;N U, Then the image of

,...,0,1,0,.. 0) S A)o(m by the morphism (3.2.6) in R'e,(7(1)) for the
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case r = 1 is represented by a Cech cocycle {T,; — Tm}ij e[[ Wy, 7).
M ij
On the other hand, consider the following Cech double complex

—_— cos _ e —_— e

d -] d
K1,log 7. 2] Allogrr y 90 | A1,log 7. . 2] o
@27 TAX™U) —— IA(Uy) JLAX (Uijk) ——

q B J
A8 (V) —2— DRY*S(Uy) —2— T RSG5 Ue) —"— -
[ 1,7 4,5,

Then (d+){Thmi}= {dTm,i}Jr{Tm_]-me}i]-. Hence {TmJ-me}ij:

—{dT,,i} in H'U, A3)%). By the definition of d7,,; (the last formula

in [KN, p.174]), dT,;=dloge '(ty)ly,. Hence {Ty;—Twi}ij=

—{dloge1(ty)| g} in H\WU, A 1Og) Therefore, by the definition of the

morphism (3.2.3), (3.2.3) is equal to the minus natural inclusion

. el °
morphism C S0 Q)%w/((.

Next consider the general case k > 1. Note that the induced morphism

b REem),n 1 (AR5 — HEBUR) = HEUTE)

is compatible with cup products because AL /Og is a resolution of Cxu

by the 1ogar1thmlc Poincaré lemma ([KN, (3.8)]). The equality
H* (R (en). 7 *I(AX/( ) = HYClu] @c AX/L) is also compatible with cup
products because this equahty is obtained by the -equality
R(en),m 1(AX/( )= Clu]®c 4 X/L for each ¢ € N ([FN, (3.3)]). Hence we
obtain (3.2) for the general case. O

COROLLARY 3.3. The morphism (3.2.1) for a positive integer k is an
isomorphism.

Proor. By (3.2), the Poincaré lemma for X ® (k > 1) shows that (3.2.1)
is an isomorphism. O

LemMa 3.4.  The diagram (3.2.2) induces the following isomorphism
3.4.1) grie.(t) — gridy ..

PrOOF. The source of (3.4.1) is equal to R, (Cxug) <— (C}o( by the

proper base change theorem. Because the problem is local on X, we may
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assume that X is a SNCD on a smooth analytic space Y over (Spec C),, with
canonical log structure. Because a regular local ring is a UFD, we have a
surjective morphism Q; o — Ker(Res: Q%, /C( log X) ®0, Ox — Oxw).
Hence the target of (3.4.1) is equal to Q5 /c /Qy /‘@( —log X) (cf. [Mo, (3.1)]).
By [DI2, (4.2.2) (c)], the sequence

0— QFc(~logX) — Qfjc — @5, —

of complexes is exact. Therefore the complex Q5 - /2y - ( — log X) is quasi-

isomorphic to the single complex of the following double complex

(342) (=D — @y D — (2, D) — -

By the classical Poincaré lemma for X ® (k € Z>1), the single complex is
quasi-isomorphic to the following complex

34.3) Copy— Cay —

Obviously the complex (3.4.3) is isomorphic to "C}o(. Therefore we obtain
(3.4). O
COROLLARY 3.5. (1) The diagram (3.2.2) induces the following filtered
1somorphism
(35.1) (e.dIr), 1) = (U0, P)
in DTF(Cy).
(2) The natural morphism
35.2) (A0, — (U0, P)
18 a filtered quasi-isomorphism.
Proor. (1): (1) is the conjunction of (3.3) and (3.4).

(2): Because the morphisms (e.(It.), 7) < (MF-(N ), Ty MF(1) and ¢
are filtered quasi-isomorphisms, (2) immediately follows from (1). O

REMARK 3.6. (1) (cf. [St2, p. 108]) C. Nakayama has kindly pointed
out to me that one can easily obtain that the filtered morphism
(A o T — (Ay s, P) is a filtered isomorphism by a well-known method.
Indeed we have the following spectral sequence

(3.6.1) B = 1 el Ay ) = HM (U o).



Signs in weight spectral sequences, etc. 97

e spectral sequence
(The sp 1 seq
El—mk _ Hk(GY'}Z-Q;(( log D)) = ’Hk(Q;(( log D))
in [St2, p. 108] is mistaken; the right one is the following:
E;m,kﬂn _ Hk(GI'gQ;(( log D)) = Hk(Q;((log D)))

For k>1, the Poincaré residue isomorphism gives an isomorphism
grf/l}wj X<k>/‘{ k} ([St2, p.113]). Since the natural morphlsm

Cxo — 25, w0 is a quasi-isomorphism by the Poincaré lemma for X®, we

have E] ’”‘*k—o for h # k and E;"* = CX(k =H (grPAX/( ). If k=0,
then the natural morphism (‘ — grp A% jcisa quasmsomorphlsm by the
proof of (3.4.1). Hence EO” =0if h#0 and E® = Co=H (grPAX/1
Therefore the spectral sequence (3.6.1) degenerates at £1. Consequently
we have Hm(grz/lx /C ) = ’Hm(grk AX /C -) for all m,k € 7. This implies that
the morphism (3.5.2) is a filtered isomorphism.

(2) If the proof of [St2, (4.7)] is right, (3.5) (2) also follows from [St2,
(4.6)] and [St2, (4.7)]. However, even if X is the special fiber of an analytic
semistable family X with canonical log structure over a unit disk, there
exists only a relation a priori between A% s and Q% (log X): there exists a
natural morphism

(3.6.2) Q%(logX)— (1.(Ox) - 1.(2Y - (log X) ®0, Ox) LA ):1*71;(/(7

of complexes on X, where 1is the closed immersion X <, Xx.(Note that the
differential operator d: .QTX /_( log X) — ng/lc(log X) (1 € N) is not Ox-lin-
ear.) Hence I do not understand the reduction to the local case in [St2, (4.7)]
obtaining a filtered quasi-isomorphism to (AX s, P) by a filtered quasi-
isomorphism to (2% -(log X), P). Moreover, since L} in [loc. cit.] depends
heavily on the choice of local charts of X as mentloned in §2, the sheaf
WmK (g > 1, m € N) (in particular, Klq)) in [loc. cit.] is not (shown to be)
well-defined.
Let A% - be the single complex associated to a double complex A%

defined by the following (cf. [St2, (5.3)]): AX o= /1?/{“ /P; /1”] e N)
with boundary morphisms

2,j+1
AX/C

3.6.3) (—l)idlogt/\T

1 ( 1)]+ d i+1,5
A)](/C AX/C]



98 Yukiyoshi Nakkajima
Note that the morphism dlogtA is independent of the choice of ¢. By using
the weight filtration P on Ay ., we have filtrations P’s on AY, - and A% :
(3.6.4) PRAY = (Pyjiper + PYAYTE /PAGE (k€ 7).
Since ¢o 0 = —(dlogt A)o ¢,
(3.6.5) ol = (= VM AUNCul @c Ay)) — AY -
gives a morphism
(3.6.6) 9**: (A% (Clu] ®c Z}/(,\:)»P) — (AY)0, P)
of filtered double complexes. Hence we have a morphism
(3.6.7) 9 = s(p™): (A°(Clu] @c Ay)), P) — Ay, P)
of filtered complexes. We also have the following commutative diagram
A*(Clul®c Ay /c) —2— Ax/c
(3.6.8) 2 [ dtog en
_Proj- | pe

A%se Xx/c

By the filtered quasi-isomorphism (3.0.8) and a morphism (3.6.7), we
have the following morphism

(3.6.9) y: (A7) @0 C, P) — (A% 0, P)

in DTF(Cy).
LEMMA 3.7.  The morphism y in (3.6.9) is an isomorphism in DTF(Cy).

Proor. (3.7) immediately follows from (3.3). O

B~y [St2, (5.5)] (cf. [Mo, Proposition 3.15]), the morphism d log tA: A% /o
— A% /C [1] induces the following quasi-isomorphism
3.7.1) dlogtn: Ay, — Ak e
The complexes A% /C and A% /c have Hodge filtrations Fily defined by the
following stupid filtrations:
3.17.2) Fily(Ay,0) = AYLS,  Fily(y,o) = A7, (e ).
Hence we obtain the following which has been obtained in [F'N, (3.12)] with
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signs which are different from ours:

THEOREM 3.8. The pair (A*(J7), P), (A% /C,P, Fily)) is a cohmonolo-
gical mixed Q-Hodge complex if the irreducible components of X are
compact and Kdihler or the analytifications of proper smooth schemes
over C.

DEFINITION 3.9. Assume that the irreducible components of X are
compact and Kéhler or the analytifications of proper smooth schemes over
C. Then we call (A*(J7), P), (A% e P, Fily)) the Steenbrink cohomological
mixed Q-Hodge complex of X /s.

REMARK 3.10. (cf. [KwN, p. 406]) Since the diagram B(J¢)) = J O
«—J%, ® Q induces an isomorphism B(J})) — J% ®7 Qin D*(Qy), the
triple

7, (A*J), P), (A ¢, P, Filp))

is a cohomological mixed 7-Hodge complex. We also call the triple
Steenbrink cohomological mixed 7.-Hodge complex of X /s.

Combining (3.0.6), (3.0,10) and (3.6.8), we have the following commu-
tative diagram, which will be used in §10 below:

A*(JE) —— A*(Clul ®c Ky c)

ne] = o|=

(3.10.1) Je A% e
T dlogt/\T:
Cx —— A% /¢

Therefore we have the following commutative diagram for & € /:

HMX, A*(J)) «—— H"X,A*(Clu] ®c K¢))

=T tpl':

(3.10.1; H) H"X,C) HMX, A% /c)

T dlogt/\T:

HhX,C) —— HM(X, A% c).
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4. l-adic and oc-adic Gysin morphisms of smooth divisors.

In this section, paying attention to signs, we study the l-adic and the oo-
adic Gysin morphisms of smooth divisors on an irreducible component of a
SNCL variety over a log point. This study is necessary for the deseriptions
in §5 below of the boundary morphisms between the E;-terms of (2.0.7;1),
(2.0.7; 00) and (2.1.10).

First we consider the case where the base field is C and where the
ambient space is smooth over C.

Let Y be a smooth analytic space over C. Let D be a smooth divisor on
Y. Consider the following exact sequence

4.0.1) 0— QY. — O (logD) ™% @5 {1} —0.

Here the Poincaré residue morphism is locally defined by w A
Adlog f— w|p, where f =0 (f € I'(Y, Oy)) is a local equation of D. Let
Cy = Q5 and Cp = Q) - be the natural identifications in the derived
categories DT(Cy) and D' (Cp). By these identifications we have the fol-
lowing triangle

4.0.2) Cy — @ (log D) — Cp{~1} = |
Let
4.0.3) d: Cp{—1} — Cy[1]

be the boundary morphism of the triangle (4.0.2) obtained by the Conven-
tion (4).

LEmma 4.1.  Let G: Cp{—1} — Cy[1] be the Gysin morphism of D on
Y. Then d = —G.

PrROOF. LetzD -= Y be the natural closed immersion. Because 1, is
exact, we have the following formula

(4.1.1) H*(RHom, (1.(Cp){—1},Cy[1]) = H*(RHom ,(L1.(Cp),Cy{1}[1]))
~ H'RHom,(Cp, RI'Cy{1}[1]))
= H(D, R/ Cy{1}[1])
= H*(Y,R/'Cy) = H¥(D,R*'Cy)
= H*D,Cp[ —2)) = H'(D, Cp).
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Here we obtain the isomorphism in (4.1.1) by (1.0.5) under the Convention
(1.0.4) and we have used the Convention (6) in the third equality in (4.1.1).

Since the problem is local, we may assume that there exists a locally
finite open covering {Y;}; of ¥ such that D NY; is defined by an analytic
equationt; =0 (¢; € I'(Y;, Oyl)) Set Yij =Y;N Y] and Yijk =Y;N Y] NY:.
We follow the convention on the signs of torsors in [SGA 4 Cycle 1.1].
Then the section 1 € H(D, Op) defines the class [{s;}] € H (Y _QY/( Jofa
Cech 1-cocycle defined by s;j == dlogt; — dlogt; by the exact sequence
(4.0.1) and by the convention in [loc. cit.]. Here we omit the restriction |Y
for the sections dlogt; and dlogt;. Set t;; :=1t;/t; € I'(Yy;, Oy, ) Retakmg
an open covering {Y;}; of Y, we may assume that a branch
log (t;j) € I'(Yy;, Oy,) of t;; is defined.

On the other hand since t;- 1/t7 = t;;, the line bundle (’)y(D) defines a
1-cocycle {t;} € HL(Y,0%). Set U:=Y\D and let j:U — Y be the
natural open immersion. For an abelian sheaf E on Y, set KV(E) :=
= Ker(F — j.(E|)). The 1-cocycle {t;} and the exponential sequence

0— Z(1) — Oy =2 0% —0
gives a 2-cocycle {u;} defined by Wijie = logtj, — logty. +logt;; €
€ KUYi(7(1)y..). Consider the following Cech double complex

ijk

A

DKUY (QL)(Y;) —2 BKUOK}(Q%(Y"J) 4, lIJIkKUﬂYJk(Ql Vi) —— -+

. i

( (
4.1.2) ‘] -] dT
(
HEV™Y(@9)(Y) —— KU (Q9)(Yy) —— TLRVM™ir (@)(Vige) —— -
Here the horizontal morphisms &’s are the usual boundary morphisms
of the Cech complex. Then {uy} + {s;} = (0 —d)({logt;}). Hence
[{sii}] = —[{uy}] in HZ(Y Q5 () Because the image of [{u;}] in
H3(Y, .QY/' )=H%Y,C) = H%(Y 7(1)) ®7 C is the cycle class ¢(D) of
D, the image of [{s;}] in H3(Y,C) is equal to —c(D). d

REMARK 4.2. The similar calculation at the end of [Gro, II §3] is
mistaken in signs if we follow the convention on the signs of torsors in
[SGA 4, Cycle 1.1].

Let the notations be as in [loc. cit.]. Because J is represented by a co-
eyele {tj)/ta }i<js c1(J) is represented by a cocycle {dlog (¢ /t)};.; (not



102 Yukiyoshi Nakkajima

{dlog (t)/t(j)}ic; in [loc. cit.]). On the other hand, the image of the
boundary morphism of the Cech 0-cocycle {dlogty} is equal to
dlogtj — dlogts = dlog (t;/ti). Hence

(4.2.1) f:(D) = ()

in H'(X, W""Q}(,log) if one uses [Gro, IT Proposition 3.5.6]. Obviously the
formula (4.2.1) is not a desirable formula.

Next we consider the case of a SNCD on a smooth analytic space over C.

Most of the following arguments except arguments on signs are in-
cluded in [Mo, §4].

Let Y be a smooth analytic space over C. Let D be a SNCD on Y /C. Let
D = |J D; be a union of smooth divisors. Fix a total order on /. Let k be a

posit;ffle integer. Set I}, := {(Zo,...,%-1) | o < --- < %1 (G € D} and i :=
:= (lg, . .., i—1). For an integer 0 <j <k — 1, set i; := (ip, . - %], ey 1)
Here i; means to omit 4. Set D;:=D;N---ND; , and D; =
=D;,N--ND;N---ND; , fork>2and D; :=Y. Set also D® := 1 D;
i€ly,

for k > 1 and D© := Y. As in [Mo, p. 323], we have the following commu-
tative diagram

0 —— grkp_lﬁg,/c(logD) - (Pk/Pk—Z)Q;f/c(logD)

Resl'jj’ Resléjl
0 —— 0 sel-(k-1)} —— 95, clog D){~(k-1)}

(4.2.2) .
—  gr Q5 c(logD) —— 0

Res; l

(—1)7Ress,s;) .
R N G ) p—)

Here ResZ , Res; and Res; ;. ) are usual Poincaré residue morphisms with
respect to Dl ,Djand D;, respectlvely The morphism Res “islocally defined

by a morphism wdlogax;, A---Adloga;, , +— (— 1)’wd logx;, where
x;, = 0(x;, € Oy)isalocal equatlon ofD; (0<m<k-—1). Note that the
formula Rés! (co) = a Adax;, /2] D, in [Mo, p. 323, 1. -9] have to be replaced
by Rés] (@) = (= D" 'a Ada fi,|p, .

The boundary morphism

4.2.3) Cp {—k} — Cp, {~(c = D}[1]
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by the lower exact sequence of (4.2.2), by the Poincaré lemma and by

the use of the Convention (4) is equal to —(( — 1YG‘7) by (4.1), where

G‘f C ‘D, {-1} — CD [1] is the Gysm morphism of the closed immersion
k-1

D; = D;. Set G:=> > (— IYG‘7 Then we have the following:
1€l j=0

ProrosiTION 4.3 (cf. [Mo, Proposition 4.4]). Let k be a positive integer.
Let

d: gr,fQ{,/C( log D) — g‘rfle;/c( log D)[1]

be the boundary morphism of the upper exact sequence of (4.2.2) by the use
of the Convention (4). Then the following diagram

. d ®
grkpﬂy/c(log D) E— grkP_lﬂy/c(IOg D)[l]

Resl: Reslﬁ

0 sc{=F} 05 e je{—(k = 1)}1]

H H

Cyw{-k} —%= Cyo-n{-(k-1)}1

1S commutative.

REMARK 4.4. If one considers the short exact sequence in [Mo, Pro-
position 4.4] as a triangle and if one considers d; in [loc. cit.] as the
boundary morphism in [Hal] of a triangle, our commutative diagram in
(4.3) is the same as the oo-adic analytic analogue of the commutative dia-
gram in [Mo, Proposition 4.4]. (Note that the boundary morphism of a
triangle in [Hal] induces the minus traditional boundary morphism on
cohomologies as remarked in the Convention (5).) However I suspect that
the traditional morphism has been considered in [Mo, Proposition 4.4] and
hence that [loc. cit.] is mistaken in a sign.

Next we consider the case of a SNCL analytic variety over C.
Let s := ((Spec C)apn, N ® C:) be a log point. Let X be a proper SNCL
analytic variety over s. Let X:= |JX; be the union of the irreducible

o icl
components of X. Fix a total order OZEI Letk > 2be an integer. Let Iy, 4,1

X; and X be analogous objects for X and I to those for D and I in the
SNCD case above. As in [Mo, p. 326] (cf. (4.2.2)), we have the following
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commutative diagram
0 —— grkP_IX;(/C _ (Pr/ Pr— 2) X/C

Res;; l: Reslf]_ J,:

0 —— %, jcl-(k =1} —— 9%, /cllog X){~(k - 1)}
(4.4.1)

— el —— 0

Resil':

(—l)jRes(i,ij) .
xi/c{—k} — 0.

Hence we have the following:

PRrROPOSITION 4.5. Let k > 2 be an integer. Let
d: grf A% o — grf  A%,c[1]

be the boundary morphism of the upper exact sequence of (4.4.1) by the use
of the Convention (4). Let Gk-“ C X, {-1} —C X, 1] be the Gysm morphism

of the closed immersion X; S X Set G:= " Z (—1) G . Then the

Sfollowing diagram i€l j=0
< 4 -
ey —— gri_1 A% cll]
ReSJ": Resl:
(4.5.1) Do e { =k} Qv e {—(k = D]

-k} —%5 C.. {-(k-1}

X(k) X (k=1)

1s commutative.

Let rop: X log __, X be the real blow up of X. Then we have the following
triangle:

(4.5.2) gr};_letop*(Z) - (Tk/fk72)R8top*(Z) I gr]rgRgtop*(Z) +—1>

By (4.5.2), (2.0.4.1;00) and the Convention (4), we have the following
boundary morphism

(4.5.3) d: 2~ Kz {—h} — 70— (6 = D), {~ e — DY)
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COROLLARY 4.6. The boundary morphism (4.5.3) is equal to G.

Proor. Let 2= (i,...,7:_1) be an element of Ij,. Let j <k —1 be
a nonnegative integer. Let 1X; = X be the natural closed im-
mersion. We would like to prove that the morphism (4.5.3) induces a
morphism

46.1) (- 1)7G§7: 1(Zx (= k){-k} — ZX%_( — (k= D){—k - D}1]
Because i, is exact, we have the following formula as in (4.1.1):
(4.6.2) HO(RHomVZXi]_(l*(ZXZ.)( —k){~1}, 7, (= (b= D)) =H"D, B*'7x, (1))

| =HX;, 7).
Hence it suffices to prove that the morphism (4.5.3) ®,,C

463) C= Ry {—k} 5 C(—(k — D), {~(— DY)

) 500

is equal to G. Because the natural morphi§m Reéiop(Cxiog) — 713( e induces
an isomorphism gr?Reop. (Cyie) — grl Ay Jc (r € 720) by 3.2.1), we have
the following commutative diagram by (3.2.3) and (4.5.1):

C(=k) g o =k} ——= C(=(k=1)g,,_, {~(k =D}
4.6.4) (_1)’<xl l(_l)k_lx
C(~k)g,, {—k} —S C(=(k= 1)), , {-(k—1)}1]

X(k) X(k 1)

The commutative diagram (4.6.4) shows (4.6). O

Next we recall a well-known method ([SGA 4-3, XI 4]) quickly.

Let T be a topological space. Let T be a site defined by the following:

(4.6.5) An object of T, is a local isomorphism U — T of topological
spaces.

(4.6.6) A morphism in 7 is a morphism of topological spaces over T'.

(4.6.7) A family {U, — U}, of morphisms in T is called a covering
family if the union of the images of U,’s is U; the covering families define a
Grothendieck pretopology and hence a Grothendieck topology on the ca-
tegory T.

Let X be an fs log analytic space over C in the sense of [KN, §1]. Let Xi(fg

be the site defined above for the topological space X'°2. Let X% and X be the
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topoi defined by the classical topologies of X g and X , respectively. Then we
have natural morphisms sd:)?i‘l’g ¢ o gmp:)?l‘)g X , 1198 :)?i‘l’g Xl
and X d X of topoi fitting into the following commutative diagram

log

j{};g _H ", Xlog
(4.6.8) ecll l

Xqa 44— X.
The morphism %8 (resp. u,) gives an equivalence of categories. Hence-

forth, in this section, we do not consider X°¢ and X except the first part of
the proof of (4.9) below. Set My, = 1 1(My) and Ox, = 1 (Ox).

We obtain a topos )?l?:g ([IKN, §2]) which is the analogue of the log
etale topos of an fs log scheme ([Nakl, (2.%)]). (In [loe. cit.] this is
called the ket topos of X and denoted by X*¢) By using the local
description of a Kummer log etale morphism of fs log analytic spaces
over C ([IKN, (2.3)]) and using [KN, (1.3) (3)] and [KN, (1.2.1.1)], for a
Kummer etale morphism f: U —V of fs log analytic spaces over C,
the associated morphism f2: ¢ — V¢ ig a local isomorphism of
topological spaces by the same proof as that of [KN, (2.2)]. Hence we
have a natural morphism ﬁX:)?i?g%)?é‘t’g of topoi. We also have a

natural morphism san:f(éig —J%et of topoi fitting into the following

commutative diagram
Xge 2 X
(4.6.9) ec,l l

o ,Bo o

Xa —* Xet.

o o
The morphism ﬁ}o{ : Xa — Xt gives an equivalence of categories. Hence-
*

forth we identify )%cl with )%et by ﬁ)o(* and denote fy only by f. Using this
identification, we have a formula &, = &5, o f§ by (4.6.9).

Let My oz be a sheaf of monoids in X% which is associated to the
presheaf U+— I'(U, My) (U € Xé?;g). Then we have a natural morphism
&g (Mx,) — M 10g, Which induces a morphism

(4.6.10) et Mx,) — B (Mx100).
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LEmMMA 4.7 [Analytic log Kummer sequence]. Let m be a positive integer.
Then the following sequence

(4‘7.1) 0 — (Z/m)(l) - M)g(?log ﬂ) Mi'{)lﬁg - 0
is exact in X%,

Proor. The obvious analytic analogue of the proof of [KN, (2.3)] works.
O

Let £ be an m-torsion abelian sheaf in )% o. Using (4.7.1) and (4.6.10), we
have a canonical morphism

k
@72) N\ WM /0% @7 (Z/m)(—k) @7, E — RFea(eg &) (k € Z0).

By the same proof as that of [KN, (1.5)], we see that (4.7.2) is an iso-
morphism.

By [KN, (1.5)], for an abelian sheaf £ on )O(d, we have a canonical iso-
morphism

k
@78)  N\NWME /O3 )~ k)@, E = Rieq.(eg (B) (k€ 7).

Next we consider the algebraic case. Let X be an fs log scheme over
whose underlying scheme X is locally of finite type over C. Let

Eet: )Nfé(t’g X ot be the forgetting log morphism. Then Kato and Nakayama
have proved that the log Kummer sequence (2.0.1;m) gives the following
canonical isomorphism ([KN, (2.4)]):

k
@14 AWMP/ON-k) @2 E = Rlew.(ei ) (k € 7).

Let, 7°¢: (Xof)a — X5 (KN, 2.1), 22)]) and 7: (Xyn)a — Xet be the
natural morphisms of topoi.

Because a functor U+— U,, (U € X

%) defines a continuous functor
1 1 .
Xo? — (Xan)t, we have a morphism

€

4.75) Nt X128 — X108

of topoi. Then we have the following commutative diagram of topoi (cf. [KN,
p. 171]):
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()?;%g)cl

—_—~—

lo ¥ log
(Xan egg —_— Xct

(4.7.6)

(Xan)cl 0 Xet-

Let K be an abelian sheaf in X'%. Then we have the following base
change morphism

417 0" Reet.(K) — Rea. (7671 (K)).

In particular, for a nonnegative integer k, we have the following morphism
(4.7.8) 1 R et (K) — R0, (781 (K)).

Hence we have a canonical morphism

4.7.9) R get(K) — R, (RPea, (781 (K))).

THEOREM 4.8. Let n*(Myx) € ()%an)cl be the associated log structure
to the composite morphism n‘l(MX)—uy—l((’)X)—>(’)(Xan)d. Le~t m be

a positive integer and let E be an m-torsion abelian sheaf in )O(et. Let
k be a nonnegative integer. Then the following diagram is commu-
tative:

x Rn.((f-7-3)) L
Ria (N (" (M) /Ot ) () ®2.07 () R (REcaueg '™ ()
Rn.(id@cxp(m"x)w‘@id)l': H

4.8.1) k(e AP S\ Pk o ke 11
R (A" (0" (M) O(xp ) (=K) @2 17 H(E)) ———— Rnu(R*eaney ' n™(E))

r fur

(4.7.4)
N(ME/0%)(~k) @z E ——  Rrew(!(B)),

where the lower left vertical morphism is induced by the adjunction
morphism id — Ry, . Furthermore, if E is constructible, then the
lower left vertical morphism is an isomorphism.

Proor. First we prove the commutativity of the upper square of the
diagram (4.8.1). Let Y be an fs log analytic space over C. Let F' be an abelian
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sheaf in Iofcl. To prove the commutativity, it suffices to prove the commu-
tativity of the following diagram

(4.7.3)
A (M /0%,)(—k) @2 F ——  Rfeau(ey'(F))

(4.82)  idgexp(m~! ><)®'°®pr0jl J«

(4.7.2)
A (ME /O3, ) @z (Z/m)(—k) @z (F/mF) —— RFeq.(eg' (F/mF)).

We have a natural morphism
B M) — Contyue(, 5
of abelian sheaves in Y1°% induced by the natural morphism
IV, M,,) — Contye (V8,8 (V € YL8)
of presheaves on Yi?g . Set

4.83) ch o

[ 1
Yo T ContY“’g( 1R) X exp,Cont yloe ( Sl)ﬁ (MYlog

Then we have an exponential sequence
(4.8.4) 0— 7(1) — ETlog = B M) —0.
We claim that, for a positive integer m, the multiplication morphism

—>£T

(4.8.5) mx: L1 Fue

log
Ll

is an isomorphism. (Note that an analogous claim in the proof of [114, (5.9)]
that the sheaf of logarithms L‘Xlog in [KN, (1.4)] is uniquely m-divisible
(m > 2) is mistaken because ¢ (M<X D ) is not m-divisible for the case

= (Spec C,N & C*)) First we show the injectivity of (4.8.5). Let (a, s)
(a eVv-1R,s e I'S (Mng)) be alocal section of £ e such that m(a, s) =

Then a = 0 and s € (Z/m)(1). Because the natural comp0s1te morphlsm
(4.8.6) " = I ME,) — Contyu(, S
cl

of abelian sheaves in Y.*¥ is induced by the map ¢+ c/|c| (c € C*), we
see that s = 1. Hence the morphism (4.8.5) is injective. Next we show
the surjectivity of (4.8.5). For an object U of Yk’g, let (a,u)
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(@aev-1RueI'(U,p~ 1(/\/l”)g))) be a section of I'(U, ETIUg) We may

assume that u € I'(U ,ﬂfl(My,log)) Since My oq is m- d1v1s1ble by (4.7)
and since the functor f~! is right-exact, there exists a section v, of
F(U;,,ﬁ’l(/\/lymg)) for some covering (U; — U); of U in Ylog such that
v = u\U/_. Let w;,; be the image of v, in Cont log(U;,S ). Then

{;, :=w;exp(—mta) is an m-th root of unity. It is easy to check that
(m‘la,v;,gl) is indeed an element of F(Umﬁimg) and that
mima, vigl) = (a, u)|U/_'. Hence the morphism (4.8.5) is surjective.

Consider the following well-defined morphism

(4.8.7) exp (m™ x ):/J;f,log —f I(MYlog

Because @2rnv —1n/m,exp 2nv—1n/m)) (n € Z) is a section of ﬁlbg’
have a formula

m~ @V —1n,1) = @rnv—1n/m, exp 2nvV—1n/m)).

Hence we obtain the following commutative diagram

0 —— Z(1) ——  Lyo = G M) —— 0
| 1 o
488 0 —— z(1) —bs cfyc,;,g —= B ME,) —— O
cxp(m_lx)l exp(m“X)l ”

0 —— (Z/m)(1) —— BHME,) —= I MP) —— 0

of exact sequences. Now the commutativity of the diagram (4.8.2) follows
from the commutative diagram (4.8.8) and from the definitions of the iso-
morphisms (4.7.3) and (4.7.2).

As to the commutativity of the lower square diagram of (4.8.1), it suf-
fices to prove that the following diagram is commutative:

(4.7.2)
AE* (M) /Oty N (R @2 (B)  ——  Ricau(eq'n™(B))

4.8.9) H T(4.7.9)

X 17 ((4.7.4) )
1 (N (ME/0%)(—k) @z E) ——— n7 RFecru(en (E)).

Let
(4.8.10) Hot- (Mx 10g) — M, 1og
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be a natural morphism. Then we have the following commutative dia-
gram

0 —— @/m)(1) —— M 1y — ML i ——0
4.8.11) H (4.8.1O)EPT T(4.8.10)Kp

0 —— (Z/m)(l) —_— ne_tl(Mgg,log) m—x) ne—tl(Mg(p,log) —0

of exact sequences.
Using (4.8.11), we have the following commutative diagram of triangles

Reau(Z/m)(1)) —— Reau(B ML, 10g) —= Reau(BTHME, 1)) —

|| f I

(4.812)  Rea.((Z/m)(1)) —— Reau(®®  (MP))) —=— Reau (5~ (M) ——

T (4.7.7)T T(4.7.7)

N7 Rean(Z/m)(1)) ——  n7'Reetn(MPhog)  —= 07" Recrn(MPy)  — .

(Here we have used the Convention (4).) In particular, we have the com-

mutativity of the diagram (4.8.9) for the case k =1 and £ = Z/m. In the

general case, by using the Godement resolution of an abelian sheaf in a

topos with enough points and using the definition of the cup product, we
obtain the commutativity of the diagram (4.8.9).

Assume now that E is constructible. Since (M /O%) ® Z/m is a

constructible torsion abelian sheaf in )% ot, the lower left vertical morphism
in (4.8.1) is an isomorphism by Artin-Grothendieck’s comparison theorem
([SGA 4-3, XVI (4.1)]) as used in the proof of [KN, (2.6)]. O

Let X be a SNCL variety over s= (Spec C, N @ C*). Fix a total order
on the irreducible components of X. Let k > 2 be an integer. Let m be a
positive integer. The triangle

(4.8.13) g1}, Reet.(Z,/m) — (01 Th2)Reet(7,/1) — griReen.(7,/m) ~
the isomorphism (2.0.3;m) and the Convention (4) give the following

boundary morphism
(4.8.14) d:(Z/m)( — k))%k){—k} — (Z/m))oﬂkfl)( —(k—1){—k — D}H1]

We also have the Cech-Gysin morphism

(4815) G:(Z/m)y, (— K){~k} — (Z/m)g, (6 — D){~(k — D}[1]

which is analogous to the Cech-Gysin morphism in the analytic case.
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THEOREM 4.9. The boundary morphism d in (4.8.14) is equal to G in
(4.8.15).

ProoF. Let Z be a SNCL analytic variety over s,,. For a positive in-
teger m, we have the following commutative diagram

1
gry._1 Retopx zy —— (Tk/Tk—Z)Retom (zy — gri Retopx (z) -

4.9.1) | | | )

gri_; Retops(Z/m) —— (T /Tk—2) Retops (Z/m) —— gr;REtop*(Z/m) )

Fix a total order on the irreducible components of 7. Then we have a ca-
nonical isomorphism

k
4.9.2) N\MP /O @7, Z/m > (Z/m) g

and a canonical boundary morphism
(4.9.3) d: (Z/M)Zm( — k){—k} — (Z/m)z(k—l)( - (k — 1)){—(k — 1)}[1]

by the lower triangle of (4.9.1), by (4.7.3) and by the Convention (4). By (4.6)
and (4.9.1), the boundary morphism d in (4.9.3) is also equal to

G: (Z)m)gw( = k){-k} — (A/m)zm n(— k- 1)){ (k — D}1I.

Using the identification Z log (resp. ch) with Zlg (resp. Z ) by 14%8 (resp. u,),
we obtain the following commutatlve diagram

grz_lRfcl* (Z) —— (Tk/Tk—Q)Rfcl* (Z) — gr;Recl,(Z) ;1’

(4.9.4) l l l

gf 1 Reas(Z/m) —— (7i/Te—2)Rean(Z/m) —— griRea(Z/m) ——
and a similar boundary morphism
4.9.5) d: (Z/m)zfjf’( —k){-k} — (Z/m)zgm( — (k= D){—(k — D}1]
by the lower triangle of (4.9.4) is also equal to the Gysin morphism

G: (Z/m)zﬁf)( —k){-k} — (Z/m)zglc—n( — (k= D) {—k — D}H1]

By applying Ry, to the lower triangle of (4.9.4) and by setting K = 7 /m
in (4.7.7), we have the following commutative diagram
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R (R*Yea (Z/m){—(k — 1)}) —— Rnu((7x/7k-2)Reae(Z/m))

| H

R (grf_y Recix(Z/m)) —— Rnu((7x/Tk—2) Reax (Z/m))

49.6) | |

gri_q Reeex(Z/m) _ (Tk/Th—2) Réet (Z/m)

H

Rftee (Z/m){—(k = 1)} ——  (7k/Th-2)Reetx(Z/m)

— Rn, (kacl*(Z/m){—k}) s SN

——  Rn.(griRea«(Z/m)) —*,

I

— gri Recex (Z/m) 1,

|

——  Rfeu(@/m){-k} —

of triangles. In fact, the three middle vertical morphisms in (4.9.6) are
isomorphisms by (4.8).

Now (4.9) follows from the commutative diagrams (4.9.6) and (4.8.1),
from the proved fact that the morphism (4.9.5) is equal to G and from the
compatibility of the cycle class of an algebraic smooth divisor on a smooth
scheme over C with that of the associated analytic smooth divisor. ]

Let x be a separably closed field of characteristic p > 0. Let X be a
SNCL variety over s. Fix a total order on the irreducible components of X.
Then we have the boundary morphism

49T d:(Zfm)g, (— W) —k} — (Z/m)g, (U — DY~ — D}1]

obtained from the triangle
(4.9.8)  grl | Ree.(7,/m) — (v ) Th-2)Reere(7./m) —> griReet. (7,/m) ~

from the isomorphism (2.0.3; m) and from the Convention (4). We also have
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the Cech-Gysin morphism

4.9.9) G:(Z/m)., (— k){—k} — (Z/m), (— (k — 1){—(k — D}1].

X(k) XU~ 1>

COROLLARY 4.10. The boundary morphism d in (4.9.7) is equal to G in
(4.9.9).

Proor. First assume that p = 0. Let «’ be an algebraically closed field
contained in x or containing r. Then (4.10) for x is equivalent to (4.10) for ’
by the functoriality of the cycle class of a smooth divisor in a smooth scheme
over a field and by the similar calculation to that in (4.1.1). Hence, by the
Lefschetz principle, we may assume that x« = C. In this case, (4.10) is
nothing but (4.9).

Next assume that p > 0. Because the problem is local _We may as-
sume that there exists a classically etale morphism f X — X/ .=
:= Spec(xlxy, . . . ,xq]/(x - - - @) such that the log structure of X is the
pull-back of that on Spec(i[xy, - . . , 4]/ (X0 - - - %,-)) associated to a morphism

N5 6= (0,...,0,1,0,...,0)— w1 € Ko, .. ., 2q]/ @0 - )
1<i<r+1).
By the functoriality stated in the previous paragraph, it suffices to prove
(4.10) for X'.
Let W be a Cohen ring of . Let Kj be the fraction field of W. Let X be

the log scheme whose underlying scheme is Spec(W(xy, . .., xql/(xo - - - 7))
and whose log structure is associated to a morphism N"*! 5 ¢;—wx;_; €

eWlao,.. ., 2q]/(@o- - -a,) A<i<r+1). Set Yi=X@y K. Let ex: X % — Xy

and ey: IN/L‘;g — Iofet be forgetting log morphisms Let m be a positive integer
prime to p. Then R"ey.(Z/m)= (Z/m): x<r> —7r) and R'ey.(Z/m) =
=(Z/ m)fm-)( —17) by [KN, (2.4)]. To prove (4.10) for X', it suffices to show,
by the functoriality of the cycle class of a smooth divisor in a smooth
scheme, that the boundary morphism

R e (Z/m){—r — 1} — R'ex(Z/m){—r}[1]
of the following triangle
g1 Rex.(7,/m) — (tr41 /) Rex (7, /m) — ¥t e (Z)m)

is given by the Cech-Gysin morphism for the irreducible components of
X. By the similar calculation to that in (4.1.1), it suffices to prove the
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claim for Y ®g, K. Consequently (4.10) in positive characteristic follows
from (4.10) in characteristic 0, which we have already proved. O

5. Boundary morphisms between the E;-terms of [-adic and oo-adic
weight spectral sequences.

In this section we prove that the three boundary morphisms d3* be-
tween the E1-terms of (2.0.7;1), (2.0.7; 00) and (2.1.10) are described by the
sum with signs of Gysin morphisms and the induced morphisms of closed
immersions. In the l-adic case, this is a generalization of a correction of
[RZ, (2.10)] (cf. (5.8) (1), (2) below).

First we consider the l-adic case.

Let us recall some facts in [Nak3] briefly. Let x = kg be a separably
closed field. Let X be a (not necessarily proper) SNCL variety over the log

point s = (Spee x, M,). Recall the topos X5 := (h_mm X @7 Z[Ni/ ’/m])gg in
§2. Let ny: Xz — X% be the projection and let & := gx: X8 — X, be the
forgetting log morphism ([Nakl, (1.1.2)]). Fix a generator T of 7;(1). Let I*
be an injective resolution of 7 /1" in )?i(t’g. Set K* := (exmx).ny'(I*), and let
L*® be the mapping fiber of 7' — 1: K* — K*: L* := s((K*,d) 1 (K, —d)),
where s means the single complex of a double complex (cf. Convention (8)).
Then [loc. cit., (1.3.1)] tells us that the natural morphism ey, (I*) — L*® isoa
quasi-isomorphism. Fix a total order on the irreducible components of X.
Then, by the proof of [Nak3, (1.8.3)] using the log Kummer sequence
(cf. §2), we have a canonical isomorphism

(5.0.1) H(LY) = R'ex (Z[1") = (Z[1"), (=) (€ Ze).

By following [SaT, (1.6)], let 0: L®* — L°*(1)[1] be the following vertical
morphism

(K*(1), —d(1)) =T (K*(1),d(1))

(5.0.2) asr]
T-1

(K*,d) — (K*,—=d).

Let AY,, be the double complex defined by sheaves Aé‘;l,n =
= (L + DI+ 11/5Le (G + D+ 11" @) € Z) of (Z/1");-modules with
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the following boundary morphisms as in the proof of [RZ, (1.7)]

1,5+1
AX,l,n

(5.0.3) (-1t
.. —1)i+1 . .
A, SRS Al
Let A;(_’l’n be the single complex of A;il’n.
To give the explicit description of the boundary morphism between the
E:-terms of (2.0.7;1), we prove the following (cf. [Mo, 4.12] in the p-adic
case and [RZ, (2.9)] in the [l-adic case for a semistable family):

LEMMA 5.1, Let the notations be as above. Let X:= J X; be the union of
o iel
the irreducible components of X. Fix a total order on I. Let I, (v € Z>1) be
the set defined in §4 for I. Then the following diagram

H (L) (r) —%— HrHL(L)(r + 1)
5.1.1;0 (5.0.1)l: (5.0.1)l:

p
Z/M) g, — @) s,

is commutative. Here p is defined by the following formula

(5.12;1) p=3"3 (-~ 1@y,

i€l j=0

i c . . .
where 7/: X; — XQ_ is the natural closed immersion.

ProoF. By [Nakl, (4.6)] the category of 7 /I"-modules on the site sle(;g is
equivalent to the category of 7 /l"-modules with 7 (s)-continuous actions,
where 71 (s) is the log fundamental group of s. Let G; be the pro-l-part of
711(s). The group G; is identified with 7;(1) by the following isomorphism

(5.1.3) G>T— (T(mlii)/mlii)iel\' € Zy(1),

where m; is a section of M, whose image in M,/O; ~ N is the generator.
By using the identification (5.1.3) and by abuse of notation, we denote
simply by 7 the element T(m}")/m}" € 7,/I"(1). We endow 7 /1"(1) with
the trivial action of G; as in [RZ, §1].

Step 1. As in [RZ, (1.2)], consider the following extension of 7 /I"[G;]-
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modules:

GLe) 00— Z/I'0) = 21O 71D LRy

where the Gj-action on the middle term is given by T'(x,y) = (@, y +x @ T)
(xeZ)l"yeZ/I"Q1). Let Rg:D*(Z/I'G] > (C*,d)— s(C*,d) =1
(C*,—d)) € DT (Z/I") be a functor of derived categories ([RZ, (1.1)]). As in
[RZ, (1.2)], we have the following triangle by using (5.1.4):

(15) - — R (K*(1) — R (K* & K*(1) — Re,(K*) e

In particular, we have the boundary morphism
(5.1.6) L*— L*(D[1]

by using the Convention (4). Let (x,%) € K" ® K"~! be a local section such
that de = 0 and —dy + (T — 1)(x) = 0. For a local section ((x,0), (y,0)) €
€ {K"EPK’”(I)} @ {K! EPK’”*l(l)}, we have the following formula

d((x,0), (y,0)) = ((0,0), (T — 1)z, 0)) + ((0,0), (- dy, 0))
= ((0,0),((T — D),z @ 1)) + ((0,0), (= (T — D(®), 0))
= ((0,0),(0,2 @ T)).

Hence the induced morphism 6: H"(L®*) — H'T1(L*(1)) is equal to the
boundary morphism H"(L*) — H"(L*(1)[1]) induced by the morphism
(5.1.6).

Step 2. Let 9: H"(L*) — H"(L*(1)[1]) be the induced morphism by
the boundary morphism (5.1.6). Let 1 be the unit element of 'Z/I". Then,
by a general property of the cup product, d(a) = 01 Ua) = 0(1)Ua,
where a is a local section of H"(L®). Here 9(1) is an element of
Hl(Hom;/ln[Gl](Z/l”,I')), where I° is an injective resolution of Z/I"(1) as
a 7/l"[Gi]-module. By the definition of (5.1.4) and by (5.2) below, the
image of 1 by the composite morphism (5.2.1) below is equal to the
cocycle

(6.1.7) G eT—TeZ/l"1)
in HY(Gy, 7./1"(1)).

Step 3. We calculate the cocycle (5.1.7) by another exact sequence.
Namely, consider the following exact sequence of Z[G;]-modules:

(5.1.8) 0—Z/1"0Q) — ME), = Mg —0-
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Then we have an isomorphism
(5.1.9) (MEP /O @y, 71" = HNGy, 7,/1"(1) = Rles.(7,/1"(1))

as the boundary morphism by using injective resolutions of the terms in
(5.1.8) (see the Convention (5)).

The image of m; ® 1 in HY(Gy, 7./1"(1)) by the composite isomorphism
(5.2.1) below is equal to the following cocycle

(5.1.10) [(T+— Tt ") /m! )] = [T — T1 € H(Gy, 7.)I"Q1)).
Furthermore there exists a canonical isomorphism
(5.1.11) (MEP /O @y 71" 2my @1 ¥ 1€ Z/1".

Hence we have the following composite isomorphism
(5.1.12) 71" =5 (MEP /O @y, 71" = Rleo.(Z)1"(1) = HY(Gy, 7./1"(1)).

The image of 1 by the isomorphism (5.1.12) is the cocycle [T — T'1].
Step 4. Let f: X — s be the structural morphism. Then we have the
following obvious commutative diagram

(MR /0%) @z Z/1 — Rlex.(z/1"(1))

I |

@) = FTHMEP/07) @2 Z/1) ——— [T (Rles(Z/1M (1) (= f~H(HY (G, Z/1* (1))

Let 0’ be the image of 1 € 7 /1" by the composite morphism of the horizontal
lower arrow and the right vertical arrow. The cup product
O'N:Rex (7,/1") = H'(L*) — R lex, (7/1"1)) = H™1(L*(1)) is the boun-
dary morphism obtained from the triangle (5.1.5) by the Step 2 and the
Step 3. By the Step 1, this boundary morphism is equal to
0: H"(L*) — H" T} (L*(1)). Obviously the image of 1 € 7 /I" by the left ver-
tical morphism ris ..., € Z/Iy, = (M /O%) ®, 7./1". Because the
isomorphism ( A (/\/l)g(p JOY) @7 (7./1") — R'ex.(7./I"(r)) is obtained by
the isomorphism (M /O%) @ 7" — Rlex.(7,/1"(1)) and the cup pro-
duct (Rlex,(Z/1M1)*" — R'ex (Z/1"(r)) (cf. [KN, (2.4)], the proof of

[Nak3, (1.8.3)]), we obtain (5.1.1;1). O

The following lemma is only roughly well-known; I give the proof be-
cause the sign is considerably delicate in the Hom-complex and because I
cannot find the following quite delicate calculation in the references.
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LEMMA 5.2.  Let G be a group and let R be a commutative ring with trivial
G-action. Let

0—A—B—C—0

be an exact sequence of left R[Gl-modules. Let ¢ be an element of CC. Letb € B
bealift of c. Let (I°,dy), (J*,dy) and (K*,dg) be injective resolutions of A, B
and C, respectively, as left R[G]-modules fitting into the following diagram

0 —— (Idy) -2 (J*,dy) —Z— (K*,dg) —— 0

I I I

0 —— A — B -2, c — 0.

Assume that the upper horizontal sequence is exact. Let (R®,dgr) be the
standard homogeneous projective resolution of R. Then the image of ¢ € C¢
by the following composite morphism

521 €% % H'(Hompg(R, %) = H' (Homjy g (R, I*))

5 H'(Homjyg (R, 1°) <— H'(Homjyy(R*,A))

1.0.7)
< H'(Hompgs(R*,A)) = H'(G,A)

is a 1-cocycle G > o+— o Y(a(b) — b) € A.

Proor. Let ;:A—1° 1;: B—J° and 1x: C — K° be the injective
morphisms. Let b’ be an element of (J°)¢ such that (') = ix(c) in (K°)°.
Then there exists an element a! € (I1)¢ such that ol(a!) = d; @) € (JHC.
By the definition of d(c), d(c) in Hl(HomR[G](RJ’)) has a representative
1+—al. Since (' — 1;(b)) = 0, there exists an element a° € I° such that
o%a®) = b’ — 1;(b). Since

o (dr(a)) = dy(@*(a”)) = (b — ;b)) = dy (b)) = &' (@)

and since o! is injective, d;(a’) = a!. By the following diagram
HomR[G](R, Il) — HOmR[G](R It ) —> HomR[G]( -1 Il)
HomR[G](Ro,IO) —> HOmR[G] -1 IO)

(R
I
(

HomR[G R- )
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the image of a’ € I°=Hom};(R*,I*) by the boundary morphism
Homp,;(R*, 1*) — Hompy,(R*, I*) is equal to {(e, 0) — — (a(a®) — a®)}&
®a'. Hence we have an equality [(e,0)— (6(a’) —a®)]=a! in
H 1(H0m;3[G](R',I')). Therefore the image of ¢ by the composite morph-
ism (5.2.1) is equal to (—1)x {(e,0)— (c(a®) —a®)} = {(e,0)—
—(0(a®) — a®)}. Since V' is G-invariant, «*(6(a®) — a®) = 1;(b) — 6(17(b)). Now
we see that the desired cocycle is represented by ¢ — o 1(a(b) — b). O

REMARK 5.3. Let the notations be as in [RZ, p. 26]. To obtain the
equality H'(G, A(1)) = Homp+ 461(A(1), ADI[1]) in [loc. cit], we have to
make the convention on signs about the Hom-complex, e.g., as in [Co]
(=the Conventions (9), (10) in this paper), which was not made in [RZ].
Furthermore, (5.2) is missing in [RZ]. Note that the analogue of (5.2) for
the Hom-complex in [SaT, p. 586] is also missing in [loc. cit.]. This ana-
logue is necessary for the proof of [SaT, (1.6) (2)]. Consequently the
proofs of [RZ, (1.2)] and [SaT, (1.6) (2)] are not complete in arguments on
signs.

LEmMA 5.4.  Let the notations and the assumptions be as in (5.1). Let
d:H LY —r — 1} — H"L){—r}1]
be the boundary morphism of the following triangle
gL — (041 /7 )L — gri, L° 5
by using the Convention (4). Then the following diagram

d

HHHLA){—r - 1} ——  H(L){-r}1]
(5.4.1) G0 |~ 0.0 |~
(Z/17) g,y (7 = D{=r =1} —Z= (@/1")  (=r){-r}[1]
is commutative. Here G := ) XT: (— 1)jG§j, where
:iEIrj:O -
(5.4.2) GY: (21~ D)x {1} — (71", 1]

1s the Gysin morphism of the closed immersion X; = XL_.

ProOF. (5.4) is nothing but (4.10) for the case m = [". O
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COROLLARY 5.5. The boundary morphism —d;*"**: g itk

E; f*l””k of the spectral sequence (2.0.7;1) is identified wzth the followmg
morphism:
(5.5.1) > A{(-DE+ (=1}

j>max{—Fk,0}

Proor. Let j and k be the indexes in (2.0.7;1). By the commutative
diagram (5.4.1), we have the following commutative diagram

HUHLL (G + 1){-2j —k -1}  —Ss  HETR(L) G+ 1){-2) — k}[1]

(5.0,1)i: (5.0.1)l:

(5.52) @M1 g 003 = B2~k =1} —F— (Z/1")g (=5 —k+1){~2j - k}[1]
(_I)JHCl: (Al)ﬁkall:
B/ g gy (= B=21 =k = 1} —Zo (/") (=5 — k+1){=24 - k}[1].

Hence we have the part ( — Y (= @) in (5.5.1) by the diagram (5.0.3). By
the commutative diagram (5.1.1;1), we have the following commutative
diagram

H2IHRHL(L9) (5 + 1) _9 H2+TE+2(L*) (5 + 2)

(5.0.1)lz (5.0.1)1:

n : P n
(5.5.3) (Z/1) ¢ yaninyCT = K) == (Z/1) ¢ 00

(_1)j+klg (_1)(J'+1)+(k—1)lg
. P n .
(Z/ln)§<2j+k+l)(—3 —k) —— (Z/1 );{(2Hk+2)(—3 - k).

(=i —k)

Hence we obtain the part ( — 1)’% pin (6.5.1) by (5.1) and by the diagram
(5.0.3) forthe case 1 +j+1=2+k+ 1,ie,i =7+ k. O

Next, in the following propositions (5.6) and (5.7), we compare (5.5) with
a correction of Rapoport-Zink’s work ([RZ, (2.10)]).

PROPOSITION 5.6.  Assume that X is the special fiber of a semistable
famaly X over a complete discrete valuatwn ring A of mixed character-
istics with residue field . Endow X with the canonical log structure
obtained from X and let X be the resulting log scheme. Let & be the
absolute Galois group of the fraction field of A. Let X be the generic fiber
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of X.Leti:X — Xand j X — Xbethe natuml closed immersion and
the natural open immersion, respectwely Let RY¥ (Z]1™) be the classical
nearby cycle sheaf in D+(X ,&,7/1"). Then there exists the following
natural commutative diagram

Re (Z/I") —— s((K*,d) 7= (K*, —d))
(5.6.1) :T T:
PRI(Z/IM) —— S(RY(Z/I™),d) =3 (RY(Z/17), —d)).

PrROOF. Let R¥(7/1") be the log nearby cycle sheaf in D* (X5, &, 7 /1")
([Nak2, §3]). Then we have K‘ RY(7/1") (cf. the latter part of the proof of

[Naks3, (1.9)]). Let ¢’ Xglog — X ot be the natural functor. By [Nak2, (3.2) (ii),
(iv), "],

(5.6.2) RW (7)) = R&.RY(7,/1") = Re.(7,/1").

Let X be Téhe log scheme X with canonical log structure. Let : X — X and
Ji Xy, = (&, OE{ ) — X be the natural exact closed immersion and the
natural open imr/nersion, respectively. Then we have the following com-
mutative diagram

Re.(Z)I™) ——  Re(Z/I™)

5.6.3) l l:

Re,i*Rj.(Z/I") —— Re.RY(Z/IM).

(We leave the reader to the proof of the commutativity of (5.6.3) by using the
adjoint property of morphisms of ringed topoi.) By [FK, (3.1)] ([114, (7.4)]),
the adjunction morphism 7, /1" — Rj.(Z/1") is an isomorphism. Hence the
left vertical morphism in (5.6.3) is an isomorphism. Furthermore there
exists a na,tural morphism ;*R 5 « — Re, i*Rj, of functors. Indeed let
PAp T X be also the forgetting log morphism. Then i*R ]* =
*Z*RF"R_]* Since L i* *z , it suffices to construct a natural morphism
R — Ri «Re,1*. Since iog=¢o 1, Ri Re 1" = Re!/Ri,1*. Consequently
the adjunction morphism id — Ri,i* gives the morphism ;*R;* —

— Re,i*Rj.. Because the equality (5.6.2) is similarly obtained by adjunc-
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tion morphisms, the following diagram
Re,i*Rj.(Z)I") —— Re,RY(Z/I™)
(5.6.4) | [
*Rj.(Z/I") —— RU(Z/IM).
is commutative. By the commutative diagrams (5.6.3) and (5.6.4), we obtain

(5.6). O

Let the notations and the assumptions be as in (5.6). Then, by the fol-
lowing triangle

(5.65) — g1’ Re.(Z/1") — (1,)1,_2)Reu(7,)1") — g Re.(Z,/1") —

(r € Z>2),
we have the following boundary morphism
(5.6.6) d:R"e.(7.)I"){—r} — R™ e (Z/I"){—r + 1}[1].
Similarly, we have the following boundary morphism
(5.6.7) &R § (71—} — iR (21— + 111

By Gabber’s purity [Fu2, §8, third Consequence],

(5.6.8) R (21 S (2. (— 7).

X0

The isomorphism (5.6.8) is obtained from the isomorphism

(5.6.9) PR/ S (21, (1)
and the cup product

r o [} o o
(5.6.10) N\ TR G215 R (1.

The isomorphism (5.6.9) is obtained by the Kummer sequence

(5.6.11) 0—7/1"1) — Gy, — Gy, — 0

in i’met. Here the section (1,. .., 1) on the right hand side of (5.6.9)(1) goes to
7 *(0(m)), where 7 is a uniformizer of A and 9: R j .(G,) — R j.(Z/1"(1))
is the boundary morphism of (5.6.11).
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PROPOSITION 5.7.  The induced morphism E*R" ;*(Z /") — R'e (Z/1")
by the left vertical isomorphism in (5.6.1) fits into the following commu-
tative diagram:

(2.0.3;1™)
N (M /0%) @z Z/1"(—r) ——— R’e.(Z/I™)
(5.7.1) ” T:
(5.6.8) o
(Z/1") ¢, (=7) —— *R"j,(Z/I").

Proor. Using the adjunction morphism id — Ry, j*, we have a cano-
nical morphism

(5.7.2) Rei" — Re "Ry j”

of functors. We have also obtained a canonical morphism

6.13) i*Rj.j" — Rei*Rj.j*
of functors in the proof of (5.6). Let My, be the log structure in z’\?}gg.
Using (5.7.2) and (5.7.3) for M%ﬁlog and 7 /0"(1), we have the following

natural commutative diagram

MEP _ Rle,(Z/1*(1))
| H
€ (M) ——  Rle(z/I"))
(5.7.4) T H

HO(Revi* Rjuj* (ME1og)) — H!(Resi*Riuj* (2/17(1)))
5. (Gm) ——  ¢*RY(Z/1M(1)).
Here we have used the fact Rj.(Z/1") =7Z/I" (FK, 3.1)], [1l4, (7.4)]).
Hence we have the commutative diagram (5.7.1). O
The following remark is only for the reader; in this paper I shall not use

the facts in the remark.

REMARK 5.8. (1) It is better to replace the boundary morphisms of the
double complex C in [RZ, p. 38] by the following boundary morphisms in
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(5.8.1) below (cf. [Nakks3, (5.1.2)]):_1et {d*} be the boundary morphisms of
I* in [RZ, p. 37]. First set D¥ := (7', Then D** becomes a double complex
with the following boundary morphisms:

Disi+1
(5.81) (_l)idjT
Dii G |, DPitlg
Here G is the Cech-Gysin morphism in (5.4). The two boundary morphisms
in (5.8.1) are different from the two boundary morphisms in [loc. cit., p. 25,
p. 38]. Rapoport-Zink’s boundary morphisms in [loc. cit.] are not good
since each Cech Gysin morphism in the double complex C in [loc. cit.] has

different signs which depend on the parity of the degrees of I°.
If we follow the convention in [RZ, §1] and if we use the identification

(5.82)  @nbl® = ap RO(Z/1") = arn(Z/U) =7 —2r] (r € 7o)
in [loe. cit., p. 37], the following diagram
Ccr+2(e-1),—(e-1) ___, Opr+2¢-1,—(¢-1) ____, Opr+2¢,—(¢-1)
(5.8.3) (—1)P+2a Zj(—l)"éj«T
Op+24,—q
tells us that we have to replace the formula
dy = (=16 H'(YD, Z/I'"( — q) — H* YD, 21"~ (¢ = 1))

in [loc. cit., p. 39] (6;, in [loc. cit., p. 39] is mistaken; the right ¢;, is in
[loc. cit., p. 36]) by

(5.8.4) dy = (=D (=105 = (= 1Y (= 16

As a result, we also have to replace the sign (— 1)* before dj in [loc. cit.,
2.10] by

(585) ( _ 1)(]61‘»1)4’((]7’)‘72]‘3) — ( _ 1)q+k+r+1.
Here, note th%t we have to replace ( — l)kol’1 in [loc. cit., p. 31] by ( — 1)k+1d’1.
Since our Cech Gysin morphism G is equal to — > ( — 1)75j* in [RZ], the

J
part of the Gysin morphism in (5.5.1) is accidentally the same as that of
[RZ, (2.10)] if we correct the sign ( — l)k in [loe. cit.] before d; by (— 1)1
as in (5.8.5).
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(2) Let the lgotatioons be as in (5 6). There are at least two canonical
isomorphisms *R!j, (Z/ M) < (Z/1"); e One is obtained by the
Kummer sequence on X as in (5. 6 9). The other is obtained by a cano-
nical boundary isomorphism i*R! j (7)) — R? z'(Z/ ") which is ob-

tained by the localization sequence and by a canonical isomorphism
(A/l") = R? z'(é/l")(l) which is obtained by the cycle classes of

Xi, ﬁXil ((%, %) € I2) on X;, and X;,. These two isomorphisms have a gap
of signs by the anti-commutative diagram in [SGA 4%, Cycle (2.1.3)].

I do not understand the proof for the part ( — 1)"*0 in [RZ, (2.10)]. In
the proof of [RZ, (2.9)], we have to use the resolution in [RZ, (2.6)] of
1*J, 7°I°* in addition to the formula (5.8.2). I do not understand where the
resolution for the description of the part ( — 1)”}“0 has been used; we have
to describe how 6 acts on the resolution.

Using the better complex D**, we correct the proof of [RZ, (2.10)] as
follows.

Let (S,s,n) be the base henselian discrete valuation ring with closed
point and generic point in [RZ] and let i: s — S (resp. jy:7 — S) be the
natural closed (resp. open) immersion. Let I} be an injective resolution of
7,/1" on S. Then we have the following exact sequence

00— i},([;) — i) — gy dp) — 0
since %}y, = id. Then Hz(i})(lg)) =7/1"(—1)and Hq(i})(lg)) =0(q #2).By
the boundary morphism d: Hl(i;;jb*,jj;(lg))(l) —»Hz(iz(lg))(l) = Z/l", the
class 0 € Hl(i’[,jb*jZ(I »)(1) is mapped to the minus cycle class of the closed
point s of S by (5.2) and [SGA 4%, Cycle (2.1.3)]. By the functoriality, this
minus class defines a cohomology class in al*szyl(Z/ ). Hence, if we use
the double complex D** and if we use the following identification

(5.8.6) H'Y,(apROLZ/, (— 1Yd)) = H(Y, (0, bLI", (— 1)) =
HMY (a0l d) = B2 (Y, a2/ = 1) (h € 77 € Zing)

by using the Convention (6) in the case where 7 is odd, we have the following
description

(5.8.7) = Y A(-DTG+(-1"py

j>max{—k,0}
instead of the description d; in [RZ, (2.10)]. If we use the double complex C
and the formula (5.8.2), the correction of [RZ, (2.10)] is as follows:

(588) dl = Z {( _ 1)q+k+7’+1GRZ + ( _ 1)k+r+1p}’

k>max{—7r,0}
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where Gz := > (— 1)75j* isthe Cech—Gysin morphism in [RZ, (2.8)], which

J
is —G in (5.4). However we do not use the double complexes D and C in this
paper; we do not use these descriptions (5.8.7) and (5.8.8) either in this
paper; we use only the description (5.5.1).

Last but not least in (2), Rapoport and Zink have used two identifica-
tions(=(5.8.2) and the identification in the proof of [RZ, (2.8)]) of the ;-
terms with classical etale cohomologies at the same time. When we give the
description of the boundary morphisms between the E;-terms, we have to
fix only one identification until the end of the proof for the description.

(3) Note that the morphism R}, (7 /I"(1)) — 1, R%i'(Z,/1"(1)) considered
in [SaT, (1.5) (1)] is the opposite morphism of the traditional boundary
morphism obtained from the localization sequence; we consider only the
traditional boundary morphism as in (2) above.

As pointed out in (5.3) and (5.8), the weight spectral sequence in [RZ,
(2.10)] is an incomplete and mistaken spectral sequence. The proof for
[Nak3, (1.9)] that Nakayama’s weight spectral sequence in [loc. cit.] is
isomorphic to the mistaken weight spectral sequence in [RZ, (2.10)] is in-
complete because we need the commutative diagrams (5.6.1) and (5.7.1) for
the proof of [Nak3, (1.9)] (Nakayama has proved (5.9) (1) below). Hence we
would like to give a correction of the weight spectral sequence of [RZ,
(2.10)] and to establish a relation between the weight spectral sequence
(2.0.7;1) and the corrected weight spectral sequence as follows.

Let X be a proper strict semistable family over a complete discrete
valuation ring A. Let 7 be the generic point of Spec A. Let X be the special
fiber of X. Let j,k be two indexes in the direct factor of the E;-term of
(2.0.7;1). Then we have the following isomorphism

(5.8.9) _
(Z/ln)(fzjfk*l))%( (1» (212 —k— 1) g%*R2j+k+1;*(Z/ZW,).

2j-+h+1) X@j+k+1)
Hence we have the following spectral sequence
(6.810) E;f" = @) Hi ¥ H(X @D 20— j—ky=Hl\(X;, 2.
Jjzmax{-k,0}

Taking the projective limit of (5.8.10) with respect to n, we have the fol-
lowing weight spectral sequence

(6.811) B = @@ HL X G )~ — k)= Hl\(Xg, 7).
j>max{—k,0}
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The following is worth stating (cf. [FN, §4] for the co-adic analogue):

COROLLARY 5.9 [cf. [Nak3, (1.9)]]. Let the assumptions be as in (5.6).
Then the following hold.:

(1) ([Nak3, (1.9)]) The complex A% n 18 canonically isomorphic to
the complex A® constructed in [RZ].

(2) The preweight spectral sequence (2.0.7;1) is canonically iso-
morphic to the weight spectral sequence (5.8.11).

Proor. (1): (1) has been proved in the proof of [Nak3, (1.9)].
(2): (2) immediately follows from (5.6) and (5.7). O

Next let us consider the oco-adic case.

Let X be a SNCL analytic variety over a log point s=
= ((Spec C)apn, N @ C*). If X is algebraic, then the boundary morphism
between the E;-terms of (2.0.7; 0o) is the obvious oc-analogue of (5.5.1) by
(5.5) and by the comparison theorem of (2.0.7;00) with (2.0.7;1) ([FN,
(7.1)D. In fact, we need not assume that X is algebraic. Let us prove it
briefly. We follow the formulation of [RZ].

Let the notations be as in §2. Let ex: X8 — X be the real blow up of X
and let 7x: Xoo — X'°8 be the projection defined in §2. Set J* := J?,.

Let L: be the single complex s((J*,d) LN (J*(—1),—d)). Then
0:L:, — L (D[1] in (2.0.1;00) is the vertical morphism in the following
diagram:

(J*(1), —d(1)) —— (J*,d)
(5.9.1) 'idT
(J°,d) —2— (J*(~1),—d(-1)).
Assume that X = s. Then the isomorphism (3.2.6) for r = 1 is equal to
(5.92) 7Z=M®/0: = Rle, (7(1) = HY (S, 7(1)) = H' (m1(s'°%), 7(1)).

sing

Let T be an automorphism of R over S! defined by «—x + 1 (x € R).
Since s, = R, the following sequence

0 — I(Soc, ZAD) — I (00, 7, (L)) — TS0, 75 25 (ME) — 0

is exact. Let e = (1,1) be a section of I'(s"°8, &1 (ME)) = Z @ C*. Let f
be an element of (s, n;lContslog( ,V—1R)) defined by s, =R >
5 a—2nv/—1x € V—1R. Let h: 7 — S! be a point of s¢. Then, by
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using the identification s'°¢ 5 h— (1) € S!, the image of e by the
morphism I'(s°8, &;1(MEP)) — Cont(s"°¢, S!) = Cont(S', ') is the iden-
tity. Since the following diagram

R —  JZIR

ml lexp

Sl id Sl

is obviously commutative, the pair (f,e) is indeed an element of
(8, ngl(ﬁslog)). Set I(1) := (f, e). Obviously we have exp (I(1)) = e. As in
the l-adic case, consider the following 1-cocycle

(5.9.3) 11(s°8) 5 T— TAQ)) — (1) = 27v—1 € 7).

and identify 7°(I(1)) — I(1) with T. The map (5.9.3) is an isomorphism. By
(5.2), the 1-cocycle (5.9.3) corresponds to the following extension

0 — (1) — Z& Z(1) — Z—0,
1

where the 7;(s°8)-actions on Z(1) and 7 are trivial and the 7; (s'°8)-action on
the middle term is given by T'(x,y) = (x,y + x ® 2nv/—1) = (&, y + @ T)
(x e, ye 7). Set L'?, :=s((J*,d) 1 (J*, —d)). By the same proof
as that of (5.1), the left cup product of the cocycle (5.9.3):
H(L'? ) — H"(L'2 (DI1)) is induced by the following vertical morphism
of complexes

-(T-1)
-

(J*(1), —d(1)) (J*(1),d(1))

M®TT
(J°,d) -1 (J°, —d).

Since T is identified with 27v/—1 by the isomorphism (5.9.3) and since we
have the following commutative diagram

J* T-1 Je®

| e
Jo —2 s ge(-1),

the left cup product H"(L2) — H"“(L;C(l)) by the image of the cocycle
(5.9.3) in Rlex,(7(1)) is induced from a morphism (5.9.1). Hence we have the
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oo-adic analogue of (5.1) for a SNCL analytic variety as in (5.1) by using the
exponential sequence (3.2.5) for X = s instead of the log Kummer sequence
(5.1.8).
In (4.6) we have already proved the oo-adic analogue of (5.4). Therefore
we obtain the following (1) by the argument in the proof of (5.5):
THEOREM 5.10. (1) The boundary morphism d; ek, Eiih*k
— k] ’;j Ltk of the spectral sequence (2.0.7; 00) is identified with the fol-
lowing morphism:

(5.10.1) Y {(-1G+ (-1

Jzmax{—k,0}

(2) The boundary morphism d;""*": Ei’;!”k —>Ei§j1’h+k of the spec-
tral sequence (2.1.10) is identified with the following morphism:

(5.10.2) > (-G + (-1}

Jzmax{-k0}

Proor. We have only to prove (2). Because the spectral sequence
(2.0.8; 00) is isomorphic to the weight spectral sequence (2.1.10) ([FN, (6.5)])
and because the endomorphism

logT/(T—1)=1-2"X(T-1)+---
of I?, is the identity, (2) immediately follows from (1). O

REMARK 5.11. (1) We have another proof of (5.10) (2): we may apply
the tensor product @ C to the E'1-terms of (2.1.10). Using the isomorphism
(3.6.9) and the complex A%, ., we have (5.10) (2) by the same proof as that
for the description (2.0.8.3;p) in [Nakk3, (10.1)]. Consequently we have
(5.10) (1) again by [FN, (6.5)].

(2) In general, we use the boundary morphisms in (2.0.8.3;p), (5.5.1),
(5.10.1) and (5.10.2). However, to keep the symmetry for specific examples
in §6, §7 and §11, we consider an order which does not satisfy the transitive
law in (6.1) (1) below. Consequently, the signs before G and p will change
for specific examples.

ProPOSITION 5.12. Let r be a positive integer and k a mnon-
negative integer. Let {E**(0)} (resp. {E*(Nx)}) be the E,-terms of
the spectral sequence (2.0.7;00) (resp. (2.1.10)). Then the morphism
ok s By PMRO) @y, Q — ES'RO) — k) ®4, Q is an isomorphism if and
only if so is N*: BN ) — EFHNL)(= k).
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Proor. Let the notations be as in the co-adic case in §2. Let E*(do)
(r € Z=o) be the E,-terms of the weight spectral sequence obtained from
the use of the mapping fiber MF(é¢) of d¢: B(J?,) — B(J?,)( — 1). Then we
have the following three morphisms:
Q) o EERG) @, 0 — EERON(— k) @4, 0,
@) vk By G0 — B TRO0)(— k),
@) Nt BRI ) — EEEIN (= k).

Since we have the following commutative diagram

B(Jy) —— J§

éol lé@@

B(J8)(-1) —=— J§(-1)

and since the morphism £ k’h”“(&Q) —>E1_k’h’+k(5) ®7, Q is an isomorph-
ism, the morphism (1) is identified with the morphism (2). Next, by noting
the obvious commutative diagram

MF(dq) _E, MF(dg)

u] lu

aly) —— ey

n| In

MFg(New) ——— MFg(Nao),

it is easy to see that the morphism u’;C:El_ dth 00) —»E’f’h_k Do) —k)is
equal to the morphism N% : E "N ) — E¥FN )(—k) (cf. [RZ,
(1.7)D). By (5.10.1) and (5.10.2), we have E,“"**(5,) = E,"" (N ,.). Hence
the morphism (2) is equal to the morphism (3). O

COROLLARY 5.13. If X is projective, then the following four filtrations
coincide:

(1) the weight filtration on H"(X., Q) by the spectral sequence
(2.0.8; 0),

() the monodromy filtration on H"(X., Q) defined by the iso-
morphism H"X.,,Q) ~ H"X,A%, ®, Q) and the monodromy operator
(2.1.1),

(3) theweightfiltrationon H"(X ., Q) by the spectral sequence (2.1.10)
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and

(4) the monodromy filtration on H"X,,, Q) defined by the mono-
dromy operator (2.1.3).

ProOF. The coincidence of (3) and (4) follows from the argument due to
M. Saito [SaM, §4] (cf. [St2, p. 117]). By using the monodromy operator
(2.1.1), the morphism

—@nV-1)"og T: H"(X ., 7)) ®7, O — H'" X, 7)(— 1) @, Q

is well-defined. Because the natural inclusion B(J?,) = J ¢, 1s a quasi-
isomorphism ([FN, (3.5)]), the coincidence of (2) and (4) follows. By the
proof of (5.12), the morphism (3) in the proof of (5.12) is equal to the
morphism (2) in that of (5.12). Because it is easy to see that the morphism (2)
in the proof of (5.12) is equal to the following morphism

(5.13.1) NE B (00) — By (00)(— ),

we see that the morphism (5.13.1) is an isomorphism. The weight spectral
sequence (2.0.8; co) degenerates at Es. Now the coincidence of (1) and (2)
follows from the definition of the monodromy filtration of (2). O

REMARK 5.14. (1) The incomplete construction of the Z-structure of
the weight filtration in [St2] makes no sense as pointed out in §2 and §3.
Even if the Z-structure is proved to be well-defined, I do not know whether
the Z-structure is equal to the Z-structure induced by the weight spectral
sequence (2.0.7; c0).

(2) The explanation in [114, p. 312] that one recovers the degeneration at
Ey of the weight spectral sequences for the algebraic cases in [St1] and
[St2] from that of the l-adic weight spectral sequence in [Nak3] by using
the classical comparison theorem is incomplete because nothing about the
boundary morphisms between the E;-terms of the weight spectral se-
quences is mentioned. We complete the explanation as follows. For the
former case [Stl], by the same proof as that in [Nakk3, (10.1)], the
boundary morphism between the E;-terms of the weight spectral sequence
in [St1] (with the variant of Steenbrink’s double complexes (cf. (2.1.6))) has
the description (5.10.2) (cf. [GN, (1.8), (2.7)]). Hence, by using the explicit
description (5.5.1), the dimensions of the Es-terms are equal to the di-
mensions of the Ky-terms of the l-adic weight spectral sequence. Therefore
the desired degeneration follows from the classical comparison theorem.
For the latter case [St2], the desired degeneration follows from
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(a) Fujisawa-Nakayama’s comparison theorem ([FN, (5.8)]) between
their weight spectral sequence and Steenbrink’s weight spectral sequence
in [St2],

(b) their another comparison theorem (the proof of [FN, (7.1)]) between
the filtered Steenbrink complex (4%, ®, Z;, P) and the projective system
{A% 10 P)hyen in 85 of filtered complexes (it is easy to check that the
family {(AX L P)},cn is indeed a natural projective system)

and

(c) the explicit descriptions (5.5.1) and (5.10.2)

or

() (A%, P) ~ (4%, ®7 O, P ®, Q) ([FN, (6.5)).

We define convenient notations for later sections and the remark (5.16)
below. Set

H".(Z, ) x =D,
HI(Z) = { HE ((Z/W) @w Ky (= p),
H"Z 4, Q) (% = 00).

for a proper (smooth) variety Z over x, where « is a field, a perfect field of
characteristic p > 0 and the complex number field C, respectively. Set
also

log et(XS’ Q) x=1),
10g *(X) = Hﬁ)g c1ys(X/W) Ow KO (x= p);
H"(Xan)oo, Q) (x = 00)

for a proper SNCL variety X/s. When we consider (log) crystalline co-
homologies and the Witt ring W := W(x) of x, we always assume that the
base field x is a perfect field of characteristic p > 0. We often use the no-
tations H' {70 LX) and H ’j (Z)in order to avoid giving statements with respect
tox=1p and oo repeatedly, though we admit that the notations are con-
fusing in the l-adic case because we always consider the (log) l-adic co-
homologies of Z and X; (neither Z nor X) in this paper. We shall also use the

following notations in §7 and §11:

HY(Z,7) (=1,
H'Z) = H' (Z/W) (x=p),

crys

H (Zam Z) (* = OO))
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ﬁ)g et(X§, Zl) (* = l),
log *(X) = log myq(X/W) (x = p)
Hh((Xan)ooa A) (* = OO)

In the case x = oo, we use the same notations Hh(Z) H’7 “£), H log (X) and
(X) for a proper (smooth) analytic variety Z over C and a proper

SIl\?gC*L analytic variety X /(Spec C, C* & ).
Set
Q k=10,
L=< Ky (x=p),
Q x=00)
and
7 (=1,
1,=¢W G=p),
7. (k= 00).

PROPOSITION 5.15. Assume that X is of pure dimension d. Let
{ES )51 (k=1,p,00) be the E,-terms of the weight spectral sequence
(2.0.8;%) or (2.1.10). Then the Poincaré duality pairing

(5.15.1) (, )BT gy BV — 1.~ d)
nduces the following perfect pairing

(5.15.2) (, )BT gy BYI—1,(—a).

ProoF. Inthe p-adic case, we have proved (5.15) in [Nakk3, (10.5) (2)].
In the [-adic case and the two oc-adic cases, the proof is the same as that in
the p-adic case by using (5.5.1), (5.10.1) and (5.10.2), respectively, and only
by replacing crystalline cohomologies in [loc. cit.] with /-adic and Betti co-
homologies, respectively. O

At last we can conclude the part I of this paper by giving the following
remarks on signs of the x-adic weight spectral sequence (x = [, p, c0).

REMARK 5.16. If we do not make the twist of the identification by the
signs in (2.0.6;0) (resp. (2.0.6;00)), the description of the boundary
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morphism

d—kh+k E—Ich+k @ Hh 2j— k(X(2]+k+l))( ] k)—s Eilj+1,h+k (x=1,00)
j>max{—k,0}

of the E1-terms of (2.0.5;1) (resp. (2.0.4; c0) by the use of (2.0.4.1; 00)) is
(5.16.1) Y A{(=TG+ (- 1)

jzmax{—k.0}

If we consider the anti-commutative diagram in [SGA 41, Cycle (2.1.3)], it is
natural to make the following twist by a sign

(5.16.2) (—1)F T+ x; HI--h (X @) (k) — Y ERE By,

Then the boundary morphism d; Itk of the E-terms of (2.0.5;1) (re-
sp. (2.0.4; c0) by the use of (2.0.4.1; 00)) with the twist above is described by

(5.16.3) > -G+ (-1

jzmax{—k.0}

Note that the twist in (5.16.2) for x = co is compatible with (3.2.3) and (3.2.4)
in the following sense: for the integer ¢ := 25 + k + 1, the following diagram

Cy, (~){=i} — €y (== D) {~(~ D]

| [

Cq, (—i){-i) €y (== D){=( = 1}
(5.16.4) <3.2.3>l 1(3.2.3)
et 9 o= DI

u] Tu

C,. (—i){-i} —S5 Cq  (=(i = D){~(—D}[]

X® XG-1

in D*(C}o() is commutative. The sign in (5.16.2) corresponds to the sign in
(3.2.4). Note also that the composite sign by the twist (5.16.2) and the sign
(—1Y*! appearing in (3.6.5) is equal to

(5.16.5) (— 1)2j+k+1+j+1 _ ( o 1)j+k

which appears in (2.0.6;1) and (2.0.6; co). By the sign ( — 1)7~+1 and by the
obvious oco-adic analogue of (5.5.2), one sees the reason why the sign before
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G in (5.16.3) is the same as that in (5.10.1) and (5.10.2). Similarly, by the
obvious oo-adic analogue of (5.5.3), one sees the reason why the sign before
p in (5.16.3) is the multiplication of that in (5.10.1) by —1.

As a summary, we give only the following seven types of the explicit
descriptions of the boundary morphisms of the E;-terms of the weight
spectral sequences of proper SNCL algebraic and analytic varieties over a
log point:

(Type D) (5.5.1)=[Nakk3, (10.1)] =(5.10.1)=(5.10.2),
(Type II) (5.16.1),

(Type III) (5.16.3),

(Type IV) (56.8.7),

(Type V) [GN, (2.7)] (cf. [Nakk3, 10.4.3; x]),

(Type VI) [SaT, (2.10)],

(Type VII) (5.8.8).

Part II. Weight spectral sequences of log surfaces.

6. Weight spectral sequences of analytic reductions of rigid analytic
elliptic surfaces.

In this section we give examples of proper SNCL surfaces over a log
point s = (Spec k, M) whose first and third x-adic (x =1, p, co) log co-
homologies have different monodromy filtrations and weight filtrations.

Let 7 be a global section of M, whose image in I'(s, M,/O5) is the
generator. Let ¢ be a global section of M, such that the image in x is 0. Let
E, be the g-Tate curve over s ((Kk2, §2.2], cf. [DR, VII 1], [113, 3.1]): E,
represents the following functor from the category of the fs(=fine and
saturated) log schemes over s to (Sets):

6.0.1) (2— Utf e 1@ M| 2 f1z" 1) /q7’>a,

nez

where a means the sheafification and flg (f,g € I'(Z, M%’)) means
f~lg € I'(Z, Mj). The multiplicative group G,, /5 over $ naturally acts on E,.
Let Y be an fs log scheme over s and let £ be an invertible sheaf on the un-

derlying scheme Y. Consider the following log scheme which is obtained by
twisting £, x, Y by L:let Y = |J U; be an open covering of Y such that £ is
i
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trivialized on lO] i Let (g;7) (9 € G( lof inN i] ) be acocycle representing £. To
foix ouridea, we follow the rule in [SGA 4%, Cyecle (1.1.2)] for the (3,,-torsors on
Y. Let E,y(£) be a union (J(U; x5 E,) whose gluing on (U; xs Ey)N

1
N(U; x4 Ey) is given by an auégmorphlsm fmod ¢” — g;;f mod ¢” with re-

spect to K. This construction of E, y(£) is due to K. Kato ([Kk3]).

Write q as the following form: ¢ = un® (u € x*, e € Z>1). Assume that
e > 2 in this paper. Then the fibers of the underlymg scheme of K, y(L)
over Y are the e-gon of ]P and £, y(£) is a SNCL variety over s.

We can also construct Eq‘y(ﬁ) concretely without using (6.0.1). Indeed,

consider the e-gon P over «. The scheme P has a log structure of SNCL
type (cf. [Kf, (11.7) 2]), and we have an fs log scheme P over s. Consider the
following disjoint union of fs log schemes: [ (U; x; P). Set U;; :== U; N U;.
Let fj: Uily, — Uily, be the gluing isomorphism (f; =id and
fij o fit = fir) of the open covering Y = |J U;. Let u be alocal section of Oy,

and x,y homogeneous coordinates of | E)l Then we have an isomorphism
hij: (U|U Y xs P = (U|U ) x5 P such that h*(u@l) f (w), h*(1®x)
—1®x and b1 ®y) = gl] ® ¥ in the ring (’)U Ry Op. The famlly {hi}
satisfies the cocycle condition, and thus we have a scheme, in fact, a proper
SNCL variety K, y(L).

REMARK 6.1. (1) The following convention is important. First consider
the case e = 2. Then we fix an order 0 < 1 in the elements of 7/2. Next
consider the case e > 2. Then we fix the following two-term relation for the
elements of 7 /e

0<1,1<2 ...,e—2<e—1,e—-1<0.

Note that this two-term relation does not satisfy the transitive law. By
using this relation, for example in the p-adic case, we define the Poincaré
residue isomorphism, and G and p in [Mo, 4.10] and [Mo, 4.12], respectively.
Set X = OEqu(E) and let X; (1 =0,1,...,¢ — 1) be the irreducible compo-
nents of X. Inythe {-adic and the oco-adic cases, we use this relation for the
isomorphism A (./\/l}g(p /O%) ~ @ Zx nx, (cf. the proof of [Naks3, (1.8.3)]).
i<j

(2) If Y is a proper smooth curve C over x with a log structure which is

the pull-back of that of s, £, ¢(£) is expressed as follows:

(a): If k = C, K (L) is the degeneration of a proper strict semistable
family of non-Kéhler elliptic surfaces over a unit disk. (We do not use this
fact in this paper.)
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(b): Let « be a not necessarily perfect field of characteristic p > 0. Let
W be a Cohen ring of x and K the fraction field of W. Then E, (L) is the
special fiber of a formal proper strict semistable family of surfaces over
Spf W with the canonical log structure in the sense of (6.2) below. (Only as
to the underlying scheme E, (L), this fact is obtained by [Ue, §6 a)] and by
the analytic reduction with respect to a pure covering which produces
E,c(L).) Because there is no appropriate reference for this fact and be-
cause we shall use this fact in (7.10), (7.11) and (7.12) below, we construct
this formal proper strict semistable family in (6.3) below.

For (6.3) below, we need the log structure associated to a formal strict
semistable family, which is a vertical version of the log structure defined in
[NS, §8].

Let V be a complete discrete valuation ring. Let @ be a formal strict
semistable family over Spf V Let { Y} —1 be the smooth irreducible com-
ponents of the spec1al fiber Y of ) Let Div( @ )>0 be the monoid of effective
Cartier divisors on ?) Let Dlvy( @ )>0 be a submonoid of Div( ?) )>0 con-
sisting of effective Cartier divisors £’s on ‘l) such that there exists an open

covermg @ U Z/{ of @ such that E|; is contained in the submonoid of

(1<j<m)

~ The scheme s2) gives a natural fs(= fine and saturated) log structure in
Jzar as follows (cf. [Kk1, p. 222-223], [Fa, §2]).

Let M’ be a poresheaf of monoids in %O)W defined as follows: for an open
subscheme V of ), set

6.1.1) TWY,M):={(E,a)c D1v (V)>0 x I'(V, (9 )\ a is a generator of
r, 05)(— Y N}

and with a monoid structure defined by (£, a) - (£, a') := (E + E’, aa’). The
second projection M’ —»(’)o induces a morphism M’ — ((’)o x) of pre-

sheaves of monoids in g)m The log structure M is, by deflmtlon the as-
sociated log structure to the sheafification of M’

DEFINITION 6.2. We call M the canonical log structure of ‘20) /Spf V.

PRrOPOSITION 6.3. Assume that x is a perfect field of characteristic
p > 0. Let W be the Witt ring of ic. Let Y be a proper smooth scheme over k.
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Assume that there exists a pair (Y, Q) of a formal proper smooth scheme
with an tnvertible sheaf such that Y @y k=Y and L @w k = L. Then
there exists a formal proper strict semistable family ) over Spf W with
canonical log structure such that ) Qw k ~ E,y(L).

In particular, for a proper smooth curve C over k, there exists a formal
proper strict semistable family X over Spf W with canonical log structure
such that X @w x ~ E,c(L).

Proor. Let {U/;}; be an affine open covering of ) such that there exists
an isomorphism 2|M ~ Oy,. Let L. := Spf (Sym ) be an affine line bundle
over ) associated to . Let {0} be the zero section of L. Then
LAA{ODIy, = Ui xshWk(xm sw- Consider the following rigid analytic spaces
for integersj = 1,2,... e:

ij(: “{Z c KO| |p|] < |z| < |p|]'71}n _ “SmeO{z/pi’l,pj/Z}’,)
= Spm Kofz,uj, 07} /e — p/ g, 20 — ),
~ Spm Ko{u;j, vj}/(uv; — p).

Natural inclusions

Kolz/p 7,0/ 2} == Kolz/p' P/ [z} < Ko{z/p P 2} (j=1,...,e—1)

and two inclusions

Kofe/p"™,p°f2} — Ko{z,1/2} < Ko{z,p/2}

gives the patching V; and Vj, (j=1,...,e—1) along Vj;,:=
:= Spm Ko{z/p’, p’ /z}, and V, and V7 along V,; := Spm K,{z,1/z}. Here
the last — is given by z/p? ! Pz and p¢/z+— 1/z and the last < is the
natural inclusion. The union |JV; is, what is called, the Tate curve
Gy /P J=1

Each V; (j € Z/e) has a formal model V; := Spf W{u;,v;}/(ujv; — p),
which has strict semistable reduction over SpfW. Set V. :=
Spf W{u;;1,v;}/(uj1v; — 1), and patch V; and V;,; along V; ;1 as follows
by imitating the patching above:

(6.31) W{ay, v}/ vy — p) == W1, 03}/ @jnvy — D= W{ajia, 031}/
(W) 110j11 — P).

The left morphism in (6.3.1) is given by u; — pu; 1, vj — v; and the right
one is givgn by uj1—uj1, pvje—vjy1. Set Uy :=U;NU;. Let
gy € I'Uy;, Gyyw) be a cocycle representing the invertible sheaf L.
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e

Consider a product U; Xspew ( U Vi). Pateh U; Xgpew( U Vi) and
k=1

U Xgprw ( U Vi) by the following 1som0rphlsm

OUJ"MU ®WOVA., —> Oui|ui7-®WOV/c

rl—arl, 1®u— gy u, 1®vkr—>§i}1®vk (@ € Oy, )
ij

Let @ be the resulting formal scheme over Spf W. Then s20) has strict
semistable reduction over Spf W. Endow 2) with the canonical log structure
and let ) be the resulting log scheme. Then ) is a desired formal log
scheme.

The latter statement immediately follows from the existence of a formal
lift of (C, £) (ISGA 1, III (6.10)]). O

REMARK 6.4. By the construction in the proof of (6.3), the generic fiber
of X is nothing but the rigid analytic space in [Ue, §6 a)] and the special
fiber of X is £, c(L).

THEOREM 6.5. Let C be a proper smooth curve over i endowed with
log structure which is the pull-back of that of s. Let L be an invertible
sheaf on C with non-zero degree d. Let {E;;} (x =1, p, 0) be the Es-terms
of the weight spectral sequence (2.0.8; %) for X := Eqc(L). Then Ey}* = 0,
but E%f’* is a 1-dimensional vector space over 1,. In particular, the x-adic
monodromy operator on H log LX) does not induce an isomorphism from
Ey? to B (D).

Proor, Wemay assume that « is algebraically closed. Because the dual
graph of X is a circle, the claim on E3, is obvious. We prove that E; 12 = 0.

Let {Xy}rcz) be the irreducible components of X such that Cj :=

= X;; N X1 # ¢. The double curves Cj, and Cj,_; are sections of Xj,. Let
C U U; be an open covering of U; such that £|U ~ Op,. Let Pp( ~ Pl) be
the irreducible component of the e-gon P /K corresponding to X.. We have
an isomorphism y,: Xj, — P(O¢ @ L) over C because the ratio of relative
homogeneous coordinates of X over C changes by the multiplication g;;
with respect to the open covering {U; X P }; of X; we identify X with
P(O¢ @ £) by yy.. Let my: X;; — C be the projection. Let Dy, 1 (resp. Dy2) be
a section of X}, which corresponds to the projection O¢ & L LN O¢ (resp.
Ocd L P2 ). Then, by [Ha2, V (2.6)], m;(£) = Ox, (1) ® Ox,(— Dy.1) and
HZ(OC) = OXk(l) X OXk( — Dk‘z). Thus 71';;([:) = OXAﬁ(Dk,Z — Dk,l)- Because
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{Ck, Cr-1} = {Dy1, D2},
(6.5.1) (L) = Ox, (& (Cy, — Ci_1)).
Consider the following commutative diagram

-
Tk

PicC —— PicXy

cl,cl lcl,xk

H2(C)(1) — H2(Xx)(1),

where the vertical morphisms are first Chern classes. By (6.5.1) we have
c1.x,(Cr) — c1x,(Cy—1) = £ mi(c1 0o(L)). Since degL #0, ¢;c(L) #0, and
since 7j: H2(C) — H%(X},) is injective, 7}(c1 (L)) # 0. Hence ¢ x,(Cy) —
—c1x,(Cr-1) # 0.

The boundary morphism

di%: HY(XP)( - 1) — H2XWY)

is obtained by the first Chern classes c; x, of X}, as follows by ((2.0.8.3; p),
(5.5.1), (5.10.1), (5.10.2)):

(6.5.2) (aprezse— — (@rc1x,(Cr) — ag_101.x,(Cr—1)kez/e
(a, € HY(X}, N Xpo41)(— D).

Assume that (ax)rer/. € Kerd;%. Using the compatibility of the cup
products of x-adic ecohomologies with intersection theory [Mi, VI (10.7)],
[DI1, (3.3)] and [GH, p. 470], respectively, we see that a;, = aj_1 (Vi € Z/e)
by considering the intersection with a fiber of X;,/C. Because c; x,(Cy) —
—1x,(Cr—1) # 0, a, = 0. O

REMARK 6.6. In [Kk3], Kato suggested that the weight filtration and
the monodromy filtration on the first log l-adic cohomology of the degen-
eration of a Hopf surface (C' = P! and £ = 0,1(1)) are different.

Though X = E, (L) is the special fiber of a formal proper strict
semistable family ((6.3)), X is not the special fiber of an algebraic proper
strict semistable family. This has been suggested by T. Saito:

COROLLARY 6.7. Assume that k is a field of characteristic p > 0. Then
the following hold:
(DX = E, (L) cannot be the special fiber of an algebraic proper strict
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semistable family over a complete discrete valuation ring with residue
field .

(2) Assume that the genus of C is positive. Then there does not exist an
algebraic proper strict semistable family Y over a complete discrete va-
luation ring such that there is a morphism f with degf # 0 from the
special fiber of Y with canonical log structure to X (See [Nak4] for the
definition of degf).

Proor. (1): If X were the special fiber of a proper algebraic strict
semistable family above, then (6.5) would contradict [RZ, (2.13)] (cf. (8.1)
below).

(2): Assume that ) in (6.7) existed. Let Y be the special fiber of ) with
canonical log structure. Then, by [Nak4], H' log ot Xz, ) would be a direct
factor of HI' (Y5, Q) (h € 7) and we have the following commutative

log-et
diagram for i € 7:

N,
Hlog et(YS> Ql) — Hl’(L)g-et(YTs‘a Ql)(_l)

(6.7.1) UT Tu

Hlfclyg et(Xs, Ql) _‘_* H]%g ct(XEa Ql)(_l)'
By (8.1) below, the graded pieces of the monodromy filtration on
Y5, Q) are pure in the sense of [SGA 7-1, I, (6.3)] (cf. the proof of (8.1)
og- (X5, () are also. BecauseE’zz = 0by (6.5),
Jog- tX5, Q). Hence the monodromy filtration {M}},., on
HllOg X5, Q) is as follows: My =0 and M; = Hllog X5, Q). Because
E%OZ £ 0and E’gll = HL(C, ;) # 0 (see (7.1) below), My /M is not pure. This
is a contradiction. O

log—et(
below), and hence those for H: )

N, =0 onH

REMARK 6.8. (1) The coincidence of the monodromy filtrations and the
weight filtrations on the 0, 2, 4-th’s x-adie (x = [, p, oo, respectively) log
cohomologies of a proper SNCL surface follows from the Fo-degeneration
of (2.0.8;%) ([Nak3, (2.1)] [Nakk3, (3.6)], the theory of weight in Hodge
theory, respectively) and the argument of Rapoport-Zink ([Mo, $6]).

(2) Let {E“ } be the Es-terms of the spectral sequence (2.0.8;p). In
[Mo, 4.15 (ii)], Mokrane claimed that there exists a perfect pairing between
E, Fitk and B, ;“)Zd "% for a proper SNCL variety over «. The log scheme
X E,c(£) in (6.5) is also a counter example of this duality. Indeed, we
first note that &5 and £, +**~"~* are dual by [Nakks, (10.5) 2)] ((5.15)).
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Hence E3°, = 0 by (6.5); however £}’ ~ K, since the dual graph of Xisa
circle. Therefore E}?, and E}), are not dual. Note that, if one neglects the
torsion in [Mo, 4.15 (ii)] and if (2.0.9;p) holds for a projective SNCL variety,
the duality in [Mo, 4.15 (ii)] h(glds. .

(3) Since the dual graph of X=E, ¢(£) is a circle, E; 14 is a 1-dimensional
vector space. By (2), E;i( — 1) = 0. In particular, the induced morphism
N.:E;* — E¥(—1) is not an isomorphism for X in (6.5).

4) Considering (6.5) and (3) in this remark into account, one knows
that [Mo, 6.2.1] for the proof of the statement that the morphisms
N,:E;,' — E3’, and N,:E;)* — E3) are isomorphisms is incomplete
because the proj ect1v1ty or the existence of the semistable family have not
been used for the proof (cf. [loc. cit., 6.2.4]). However Mokrane let me
know a fact (by an e-mail) that, by [Mo] and [R2] or [CI], the monodromy
filtrations and the weight filtrations on the log crystalline cohomologies
of the special fiber of an algebraic proper strict semistable family of
surfaces over a complete discrete valuation ring of mixed characteristics
with finite residue field coincide. We generalize it for any complete dis-
crete valuation ring with any perfect residue field of positive character-
istie in (8.3) below.

Next, we consider a part of the p-adic analogue of Clemens-Schmid
(exact) sequence (cf. [Nakk2]).

Let x be a perfect field of characteristic p > 0 and W the Witt ring of .

In the introduction of [Ch], Chiarellotto has conjectured that the sequence
(6.8.1;p) H"Y, Kerv,) @w Ko — H (Y/W) Qw Ko N

log crys(Y/W)( — 1) @w Ko

log-crys

is exact for a proper SNCL variety Y /s, where v, is the canonical morphism
in §2 (We need the Tate twist ( — 1) in the right term of (6.8.1; p); it is for-
gotten in [Ch].). Note that H"(Y, Ker vp) @w Ko = llg( Y /Kyp) ([Ch, (3.6)]).
In (6.11) below we show that this conjecture does not hold in general and
that the l-adic and the oo-analogues of the above do not hold in general
either (cf. [Cl, p. 229]).

ProPOSITION 6.9. Let i be a field of characteristic p > 0. Then the
Sfollowing hold:

(1) Let I # p be a prime number. Let Y /s be a (not necessarily proper)
SNCL variety. Then there exists a natural sequence

vy

6.9.1;1) H'(Y, Zp) — Hiyg (Y5, Z1) — Hypy o (Y5, Z)(— 1),
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(2) Assume that x is a perfect field of characteristic p > 0. Let Y /s be a
(not mecessarily proper) SNCL variety. Then there exists a natural se-
quence

6.9.1;p)  H"(Y,Kerv,) — Hyy oy (Y /W) 2, Higrys ¥ /W= 1).

(3) Let Y /((Spec C)an, N & C*) be a SNCL analytic variety. Then there
exists a natural sequence

(6.9.1; 0) H'(Y,7) — H' (Yo, 7) 2 H'Yo, 7)(—1).

(4) Let Y /((Spec C)an, N & C¥) be a SNCL analytic variety. Then there
exists a natural sequence

(6.9.2: 0) H'(V,0)— H"(Y..,0) X HNY.., O)(—1).

If the irreducible components of Y are compact and Kdhler or the ana-
lytifications of proper smooth schemes over C, then (6.9.2;00) is a se-
quence of mixed Hodge structures.

Proor. (1): Let the notations be as in the [-adic case in §5. Let v be
the quasi-monodromy operator for A, : v, = (— l)wﬂproj.:A?,M —
— Ay 771 (~1). Then
(6.9.3; 1) Ker vy, = (- — (51 L°(G+ D) Y @GL G T — ), ey

—(... %, HHULYG + 1) IO
= — R ey (Z)1G+1) — )
= (o (21— ),

YU+

Here note that

. . —1)it24 . .
LIt (j +2)/(r 1 LG + 2))1+0 S8 (7 L0 (5 + 2))3+2

| 1

. o/ ; (-1)7t'd o(; j+1
DG+1/(L*(G+ 1)) ——— (nl*(G+1))
is anti-commutative, however note that the natural projection

(il G+ DY —H LG+ (e

gives the second equality in (6.9.3; [). We also have to note that the sign by the
twistin (2.0.6; )is (— 1Y7 = 1 (cf. (5.5.3)). Hence the boundary morphism
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d:(Z/ l")%(jﬂ) —(Z/ l”)%w) is equal to p by (5.1). Hence thereoz exists a ca-
nonical isomorphism (/,/1"). — Kerv,,. Therefore {121117 H".(Y,Kerv,) =
H'(Y,7,). Hence we obtain (1). /

(2): (2) is obvious.

(3): By using a fact R"e.(Zywe) = 7( — V)i’zm (r € Z~o) (KN, (1.5)]), we
have only to replace L* in (1) with L?_ in the oo-adic case in §5.

(4): We replace L* in (1) by s(B(J?)), d) N BU?)(—1),d)) in §2. By
the proof of (1), we have

(6.9.4) KerNo =Kerve = (- — Qp  — ---).

Y U+D

The induced weight filtration on Ker NV, is equal to the increasing stupid
filtration on

{(QY( e O‘f/umm — - Nk} er

which induces the weight filtration on H"( lo’, Q) (ef. [St1, (3.5)]). Hence (4)
for the weight filtration follows.

As to the Hodge filtration, we prove (4) as follows. The complex
A*(Ny) ®¢ C is isomorphic to s(A} e .) ((3.7)); the (4,5)-component of the

double complex A3 (i,j € N) is A”]H /P; Al;/j(fl. Then, by using the

Poincaré residue isomorphism, we have an isomorphism

+7+1 St~ i
Res: P]‘HA - /Pj AY/L — Qf/(jm/‘(‘,'

Hence
Ker(vy: A% — A% (—1)®0 C=Ker(No: A*(Nog) — A* (N (= 1)) @0 C

is isomorphic to the single complex of the following double complex (cf. the
proof of [Nakk3, (10.1)])

i

Y@+2) /C

6.9.5) o|
i (-1)7*'d Qi+l '
YU+ /C YG+n/C

Since the Hodge filtration {Fil}y};., on A3 - s defined by {A;,ji'}le 7

Fill, = [, e ,(—1Y"'d)]s5; jex. This filtration induces the Hodge fil-

tration on H™( Y7 C) (cf. [St1, (3.5)]). O
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PROPOSITION 6.10. Let the notations be as in (6.9). Then the following
hold:

(1) There exists a spectral sequence
6101;0)  EPMReruy) = HFE(Y CHD 7)) — HY (Y, Kerv).
(2) There exists a spectral sequence

6101;p)  E;F(Kerv,) = HEE(Y CHD /W) = HY(Y, Kerv,).

crys
(3) There exists a spectral sequence

(6101;00)  E"(Kerva) = H'E(Y D7) — H'(V, Ker ..

Proor. (1): By considering the stupid filtration on the right hand side
of (6.9.3;1) for j = —k, we obtain the spectral sequence (6.10.1; ).
(2): Consider the following filtration on Ker v,.

P (Kerv,) =
=(..  — ((P2j+k+1 N P7+1)W71§;r‘7+1 + P7WZ?L]+1)/P7WZ?]+1 ... )i,jZO'

Here we used the notation W?l} for W5 in [Mo, §3]. By [Nakk3, (8.6) (5),
(9.12)], we obtain a canonical isomorphism

grf (Kerv,) — WQ  {k}, (k<0)

Y (~k+1)

which is compatible with the Frobenius. Therefore we obtain (2).
(3): The proof of (3) is the same as that of (1) by using (6.9.4). O

PROPOSITION 6.11. The three sequences
61110 HYX, Q) — Hiy (X5, Q) 5 HY (X5, Q)(— 1),
(6.11.1;p) H*(X,Kerv,) @y Ky —

ngog—crys(X/W) @w Ko i) H?og—crys(X/W)( -1 @w Ko
and
(6.11.1; c0) H3(X,0) — H3X..,0) X HX..,0)—1)

are not exact for X = E, c(L) over the log point of a field of characteristic
p # I, a perfect field of characteristic p > 0, C, respectively.
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Proor. We give the proof only for the p-adic case; the proof for the I-
adic and the co-adic cases is the same.

We have
X/W)ow Ko— H X/W)(—-1) ow Ko) =

dimg, E55 + 1

dimg,(Ker v,: H;

log -crys log -crys

by (6.8) (2), (3). However
dimg, H*(X, Kerv,) @w Ko = dimg, ES(Ker v,) @w Ko = dimg, By

by (6.8) (2) and (6.10.1; p). Hence (6.11.1; p) is not exact. O

REMARK 6.12. If (2.0.9;]) holds, then (6.9.1;]) is exact; in fact, the I-
adic generalized Clemens-Schmid sequence for a projective SNCL variety
X is exact by the argument of [Z, (7.5), (7.6)] and the strict compatibility of
the [-adic weight filtrations; this strict compatibility can be checked by
reducing that to the case where the base field « is a finite field ((Nak3]).

The idea of considering direct products in (6.13) below is due to
T. Saito.

COROLLARY 6.13. Set X := E, (L) in (6.5). Let Y be a proper smooth
scheme over k endowed with log structure which is the pull-back of that of
s. Setn :=dimY. Let Z := Y x4 X be the product of Y and X. [f H*(Y) # 0
or HI'2(Y)#0 (=1 p, oo) then N E;,"?—E'(-1) and
N..E, 1 LBy (1) are not isomorphisms. In particular, the
monodromy letmtwns and the weight filtrations on H"+1 (Z) and
Hﬁ);i(Z) do not coincide.

PROOF. Since X = ¢ (j >3), Z = ¢ and hence E 5 =0 for
|k| > 2. The boundary morphism d; " *2: B T BV s

2 : ©3
P HY) © HHX®)( - 1) 2 @ (H2(Y) © H' X)),

h=0 h=0
First, assume that H*(Y) # 0. The restriction of N,: K, 17”2 — E"(-1)
to H'(Y) ® Ker(H*(X®)( - 1) G, H2XW)) is the zero by (6.5), while
the target of this restriction is H’j(Y)@Coker(HS(X(D) H)(X®)),
which is not 0. In particular, N is not an isomorphism. Next, assume
that Hf*Z(Y) #0. In this case we have only to consider the

restriction of N to Hf’2(Y)®Ker(HE(X(2))(—1)iHﬁ(X(l))). Indeed,
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H"2(Y) @ Ker(HAX®@)(— 1) % HY(XD)) =~ H*2(Y) # 0 but H* 2(Y) ®

® Coker(H2(X®) 2, H%(X®)) = 0by (6.8) (2). The duality (5.15) shows the
rest of (6.13). O

REMARK 6.14. In [It2] (cf. [D4, (1.8.4)]), Ito has proved the [-adic
monodromy-weight conjecture for an algebraic proper strict semistable
family over a complete discrete valuation ring of equal characteristic.
Hence, by the proof of (6.7), (6.7) for Z in (6.13) holds if the complete
discrete valuation ring in (6.7) is of equal characteristic.

We conclude this section with a remark which is related to the log hard
Lefschetz conjecture (9.5) below; (6.5) does not contradict (9.5) by the
following:

ProroSITION 6.15. Under the assumption of (6.5), E,c(L) ts not
projective over k.

Proor. We may assume that x is algebraically closed. We keep the
notations in (6.5). However we replace k in (6.5) by © € Z/e in this proof.

By [Ha2, V (2.6)], 7;(O¢) ~ Ox,(1) ® Ox,(— D;z), and thus (D;»)* =
= |deg L| = |d]| by [loc. cit., V (2.9), (2.11.3)]. Let F’; be a fiber of X; — C.
Since {C;,Ci11} ={Djy1,Di2} and C;NCiy =¢, Diy =Dz —|d|F; in
NumX;. Let N be an invertible sheaf on X. Set N; := N lx,- We take
integers a; and b; such that A, is numerically equivalent to
Ox,(a;D; 2 + b;F;). By the patching condition of the A/;’s, we have the fol-
lowing equalities:

(@D 4+ biF;) - Do = (@i 1Di_12 + b;1F; 1) -Di_11 (1€ ZJe)

or

(@iDig +biF;) - Dy = (ai-1Di—12+ bi1Fi1) - Di_12 (i € Z]e).

Summing up all the equalities above in either case, we obtain

( > ai) |d| = 0, and hence we have > a; =0 since d # 0. If N were
i€Z/e i€Z/e
ample, then \V; (Vi € Z/e) would be so. Hence a; = (a;D; 2 + b;F;) - F; > 0
by the Nakai-Moishezon criterion [loc. cit., V (1.10)]. This contradicts the
equation Y a; = 0. Therefore there does not exist an ample invertible
i€Z/e

sheaf on X. O
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7. Integral log x-adic cohomologies of analytic reductions of rigid
analytic elliptic surfaces.

This section is a continuation of §6. In this section we study the log *-
adic (x = [, p, o) cohomologies of the degeneration X in (6.5) of the formal
elliptic surface X in (6.3) in detail. If one neglects the torsions of the co-
homologies above, then the arguments in this section become much sim-
pler. However we consider the torsions because they are interesting (e.g.,
(7.3) (1), (2) below). In addition, we study the log Hodge(-Witt) cohomol-
ogies and the log de Rham cohomologies of the degeneration.

Let X be the proper SNCL surface in (6.5), g the genus of C in (6.5) and
d( # 0) the degree of L. In this section we use (2.0.7;x) (x = [, p, 00). Let P,
be the weight filtration on H1 (X) obtained from the weight spectral
sequence (2.0.7;x).

og*

THEOREM 7.1. (1) The integral log x-adic cohomologies of X are as
follows:

(@) 10g*( )=1,.
(b) PoHL,,(X) = 1, el HL_ (X) = H'(C), b HL (X) =

© Piffio (0 = H.(C), grfHi, (00 = L,/ 1), grPHiggX) c
c H\O)X(— 1), grbHR, (X) = HY(O)( - D).

(@) PoHi, (X s a quotient of (L./d)( — 1), gfHi, ,(X) = HL(O)(~ 1),
griHy, (X)) =1,(—2).
(©) Hipy,(X) = 1(—2).

(2) Assume that x 1is a perfect field of characteristic p> 0. As F-isocrystals,
there exists the following isomorphisms: Hi X/ W) ow Ky~ Ky®
@ (H, Jgryg(C /W)ew Ko)  (for our memory), H? s X /W) @w Ko =~

~ (Hl, (O W) 2 Ko) & (HYyy (C/W) = D Kol Hy oo (X /W) @y Ko~
~ (HL (/W) — 1) @y Ko) & Kol — 2)

crys

og-crys

Proor. We keep the notations of (6.5) and (6.15). For simplicity we
assume that « is algebraically closed.

(1): The assertion about & = 0,4 is obvious by (2.0.7;%). Let £’
(r € Zs1U{oo})bethe E'W.—terrgls of the weight spectral sequence (2.0.7; %)
for X. Since the dual graph of X is a circle, E;1* ~1,(—2) and B}’ ~1,.

Let 1;:C; = X; (j=1,1+1) be theoclosed immersion from a double
curve C; to irreducible components of X. By the construction of X, we
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obtain 7; 0 1;; = w41 © 141, Hence the following diagram

H}(Cy) it H(X11)
(7.1.1) o] et

HY(X,) «—— HL(O)

is commutative. We identify Iii(Xi) (resp. ﬂi(C’i)) with ﬂi(C) by using
(n;‘)*l (resp. (z;‘ion;‘)*l. The boundary morphism d(l)}* is the following
morphism

d: P HAX) 5 @Dicrzje — @ 11(@is1) — 1@)iczse € @D HAC.

i€’/e i€//e

By using the identifications of H'(X;) and H'(C;) with H(C) and by using
the commutativity of (7.1.1), it is easy to see that d}’, is identified with the
following morphism

P HIC) > @icrse — (@i — @iiczye € D HLO).
Z/e Zle

Thus EY!, = B}, = H!(C). By the proof of the duality in (5.15), we have
EP = E, 18 — H'(C)( - 1) because C is a proper smooth curve over .
‘Next, we determine E%Z* Since H'(Z) = H'(C) & H(C)O4(1) for a
relatively minimal ruled surface Z-— C, we immediately see that
Num Z - 1, = H*(Z)(1). Hence the boundary morphism d2(1) is a
morphism from @ NumX;®71, to P ﬂf(Ci)(l). The restriction of

02 .ieZV/e X =
di5(1) to Num X; @7 1, is the following morphism
NumX; @71, 5D+ (—D-C;,D-C;_y) € HXC)(1) & H(C;_1)().

As shown in the proof of (6.15), (Dm)z =|deg L| = |d|,D;1 = D;2 — |d|F;in
Num X; and {C;, Ci1} = {Di;, Diz}. The image of the restriction of d{? (1)
to NumX; ®, 1, is 1,1, -1) ® 1,(|d|,0) as 1,-modules up to the permuta-
tion. By (7.2) below we see that E12 ~ 1, /d(—1). (We may assume that
Ci=D;2 on X;, and we apply (7.2) by setting v; =F;, w;=C;
H'=H'X®)(-1,H = @ NumX,;®, 1, H' = H*(X®), and « = |d|

7,
(cf. (6.5.2)).) Again, by the ignﬁna (7.2) below, we see that E; 12 -0 and
Egi =1,/d(—1). Thus we have proved the eclaim on ﬂ{f)gy*(X)
(h=0,1,2,3,4).

(2): By the determination of gr? leog_crys(X /W) (i € N), it is easy to see
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that the following sequence is exact:

0— PoHy s (X/W)/torsion — H
gry

bg_crys X /W) /torsion —

log-crys(X / W) —0.
By [Kz, (1.3.4)] we have

log—mys(X/W) @w Ko~ (PlHlog crys(X/W)®WK0) D (grPleog 01ys(X/W)®WK0)

since PiH}, i X /W) @w Ko = leog ays X /W) @w Ko. Hence (2) for
log crys(X /W) @w K follows; (2) for H 10g crys(X /W) @w K also follows as
above. O

LEMMA 7.2. Let m be a positive integer greater than 1. Let R be a
commutative ring with unit element. Let o be an element of R. Assume

that o is not a zero-divisor of R. Let H':= @ Re, H°:=
]E7/m
= @ Rv;eRw,) and H' := @ Rf; be free R-modules of rank m, 2m

JjeZ/m JjeZ/m

and m, respectively. Let G: H' — H° (resp. F: H® — H") be a morphism
of R-modules defined by ej — (wj 1 — avj1) — wj (resp. vi— — (f;j — fi-1)
and wj— —af)). Then G is injective, KerF/ImG ~R/au and

Coker '~ R/o. The tmage of 3 v; in KerF/ImG (resp. f,-1 in
JEZ/m
Coker F) is a generator of Ker F'/Im G (resp. Coker F).

Proor. First, we find a basis of KerF. Set x;:= 2;201)1- 0<j<
<m —1). Let A € M, 2,,(R) be a matrix defined by the following equality:

(721) F(.%'(),xl, e 7'%‘%@717“)07“)17 et ?w’mfl) = (fbmfl et Lﬁ’ﬂfl)A'

Then A = (B ( — w)KE,,), where

10 0 0 0
0 -1 0 0 0

Bi=| . . . . .| eMud®
0 0 0 10
111 10

Hence

(71.2.2) F(xo, ..., en-1,w0, ..., Wn-1) = (0, ... az?7’L—l)Al7
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where
-1 0 0 0 —o O 0 0
0 -1 0 0 0 -« 0 0
. 0 0
(7.2.3) A = 0o 0 .. ,
0 0 -1 0 0 0 —o 0
0 0 0O 0 - —o - —o —o

2j = f; = fm—1 (0 <j <m —2)and 2,1 := f,—1. Multiplying (7.2.2) by
E, | —ak),
O | En

from the right side, we obtain

(724) F(Oﬁo, ey By—1,Y0, - - - ;ym—l) = (2‘0, Cen ,zm_l)(C D),

where
-1 0 0 0 0 0 0 0 0 0
0 -1 0 0 0 0 0 0 0 0

C=| . . D=
0 0 o --- =1 0 0 0 o --- 0 0
0 0 o --- 0 0 -0 =0 =0 e =0 —O

and y; := —ow; + w;j (0 < j < m — 1). By (7.2.4) the following equation

m—1 m—1
(7.2.5) > owF@)+ > pFy) =0 (4, €R)
j=0 j=0
is equivalent to ;=0 (0<j<m —2) and f, ; = —Z}Zgzﬂj since o is

not a zero-divisor of R. Hence {w,_1,{y;— ywz_l}}i’oz} = {275,
{y; — ym,l}]’-i_f} is a basis of KerF.
Next, we give a matrix expression of G. It is easy to see that

(726) G(607817 cee aem—l) = (yO —Ym-1Y1 — Ym—-1,-- -y Ym-2 — ?/m—l;mm—l)E7

where
(-1 0 0 . 0 0 17
1 -1 0 0O 0 0
0 1 -1 0O 0 0
E =
0 0 o --- 1 -1 0
| 0 0 0 0 0 0 —o
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By taking other bases of H~! and H’, E is transformed into

O -1 0 --- 0 0 0
0 0 0 0 -1 0

Now the injectivity of G is obvious since « is not a zero-divisor of R and we
see that the morphism R/ > v+ rx,,—; € Ker F'/Im G is an isomorphism.

By (7.2.3) it is easy to see that the morphism R/ > r+—1f,-1 €
€ Coker F' is an isomorphism. O

REmMARK 73. (1) We do not know whether the morphism
dy B E; 3 — ER (x =1,p,00) for X = E (L) is the zero. We conjecture
that this is the zero.

(2) If C'is a proper smooth rational curve, then the components of X and
the double curves are rational. In this case E”{* =0(G=13,1=0,+1).
Thus P log*(X) =1,/d(— 1) by the proof of (7.1) and (7.2).

COROLLARY 74. Let k be the finite field 'y with q-elements. Let

7 ( Hh

b0, 0) = det@ — t&" |H},, CON") (x=1,p)

be the h-th zeta function of X, where @ is the q-th power Frobenius of X.
Then

Z(H)

D) =11,

Z(H},, ,(X),) = (1 — H)det(1 — t&*|H'(C)),
Z(H2,, (X),t) = det(1 — t&*|[H(C))det(1 — gt |H'(C)),

Z(H}, (X),0) = (1 — ¢*t)det(1 — qtd"|H'(C)),
Z(Hiy, (X),) =1— ¢t

Proor. (7.4) follows from (7.1). O

Let Y/s be a proper SNCL variety. As in [I11, IT (3.1.1)], we have the
following slope spectral sequence:

EV" = HU(Y, WA = H, Y/W).

log—crys
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We have the slope filtration F' on H! Y /W):

log-crys

i ryh
F'H log-crys

(Y/W) := Im(H"(Y, WA’>7) — H Y /W) @GeZ).

log-crys

Let n be a positive integer. In [Nakks3, (4.1)] we have constructed the
following spectral sequence of the log Hodge-Witt cohomologies of Y /s:

(TALpin) B p), =

Hh1](Y(27+k+1)W 17}0 ) — ]—k):>Hh I(YWA)

. y(z j k41
j>max{—k,0}

We give a filtration P on H"~/(Y, W, A%) such that gr} HY WAl) =
= E"+%(i; p),,.. By taking the projective limit of (7.4.1; p; n) with respect to
projections ([Nakk3, (8.6) (2)]), we obtain the following weight spectral
sequence ([loc. cit. (4.1)])

(T4.1;p) E{"" G p) =

Hh i ](Y(2]+k+l) W.QZ —j—k )( k):>Hh ’L(Y WA )

) Y@+h+1)
Jj>max{—k,0}

We also obtain a flltratlon P on H'" (Y, W AL v), which is called the weight
filtration on H"~(Y, W A}).

THEOREM 7.5. Let i be a perfect field of characteristic p > 0.
(1) The graded pieces of the slope filtration on H X/W) are as
follows:

(a) H'X,WOx) =W, PoH (X, WOx) = W
gr’ HY(X, WOx) = H\(C,WO¢), H*(X,WOx) = H'(C,WO¢).
(b) H'X,WAY) = H'(C,WQL), PyH'(X,WAY) = H'(C,WQp),
gri H'(X, WAY) = (W/d)( — 1), grf H' (X, WAY) ¢ H{(C,WOc)( - 1),
grl H'(X, WAy) @w Ky = H(C,WOc) — 1) @w Ko, P2H*X,WAY): a
quotient of (W /d)( — 1), grf H*(X, W AY) = HY(C,WOe)( — 1).
(¢) H'X,WA%)=H"(C,WQ{)(—1), PsH'(X,WA5)=HC, WQE)(— 1),
gtV H\(X, W A%) =W (-2), HX(X, W A3) = W( - 2).
@) PicX = Gy, x Jac(C), BrX = Jac(C).
(8) The slope spectral sequence of X

log—01 ys

EV = H(X,WAy) = H. _ (X/W)

log-crys

degenerates at K.



Signs in weight spectral sequences, etc. 155

Proor. (1): (1) follows from (7.4.1; p) and the same argument of (7.1).
For example, the isomorphism grng(X , WA}() = (W/d)(—1) is ob-
tained by (7.4.1; p) and (7.2.7). We leave the detail to the reader.

(2): (2) follows from (1) (a).

(3): By (1), H?(X,WOy) is a finitely generated W-module. Since
dim X= 2, the slope spectral sequence degenerates at £; by the obvious
log version of [I11, IT (3.14)]. O

COROLLARY 7.6. Let x be a field of characteristic p > 0. Then the
Sfollowing hold.:

1 Hﬁ)g_dR(X/zc) ~x (h=0,4).
(2) Assume that p divides d. Then
@20+1< dim,cHllOg_dR(X JK) = dim,ch‘Og_dR(X /K) < 2¢g 4+ 2.
(b) 49 < dimKHng_dR(X/;c) <d4g+2.
(3) Assume that p does not divide d. Then
(a) Hllog-dR(X/K) ~® K ~ ngog_dR(X/K).
(b) ngog_dR(X /) ~ K29 @ K29,
(4) The log Hodge-de Rham spectral sequence of X /s

EY = HI(X, A% )= Hf;g_dR(X /)

degenerates at K.
5) If p divides d (resp. p does not divide d), then the log Hodge numbers
Wi = dim, HI(X, Ay,,) are as follows:

g o 1 g g 1
g+1 200 g+1 resp. g+1 29 g+1],

I« g 1 g g
where o :=g or g+ 1.

Proor. We give the proof only for the case p > 0 except (4); the proof
for the case p = 0 is similar.
Consider the following spectral sequence (cf. [Mo, 3.23])

161 EMF = @ HGF XY ) = H] gy (X6,
j>max{—k,0}

(1): (1) is obvious by (7.6.1) or the log Serre duality of Tsuji ([Ts2, (2.21)]).
(2): Assume that p divides d. Then, as in the proof of (7.1), we see that
EY? ~ i; by the duality [Nakk3, (10.5)] (or the direct computation as in (7.1)),
E3' ~ k. Consider the following sequence: E7'* — EY* — E}*. Because



156 Yukiyoshi Nakkajima

dim, E® = dim,E1? + dim,E;?, dimEY = dimE}? + dim,E;'? = 2. By
the proof of (7.1), we obtain EY' ~ % ~ EI! and E$® ~ k% ~ E;'3. There-
fore we obtain (2) by the log Serre duality of Tsuji ([Ts2, (2.21)]).

(3): Assume that p does not divide d. Then we see that E1? = 0 by the
proof of (7.1). By the same proof as that of (2), we see that E;12 = 0 = E®.
The rest of the proof is similar to that of (7.1).

(4): Assume that p > 0. We may assume that x is perfect. By (7.5),
H?(X,WOgy) is finitely generated. Hence (4) follows from the obvious log
version of [Ny, (2.7)] or [111, IT (5.17)].

Next, we assume that p = 0. Then we obtain (4) by [Kk1, (4.12)] and the
proof of [DI2, (2.7)].

(5): () follows from (7.4.1; p;n) for » = 1 as in (7.1). O

REMARK 7.7. We do not know whether o = g + 1 in (7.6) (5).
The following is the co-adic analogue of (7.5).

ProposITION 7.8. The log Hodge cohomologies of X with Hodge
filtrations and weight filtrations are as follows:

(a) H'X, 0x)=C, H'(X, Ox) = Ca H'(C, O¢), H*(X, Ox) = H(C, O¢).

(b) H'X, Ay,) = H'(C,Qt,0),  PiH'(X, Ay ;) = PaH (X, Ay ) =
=HC,Q4,0),  grbH'X, Ay,) = H'(C,0c)( - 1),  HX, Ay, =
=H'(C,0c)( - D).

(©) H'X, Ax) = H(C, Qo (= 1), PsH'(X, A3 ) = H(C, Qp ) )(— 1),
g H'(X, A% ) = C(—2), H*(X, A% ) = C(—2).

Proor. In [Nakk3, (4.8)], we have constructed the following weight
spectral sequence of the log Hodge cohomologies of a proper SNCL variety
Y /s = (Spec C, M,):

(78.1;00) E{H"(i; 00) =

h—i—j( v @j+k+1) i—i—k i h—i i
i {-k,0} " ( Y ’ Q)o’(ZHkH)/U)( J k) =H (Y’ AY/C)'
Jzmaxy —#,

(7.8) follows from (7.8.1; co). O
Assume that x is a perfect field of characteristic p > 0. Let V be a

complete discrete valuation ring of mixed characteristics with residue field
i and fraction field K.
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THEOREM 7.9. Let ?) be a formal proper strict semistable family over
Spf V with canonical log structure in (6.2). Let Y be the special fiber of ).
Let @l.ig be the Raynaud generic fiber of ) {([R1], cf. [BL])}. Then there
exists a canonical 1somorphism

(7.9.1) H s ¥/W) @ K Hip(D,55/K) (€ N).

log-crys

Proor. Let U := {l1;},.; be an affine open covering of ¥). Then i is a
Leray covering of ?) for a quasi-coherent Oy-module. Hence H;(9)/V) is
calculated by the Cech cohomology of U/:

(7.9.2) Hip()/V) = H'(s( &y C'(11, 2} ).

Here we define the signs of the boundary morphisms of the double complex
;CI U, /8 ) asin B.2.7). Set Usig := {(Uyyig};;- Then, by Tate’s acycli-
city ([Ta, Theorem 8.2, Theorem 8.7], [BGR, 8.2, Corollary 5]), U, is a
Leray covering of )4, for a quasi-coherent (’)g)ﬂg—module. Hence

(7.9.3) HijpQ)uig/K) = H'(s( 25 C'(AL QY ).
Therefore we obtain a canonical isomorphism
(7.9.4) Hix@/V) oy K — Hig (/K.

(In fact, there is the following equivalence of categories of coherent modules
for a V-adic formal scheme 3:

COh(Og Ky K) AN COh(Ogﬁg).

Indeed, the essential surjectivity has been proved in [BL, (5.6), (5.7)]. Be-
cause the full faithfulness is a local problem, we have only to prove

Homo, s, k(O3 @y K)", (03 @y K)") — Homo, ((Oy,)",(04,)")
(m,n € N),

which is clear by the definition of 3,,.)
By the proof of [HK, (5.1)] for which some results in [Nakk3, §7] are
necessary (see [Nakk3, §7] for details), we obtain a canonical isomorphism

(7.9.5) H! . (/W) ow K = HWLQ/V)or K.

log-crys

By (7.9.4) and (7.9.5) we have a canonical isomorphism (7.9.1). O

Let X be a formal proper strict semistable family over SpfV with
special fiber X ((6.3)). Let X,z be the Raynaud generic fiber of X ([R1],
cf. [BL]). Then the following hold:
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COROLLARY 7.10. dimgH";(Xsig/K) =1, 29+ 1, 4g, 29+ 1 and 1 for
h=0,1,2 3 4, respectively.

Proor. (7.10) immediately follows from (7.1) and (7.9). O
Let hzg = dimKHj(%rig, .Qf;en_g /K) be the Hodge numbers of X,;/K. In
[Ue, (6.1) 3)], Ueno has proved that &Y, = g and hl%, = g + 1. We determine

r rig rig
. ) .
the hn.g s:

THEOREM 7.11.  The Hodge numbers of X,ig are as follows:

9 9 1
g+1 29 g+1
1 g g

Proor. Let €/Spf W be a formal lift of C which was used for the
construction X. In [Ue, (6.1) 3)], Ueno has proved that hllaiog =g and
h%lg = ¢+ 1. By the Serre duality ([V, (5.1)], cf. [Ue, p. 773]), we have
by, =g and B, = g + 1.

Let us prove hgizg = ¢. By the Leray spectral sequence

B = H'(Grig, RYf.(Ox,) = H**(Xig, Ox,,)

rig rig

of the elliptic fibrationf: X,y — €,;g and by the fact R f(Ox,,) = Og,, ([Ue,
p. 790), we have H?(X,g, Ox,,) = Hl(@rig,le*(O}gﬁg)) = H'(C,ig, Og,,.)-
Hence h, = g; by the Serre duality, we have 1Z), = g.

By the Hodge-de Rham spectral sequence

rig

(7.11.1) EY = H (Xyig, %) = Hil (Rrig /[ KO

and by (7.9.1), we have Y (—1)"Vhl =3~ (=1)dimg, (HL,_,... X/ W) @w Ko).
.J h

Hence we have /1, = 2g by (7.1). O

COROLLARY 7.12. The Hodge-de Rham spectral sequence (7.11.1)
degenerates at E'.

Proor. (7.12) immediately follows from (7.10) and (7.11). O

REMARK 7.13. In [Ue, (6.1) 3)], Ueno has proved that the boundary
morphisms

d: H' (Rig, Q) — H' Ruig, )
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and
d: H' (Xyig, Ox,,,) — H"(Xrig, %, x0)

vanish. As a corollary, he has proved that dimKH}iR(BEn-g /K) =2¢g + 1. Our
proof for this fact in (7.10) is different from his and is interesting in the
following point: we have used the degeneration X and the log geometry for
the calculation of the de Rham cohomology of the Raynaud generic fiber of
X over V.

Conversely, we can determine E; ;,2 and E(Z)-,lp by using [Ue, (6.1) 3)] and
(7.9.1). Indeed, it is easy to see that dimg, (Eg}p Qw Ko) <2¢ and
dimg, (E;)? @w Ko) <1 (cf. the proof of (6.5). We also see that
dimg, (E% @w Kp) is an even integer. Since dimg, (E%gg ow Ko) =1,
dimg, (BS., @w Ko) = 29 and B, ,* @w Ko = 0by (7.9.1) and [Ue, (6.1) 3)]; in
fact, £}, ~ W% and E;,* = 0. (We can also determine EJ} and E;;* by
(7.9.1) and [Ue, (6.1) 3)] because the boundary morphisms d{': EY!, — E%l*
and di'?: ET12 — E are motivic (x = [, p) (cf. the proof of (8.3) below).)

8. Algebraic proper strict semistable families and the monodromy-
weight conjectures.

For the completeness of this paper, we give the proof of (8.1) below:

THEOREM 8.1. Let X be an algebraic proper strict semistable family
of relative pure dimension d over a complete discrete valuation ring V
with residue field i of characteristic p > 0. Let X /s be the special fiber of
X with canonical log structure. Then the monodromy filtration and the
weight filtration on Hﬁ)g_et(Xg, Qy) coincide for h =1,2d — 1.

ProoF. (cf. [RZ, (2.13)]) We may assume that « is perfect. Let E35 be
the E-term of the weight spectral sequence (2.0.8; ). By (5.15), &, f‘z‘i’h’k
and Elzcj;”k are dual. The morphisms v;: E; 2—EX(-1ando:E, 11’2‘1 —
— E';jlzd_Q( — 1) are also dual since they are the identities on the Ei—terms
(cf. the p-adic case in [Nakk3, (11.7)]). Hence it suffices to prove that
v By 2 — E%OZ( — 1)is anisomorphism. Let K be the fraction field of V and
let K be the separable closure of K. Let X (resp. X%) be the generic
(resp. generic geometric) fiber of X. Set r := Spec K. We may replace K
with a finite extension of K. Hence we can assume that Xx(K) # ¢ and the
action of Gal(K /K)on H, ét(XE, IFy) is trivial. Let Ag be the Albanese variety
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of Xk with a morphism Xx — Ag which induces the following isomorph-
ism of Gal(K /K)-module:

(8.1.1) HY\(Az, 7)) 5 HY(Xg, 7).

By Neron’s blow up ([A, (4.6)], [SGA 7-1, T (0.5)]), there exist a discrete
valuation ring Vy and rings {B;}; satisfying the following properties:

(1) Vy and B; are subrings of V,
(2) the residue field of V) is a purely inseparable extension of a field of
finite type over I,
@) lim B; =V,
—1

(4) B; is a smooth henselian Vj-algebra which is essentially of finite type
over Vy,

(5) there exists a uniformizer = of Vy and V.

Set S; := Spec B;, and let D; be the closed subscheme of S; defined by
7 = 0 and §; the closed point of D;. Let s; be the log point whose underlying
scheme is s;. As in [SGA 7-1, I §6], if 7 is large enough, then the action of
Gal(7/n) on H! et(Ax, Q) factors through #1(S; \ D;,7) and the action of
m1(S; \ D;,7) is trivial on H} et(Az, 7). Let I (resp. I;) be the inertia group of
S (resp. S;) and P (resp. P;) the wild part of I (resp. ;). Then we have a
natural isomorphism /P — I;/P;. Take a generator T; of 7;(1) = I;/P;.
Set N; =(T;-1)® Ti:Het(A Q) —>H1t(AK, Q)(—1). By [loc. cit.]
there exists a weight filtration Q) C Q1 C Q2 := HL (A%, ) and N; induce
an isomorphism N;:Q2/Q1 — Qo(— 1). On the other hand, by [Nak3,
(2.1), (2.2)], the SNCL variety X gives a model X; over s; if ¢ is large en-
ough, and the spectral sequence (2.0.8; 1) for X is isomorphic to that for X;.
Hence we have another filtration P, on HllOg X5, Q). Since N; on
Py :=PH},, (X5,(2)is 0, Py is a Gal(sZ /$1)-module. The weights in the
sense of [SGA 7-1, I (6.3)] (applying [loc. cit.] for any subfield of x which is
of finite type over I7,) of P1/Py and Py are 1 and 0, respectively. By [FK]
(cf. [Nak2, (4.2)]), there exists an isomorphism of Gal(K/K)—module:

(812 H (X7, Q) — Hyp (X5, Q).

By (8.1.1) and (8.1.2), Q, induces a filtration @/, onH log- (X5, Q). Hence we
have two Frobenius weight filtrations P, and @, on H10 _et(Xg, Q). Ele-
mentary linear algebra shows that P, = @),. Hence (8.1) follows. O

REMARK 8.2. Another proof of (8.1) is possible by [dJ, (8.2)], by the log
hard Lefschetz theorem for the first log [-adic cohomology of a projective
strict semistable family ([Ka]) (see (9.5) below for the statement of the log



Signs in weight spectral sequences, etc. 161

hard Lefschetz conjecture), and by (9.10) below. Indeed, by [dJ, (8.2)], if we
make a finite extension of V, then there exists a projective strict semi-
stable family X’ over SpecV which is an alteration of X. Let X’ be the
special fiber of X’ with canonical log structure. By [Nak4], Hlog ot Xz, Q)

is a direct factor of H Jog- X5, Q). By the explanatlon before (9.6) below

and by (9.10) below, the graded pleces of Hlog (X5, Qp) by the l-adic
monodromy filtration on log et( ,Qp) are pure and hence so is for
Hllog—et X5, Q).

THEOREM 8.3. Let X be an algebraic proper strict semistable family of
pure relative dimension d over a complete discrete valuation ring V with
perfect residue field x of characteristic p > 0. Let X /s be the special fiber of
X with canonical log structure. Then the monodromy filtration and the
weight filtration on H log-crys X /W) @w Ko coincide for h =1,2d — 1.

Proor. We may assume that « is algebraically closed. Let E“ be the
FE>-term of the weight spectral sequence (2.0.8; p). By the duality ([Nakk3
(10.5), (11.7)), it suffices to prove that v,: Ky 12 —>E10 (—1) is an iso-
morphism.

The boundary morphism d;2(1) of (2.0.8;1) is decomposed as

H(X®,0) — (NS(XD) @, Q) @ HU(X®, ) = HHXD, 0)D)e
H(X®, Q).

The left morphism above is given by the sum of Chern class morphisms
(with signs) and the induced morphisms (with signs) by the closed im-
mersions from the irreducible components of X® to those of X® ((5.5.1)).
Hence di 12(1) is defined over Q and E (1) Ker(d_1'2(1)) has a Q-
structure. The term E'%Ol also has a Q—structure and v;(1): E’2 112(1) — Ezz is
defined over Q since v;(1): E 1 (1) —>E’1 is the identity by the same ar-
gument as that of [Nakk3, (10.5), 11.7)] for the p-adic case.
As for v,(1), we need the injectivity of the following morphism

(8.3.1) (NS(X D) @, 0,) @0, Ky — Hi,. mys(X /W) @w Ko.
By [111, II (5.8.5), (5.5.3)],

NS(X D), 0, ¢ HA(X ©,0,) = (HZ,. (X D/W) @y Ko

crys

By a theorem of Dieudonné-Manin, the maximal sub F-crystal of

H oy (X W /W) @w Ko of slope 1 has a basis {e;}; over Ky such that
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F(ej) = pe;. Hence a natural morphism
HAX ©,0,) 0, Ko = (Hz i X O /W) @y K @0, Ky —

(X /W) @w Ko

log-crys
log-cryq

is injective. Consequently the morphism (8.3.1) is injective. Now, by the
same argument as that in the /-adic case, v,(1) is defined over Q; the two
morphisms v,(1) and vy(1) are scalar extensions of the same morphism over
Q. Hence (8.3) follows from (8.1). O

The following is a correction and a generalization of Mokrane’s result

(cf. (6.8) (1), (4)).

COROLLARY 8.4. Let X an algebraic proper strict semistable family of
surfaces over a complete discrete valuation ring V with perfect residue
field x of characteristic p > 0. Let X/s be the special fiber of X with
canonical log structure. Then (2.0.9; %) (x = [, p) holds for X/s.

Proor. By (8.3) and by the argument of [Mo, §6] (see also (6.8) (1)), we
obtain (8.4). O

REMARK 8.5. Note that V in (8.3) and (8.4) is not necessarily of mixed
characteristics.

9. Log hard Lefschetz conjectures, the monodromy-weight conjec-
tures and the log Hodge symmetry.

In this section, following K. Kato’s idea, we deduce the coincidence of
the l-adic monodromy filtration and the l-adic weight filtration on the first
log l-adic cohomology of a projective SNCL variety X of pure dimension d
over a log point s from the log [-adic hard Lefschetz conjecture for the first
log l-adic cohomology of X. Assume that X is projective in this section
unless otherwise stated. Let £ be an ample invertible sheaf on X. Let
2. = 29 be the cohomology class of L’| in HZ(X”)) (j € 7Z1). Let {E}2,}
be the E,-terms of (2.0.8;x) (x = Lp).

THEOREM 9.1. (1) The x-adic monodromy operator N,:Ej 12—>
—>E%f’*( — 1) is injective; N,: B 12d E1 242 _ 1) is surjective.
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©2) If the induced morphism % ':E; 2 —E, L2 by the morphism
241 B2 —E] 12d is surjective, them N,: E212—>E’10(—1) and

N*.Ezj 2d E1 2d 2( — 1) are isomorphisms.

Proor. We may assume that x is algebraically closed. Let
()P HIXD) x HAXD)d) — 1, (€ Z=1)

be the Poincaré duality morphism of H*(X")).

(1): Since the restriction of £%! to the double varieties is positive, the
d 1

morphism HY(X®) = H2-2(X®)(d —1) is an isomorphism. Consider
the composite of the following pairings

idx 247 y®

©.11) (,):H'X?)x HX®) "% g0x®) x B2-2xP)d - 1) "5 1..

The cohomology H' O(X @) has a Q-structure, and (9.1.1) is positive definite
with respect to the Q-structure. Indeed dlet D Dbe an irreducible component
of X®. The pairing H%(D) x H(D) —/1> HD) x H¥*=2(D)(d — 1) — 1,
is a morphism (x, y) — deg (£} Ip) - ¢y. Thus the positive definiteness is
clear.

Let p: H(XY)— HX®) be the morphism induced by closed
immersions and let G;: H.(X®) — H*2(XW)(1) (i € N) be the sum of
Gysin morphisms in (5.5.1) and (2.0.8.3;p). Then we have (p(x), y>(2) =

= (2, Goq_2(y)? (v € HIXD), y € HX2(X?)(d — 1))

To prove that N,: E; 12 —’Elo ) (— 1) is injective, it suffices to prove that
the induced morphlsm

912 Ker(H'X?®) % H2X®)(1)) — Coker(H'X®Y) > HY(X®))

by the identity of H(X®) ([Nakks3, (11.7)] for the p-adic case) is injective. As
shown in the proof of (8.3), Gy factors through H%(X®) — NS(X) ®7, 1, with
the injective morphism NS(X) @1, — HZX®)(1), and this is defined
over Q. Assume that (9.1.2) were not injective. Then there exists a Q-rational
vector w € HY(XW) such that v := p(w) is not the zero but Go(v) = 0. Since v
is not the zero and Q-rational, (v,v) # 0. On the other hand, we have the
following commutative diagram below by the projection formula:

H24-2(X®)(d - 1) Gad-a, H24(XW)(d)

,\d—l,zT T,\f-l

HY(X®) —Go ., H2(XM)(1).
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Hence

< > < «d 1(?))>(2) </)(7/U) ldfl(v)>(2)
<w G203 )Y = (w, 1971 (Go)))?

This is a contradiction. Consequently N,: E; 12_’E%0 ( — 1) is injective.

Because N,: E; 12— E1° (—1) and N,: E; »* — E}***(~ 1) are the
identities ([Nakk3, (1. 7)] for the p- adlc case) and hence dual,
N,: Ez_ 1 2d E‘1 2‘Jl_z( — 1) is surjective by the duality (5.15).

(2): Note that there is a well-defined morphism A%°': B2 —

— kB, 1 24(d — 1) since the following diagram commutes by the prOJectlon
formula:

Erl*(d-1) S BYd-1)

= pe

E1—12 ' E%.
By (1) and by the assumption of (2), (2) follows from the duality between
E,"*(d) and EY... 0

As a corollary to (9.1), we can give another proof of [CI, Theorem 1]
(cf. [Mo, 5.9]):

COROLLARY 9.2.  Let V be a complete discrete valuation ring of mixed
characteristics with fraction field K. Let Ag be an abelian variety over K.
Then Ak has a good reduction if and only if the p-adic representation
H (A%, Q) is crystalline.

Proor. Assume that H. lt(A %> Qp) is erystalline. By [Fol, (7.5.3) )], we
can replace K with a finite extension of K. Hence we may assume that Ax
has a projective strict semistable reduction over V by [SGA 7-1, IX (3.6)]
and [Ki, (4.6)]. By [RZ, §2, §3] (cf. [Nak2, (0.1.1)]), the Galois action on
H'(Az, Q) is tame.

By the assumption, the monodromy operator on H log aysA/W) @w Ko
is trivial by [Fo2, (5.5.1)] and by Cg, which has been proved in [Ts1, (0.2)].
Therefore E;2 =0 by (9.1), and hence E; }2 =0 since the boundary
morphism d; i, (B — EY is motivic (x = [, p) as shown in the proof of
(8.3); the 1nertla group of K acts trivially on H (A%, Q). The criterion of
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Neron-Ogg-Shafarevich ([ST], cf. [SGA 7-I, T §6]) tells us that Ax has a
good reduction.
The converse follows from a special case of [Tsl, (0.2)]. O

COROLLARY 9.3. Let X be a projective SNCL surface over a log point s,
and let I'(X) be the dual graph of X. Assume that HY(I'(X), Q) = 0. Then
(2.0.9; %) (x =1, p) holds.

PRrOOF. By the assumption, we have E3°, = 0, and hence E,}* = 0 by
(9.1). By the duality ((5.15)), we have E}%, = 0. By the proof of [Mo, 6.2.2],
(2.0.9; %) holds (cf. (6.8) (1)).

(9.4) (2) below includes a conjecture of Chiarellotto ([Ch]) for the first
log crystalline cohomology of a projective SNCL variety:

COROLLARY 94. Let X be a projective SNCL variety of pure dimen-
siton d over a log point s. Then the following hold:

(1) The following sequences

0— HY(X, Q) — Hb, (X5, Q) o HY (X, O)(— 1)

and
HLLOG, ) 5 HELLOG, O)(— 1) — (HY(X, Q) (—d — 1) — 0
are exact.

(2) The following sequences

NP
0— H};o (X/Ko) — Hig_ouys X/ W) @ Ko — Hiy oy X/W)( = 1) @ Ko

rig crys

crys

and

N,
HAL (X W) @w Ko —5 HRL L (X/W)(— 1) ow Ko —
(HYy (X /Ko)' (—d—1) —0

are exact.

Proor. (1): By (9.1), we have the following exact sequence
0 — E3) — Ker(Ny: Hy,_o (X5, Q) — Hy,p (X5, Q)(— 1)) — E3; — 0.

By noting N; = v; on H llog_et(Xg, Q) and by (6.10.1;1), we obtain the former
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part of (1). Then we obtain the latter part of (1) by the log Poincaré duality of
Nakayama ([Nak1]).
(2): (2) follows from (9.1), (6.10.1; p) and [Ch, (3.6)] as above. O

Next, we give the log hard Lefschetz conjecture. To state it, we define
the log cohomology classes of an invertible sheaf in second log cohomolo-
gies. Let Y be alog smooth scheme over alog point s. Let £ be an invertible
sheaf on Y. Let n be an integer which is invertible on Y.

In the [l-adic case, by the Kummer sequence

in f’l‘;g, we obtain the log cohomology class 4 =c¢ (L) of £ in
H120g (Y5, 7)) and Hlog (Y5, Q)(1) (cf. the proof of (9.9) below).

In the p-adic case, we have only to give the same argument as that of
[BOZ2, §3] as follows.

Let 1y w: YZM—>(Y/W)IC‘;§,q be a morphism of topoi defined by
lY/W(F) Fyyp for a sheaf F in (Y/W)lc‘;gq as in [BO1, 5.19]. Set
Jyw = Ker(Oy,w — 1ty,w.(Oy)). Then we have the following exact

sequence
0—1+Tyw— Oy — tryw:(Oy) —0.

By using the boundary morphism of the exact sequence above, we have the
following composite morphism
c1p H'(Y,0%) — HA(Y /W) 1+ Tyw)
log

HA(Y JW)ek,. Ty jw) — HX (Y /W), Oy jw).

crys? crys?

Set /, = c1,(L) of £ in HY . (Y/W) and Hi,, .. (Y/W)@w Ko. More
generally, in the same way, we can define the class ¢1,(£)s of £ in
leog_mys(Y/S) and Hlog_crys(Y/S) ®w Koy, where S is any p-adic log PD-
thickening of s, that is, an exact closed immersion defined by a PD-thickening
of s into a p-adic noetherian formal log scheme.

Assume that £ is ample. Then K. Kato has suggested the following:

CoNJECTURE 9.5 [Log hard Lefschetz conjecture (K. Kato)]. Let X be a
projective SNCL variety over s. Then the induced morphism

(95.1;%) = ZUiH 00 — Hi 0OG) G=1p) (GEN)

by £/ is an isomorphism.
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Note that /. is an isomorphism if and only if it is surjective and if and
only if it is injective by the log Poincaré duality ((Nak1, (0.1)], [Ts2, (5.6)] or
[Hy, 3.1]+[HK, (4.19)] whose proof has been completed in [Nakks,
(7.19)D). Recently Kajiwara has proved the log l-adic hard Lefschetz con-
jecture for the first log l-adic cohomology ([Ka]). If X /s is the special fiber
of a projective strict semistable family X over a complete discrete valuation
ring V and if £ is the restriction of a relative ample invertible sheaf on
X/V, then (9.5.1;1) holds because the isomorphism in [FK], [Nak2, (4.2)] is
compatible with the [l-adic (log) Chern class of an invertible sheaf and
because the usual hard Lefschetz theorem holds by [D4, (4.1.1)]. Moreover,
if V is of mixed characteristics, (9.5.1; p) holds by [O, Theorem 2, Theorem
3] and proofs in [BOZ2, §3]. Though the isomorphism in [HK, (5.1)] is very
delicate (cf. [HK, (4.10)]), (9.5.1;p) in the p-adic case above also follows
from [HK, (5.1)], by proofs in [BO2, §3] and by the following, which gives
the compatibility of the p-adic Chern classes of invertible sheaves with
Hyodo-Kato’s isomorphism:

LEMMA 9.6.  Let s be a log point such that s is the spectrum of a perfect
field i of characteristic p > 0. Let Y be a proper log smooth scheme of
Cartier type over s. Let W} be the p-adic completion of the divided power
polynomial W(> over W Endow V[/7<\t> with log structure given by a
morphism N 31—t € W( ). Let L be an tnvertible sheaf on Y. Then,
under the isomorphism [HK, (4.13)] (see (9.7) below)

(961) W< > ®W (Hlog crys(Y/W) ®W KO) — H120g-crys(Y/ WE» ®W KO?
1®c p(ll) corresponds to the log cohomology class cq ,,(L)/\> with respect

to Y/W<>

Proor. By the definitions of clp(*)/? and c;,(*), the following
diagram commutes:

PicY —— PicY
Cl,pl lcl,p(*)m
0 t
Hl20g-crys(Y/W) o= log crys(Y/W<t>)

Let ¢ be a Frobenius of W<\t> ®w Ko defined by ¢() =1t and
#(a) = o(a), where ¢ is the Frobenius of Ky. Let {y;};_; be a basis of

lOg_m,g(Y/W) ®w Ko. Hence, by [loc. cit., (4.13.1)], Cl’p(ﬁ)v/@ corre-
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n
sponds to 1 ® ¢1,(L£) + ) fi(t) ® y; on the left hand side of (9.6.1), where

i) € W(Tﬁ) Qw Ko suchlallat £;(0) = 0. Because the isomorphism in {[HK,
(4.13)]} is compatible with the Frobenius ([loc. cit., (4.13.2)]) and because
the Frobenius actions on the log cohomology classes of an invertible sheaf
are the multiplication by p, we obtain

9.6.2) (@(f1@®), . ... ¢(fu®Nay) = PH®), ..., pfu®)),

where (a;;) is an element of GL,,(Ky). We claim that f;(t) = 0 (V7). Indeed, if it
did not hold, then, by renumbering of the indexes s of f;(t), we may assume
that there exists j<mn such that fi({)=---=f_1(H)=0 and
i@ #0,...,fu@) # 0. We can also assume that the degree of the leading
term of f;,(t) is less that or equal to that of f;, 1 (£) § < Vk <% — 1). By (9.6.2),
we obtain

9.6.3) > S = pfi®).

k=
For a field L and a nonzero element f= Z ait’ € L[[t]], let u(f) denote
min{i € N|a; # 0}. By (9.6.3), ,u( Z ¢(fk(t))ak ]) = u(pf;@®) = u(f;@)). On

the other hand, /z(qu(fk(t))ak]) > p(u(f(t) since £(0) = 0. Since

u(f;(®) # 0, we would obtaln the contradiction. Therefore we obtain f;(t) =
(V7) and hence (9.6). D

REMARK 9.7. The sheaf[HK, (4.6.1)]is wrong and the proofs of [loc. cit.,
(4.6)] and [loc. cit., (4.8)] are mistaken. In [Nakk3, §7] I have corrected all of
them. See [Nakk3, §7] for the details. Hence we can use [HK, (4.13)].

We also define the log Chern class of an invertible sheaf when the base
field is C as follows.

Let Y be a log smooth scheme over the log point (Spec C, N & C"). Let
L be an invertible sheaf on Y. Assume that Y is reduced. Then there exists
the exponential exact sequence

exp

9.7.1) 0—2%21)— Oy — 0y —0
on 107 The exact sequence (9.7.1) induces a morphism

9.7.2) 0% — Z(D[1]
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in the derived category of the complexes of the abelian sheaves on 1.}, and
hence a morphism

(9.7.2: H) H\Y,0%) — HA(Y, 7Z)(1).

Composing (9.7.2;H) with a natural morphism H2(Y,7)1)—
—s H%(Y,, 7)(1), we have a morphism

(9.7.3) Cloo: HY(Y,0}) — HA(Y 5, 2)(QQ).

Composing (9.7.2) with a natural inclusion 7(1) = QQ), we have a
morphism

9.7.4) 0y — Q)[1]

and hence a morphism

(9.7.4; H) HY(Y,0%) — H*(Y,Q)).

As above, we have a morphism

(9.7.5) Cloo: H'(Y, O}) — HA(Y o, Q)(1).

Set Lo := €1,50(L) € H* (Yo, 7)(1) or HA(Y o, Q)(1).

DEFINITION 9.8. Let Z,:=c1 (L) €Hy, ,(X) (resp. € Hy,, (X)) (x =1,p,00)

o

be the log cohomology class of an invertible sheaf £ on X. We say that 4, is
compatible with the weight spectral sequence (2.0.7;%) (x =1,p,00) (re-
sp. (2.0.8; %)) if the induced morphism of the left cup product of /. on the E;-
terms of (2.0.7; x) (resp. (2.0.8; %)) is equal to the induced morphism of the re-
striction of £ to various X*’s (k € 7).

PrOPOSITION 9.9.  Let X be a (not necessarily proper) SNCL algebraic
(or analytic) variety over a log point s. Let 1, = c1+(L) (x = 1, 00) be the log
cohomology class of an invertible sheaf L on X. Then 1, is compatible with
(2.0.7; %), and hence with (2.0.8;%) (x =1, c0).

Proor. Let the notations be as in §5. We give only the proof for the I-
adic case; the proof for the co-adic case is almost the same.

Let Y be a SNCL variety over a separably closed field #ep. Let the
notations be as in the l-adic case in §5. Fix a positive integer n. Let

0— Z/1"(1) — Gy 5 Gy —0

be the Kummer sequence in IO/et and in ?g‘gg .Let £ be an invertible sheaf on Y.
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Then £ defines elements &1 /(L) € HX( Ve, 7,/1°) = Hom, ;. (Z/'{~1},
7/I"1](1)) and clﬁl(/:)GHZ(Yé‘gg,A/l"):HomD+(Y$g‘yd/ln)(Z/l"{—l},Z/l”[l](l)).
By the functoriality, c;;(£) is the image of gu(ﬁ) by a natural morphism
H2(V e, 7,10 — HEY'E 7,10,

By the functoriahty we have an element of Homp:y, , - (71 {=1},
7,/1"11Q)) (m € Z~o) again. By applying the direct image of a natural
morphism Y;/» — Y to this element and taking the inductive limit with
respect to m, we have a morphism

9.9.1) c1(L0):K*{-1} — K*(1)[1]
and
9.9.2) cr(L): L*{-1} — L*(D[1].

Let A%, be the single complex of the double complex (5.0.3). The
morphism (9.9.2) induces a morphism A3, {-1} — Ay, (D[1] and a
morphism

9.9.3) (griAy -1} — (gri Ay, DI,
By the proof of [Nak3, (1.4)], (9.9.3) is equal to the following morphism

©94) @ RV (210G + DL -2 - k{-1} —
jzmax{~.0}

P R¥F ey (/G + DI - 2 — kDI,
Jj>max{-k,0}

and by [loc. cit., the proof of (1.8.3)], (9.9.4) is equal to
(9.9.5) B @ (—F—BL -2 —k{-1} —

j>max{—k,0}

D G5~ — =2 = EID]

Jj>max{—k,0}

Here note that the multiplications of the source and the target of (9.9.5) by
(— 1)¥***1 does not change the morphism (9.9.5).

By the construction of the morphlsm (9.9. 3) the morphism (9.9.5) is
induced by the left cup product of cl (L) € H%( Yet, 7./l"). Hence, by the
functoriality of the usual Chern class applied to the closed immersions

from the irreducible components of Y to IO’, we have the compatibility. O

ProrosiTION 9.10. If (9.5.15) is an isomorphism for j=1, then
Nl:Ei}2—>E (—1) and N E 12d—>E%:12d’2( — 1) are isomorphisms.
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Consequently, if (9.5.1;1) is an isomorphism for j = 1, then the monodromy

filtrations and the weight filtrations on Hllog, (X) and Hfodg jll(X ) coincide.

Proor. We give two proofs.
First proof: Because 2/ " H} (X) — H 1 (X)(d — 1) is a surjection
by the assumption and because (2.0.8; 1) degenerates at Ey ([Nak3, (2.1)]),
we have only to know, by (9.1) (2), that the morphism i}iil induces a
morphism E; 2 — E,*!(d — 1). This is clear by (9.9).

Second proof: As above, we have only to prove that i;i’l induces a
morphism £ ?2—E, ll‘z‘i(d —1). This is clear if the base field « is finite.
Indeed, let HngAl(X )th (1,7 € N) be the subobject of HllogJ(X ) of Frobenius
weight <j. Since 4; comes from an invertible sheaf and the Frobenius
weight of 4, is 2, 4 induces a morphism /l‘f_l:Hllog_l(X)wtgl —

— Hﬁflg"ll(X)WtSZd,l(d —1). Thus we see that }t}i’l induces a morphism

E;[* = Hyy (X)/H}, (X1 — Hio X0 /Hio N X e2q-1(d — 1) =

of log,l log,l
-1,2d—-1
E,1*7(d —1).

We can reduce the general [-adic case to this case by a specialization ar-
gument in [Nak3]. O

COROLLARY 9.11. Let X be a projective SNCL surface over s. Then
(9.5.1;1) for j = 1 implies (2.0.9; () for X. O

Proor. (9.11) follows from (9.10) and (6.8) (1).

REMARK 9.12. (1) By (9.10) and Kajiwara’s result mentioned after
(9.5), the monodromy filtrations and the weight filtrations on A llog‘l(X ) and
HEHX) coincide for a projective SNCL variety X /s. '

(2) The obvious analogues of (9.10) and (9.11) also hold in the p-adic
case. One can prove these by using the convergence of the weight filtra-
tions on the log crystalline cohomologies of a family of SNCL varieties
([Nakk4]), and by using the specialization argument (cf. [Nakk3]); if £ is
ample, then one can also prove (9.9) by using the theory of log de Rham
Witt complexes W, 4% (log D) for an effective Cartier divisor D on X which
meets X transversally in the sense of the algebraic analogue of (10.1) be-
low, and to use the p-adic analogue of (10.1.5) below. In a future paper we
would like to discuss this theory in detail.

(3) (6.15) also follows from (6.5), Kajiwara’s result and (9.11).

We conclude the l-adic case in this section by considering a relative case:
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ProposITION 9.13. Let Y be a smooth variety over a field x of
characteristic p > 0 and let D be a smooth divisor of Y. Let f: X —Y
be a projective morphism with strict semistable reduction along D. Endow
X (resp. Y) with the log structure associated to the closed subscheme
f~UD) (vesp. D). If the log hard Lefschetz conjecture (9.5.1;1) holds, then
Rf.(Q)) ~ @R f.(QO)){—i} and the Leray spectral sequence

H o o (s, RUF(Q) = Hy (X5, Q)

degenerates at Fs.

Proor. (9.13) follows from the log proper base change theorem of
Nakayama ([Nakl, (5.1)]) and [D1, (1.5)]. O

Let us turn to the case where the characteristic of the base field is 0.
Let s = (Spec C, M;) := (Spec C,N @ C*) be a log point. Let X/s be a
proper SNCL analytic variety.

THEOREM 9.14 [Log hard Lefschetz theorem over C]. Let X/s be a
projective SNCL variety. Let L := ¢1.(L) be the log cohomology class of
an ample invertible sheaf L on X. Then the left cup product of 2 (j > 0)

(9.14.1) X H7 (X, Q) — H(X ., Q)(5)

18 an isomorphism of mixed Hodge structures.
Proor. (9.14) follows from (9.9) and [SaM, (4.2.2)]. O

The Hodge symmetry holds for a proper smooth variety over C ([D1,
(5.3)]). However the log Hodge symmetry for a proper SNCL variety over
C does not hold in general by (7.6) (5). On the other hand, this holds for a
projective SNCL variety over C:

COROLLARY 9.15. Let X /s be a projective SNCL variety of pure dimen-
sion d. Then the log Hodge symmetry for X holds: dimcH/(X, Ay /(u) =
= dimCH’L(X, A7X/‘(‘) (l,] S N)

Proor. By (9.14), we have an isomorphism
B HipJ (X)) = Hp 0 (X /0.

Because ijoc is a morphism of mixed Hodge structures, )foo is strictly com-
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patible with the log Hodge filtration by [D2, (2.3.5)]. Moreover, the log
Hodge-de Rham spectral sequence

9.15.1) B = H(X, Ay, ) = HiJJ 1 (X/C)

degenerates at £ by [FN, (3.12)] and by mixed Hodge theory [D3, (8.1.9)
(v)]. (As mentioned in §2, the Q-structure of the Steenbrink complex in
[St2] alone is incomplete, though we can deduce the degeneration at £
of (9.15.1) from his incomplete Q-structure; we can also prove the de-
generation at £; of (9.15.1) by the method of Deligne-Illusie [DI2, (2.7)]
and by [KkI, (4 12) (3)].) Hence }] induces an isomorphism
HI--i(X, A}( o) — HY(X, A”/] ). By the log Serre duality of Tsuji
([Ts2, (2. 21)]) HI-i(X, Alﬂ ) and H@-)(X, Ad _J) are dual. Hence
dim H 71X, Ay ) = dimm H! X, AL, O

We should remark the following:

ProPOSITION 9.16.  The following hold:

(1) Let X/s be a proper SNCL analytic variety. Assume that each ir-
reducible component of X is Kcihler or algebraic. If X is the special fiber of
a proper analytic strict semistable famaily over a unit disk such that the
generic fibers are Kihler or algebraic, then the log Hodge symmetry for X
holds: dim:HI/(X, A% /o) = dimcH'(X, A% /‘c) (t,7 € N).

(2) Let X be the special fiber of an algebraic proper strict semistable
SJamily over a discrete valuation ring with residue field of characteristic 0.
Then the log Hodge symmetry holds.

Proor. (1): Let 4 be a unit disk and 4" the punctured disk. Let X be a
proper analytic strict semistable family over 4 such that the special fiberis X.
Let ¢ be an element of 4™ and let X; be the generic fiber of X over . Since

X/A(logX) (te N) isalocally free O y-module, we have dimH/(X, A}m ) >
> dim-H/(Xy, X <) by the upper semicontinuity theorem of Grauert ([Gra,
Satz 3, p. 290] for the analytic case and [EGA I11-2, (7.7.5)] for the algebraic
case). Asin the proof of (9.15), the log Hodge de Rham spectral sequence of X
degenerates at £'1 by the assumptions since the singular cohomologies of the
intersections of the irreducible components of X have pure Hodge structures
(see [D1, (5.3)] for the algebraic case). Furthermore, the classical Hodge de
Rham spectral sequence of X; degenerates at E; by the assumptions (see
[loc. cit.] or [DI2, (2.7)] for the algebraic case). Moreover, we have
dimH"(X, AX/‘ ) = dimcH"(X;, Xt/k .) (b € N) by the proof of [St1, (2.18)].
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Hence we have dim-H/(X, A} o) = dimc-HI (X, .QEQ /). Thus the log Hodge
symmetry reduces to the classical Hodge symmetry.

(2): By the Lefschetz principle, we may assume that the residue field is
C. By using Neron’s blow up ([A, (4.6)], [SGA 7-1, I (0.5)]), we may assume
that the semistable family comes from a semistable family over a smooth
henselian Q[t])-algebra R which is essentially of finite type over Q[f]y.
Here we say that a family over R is semistable if it is locally defined by an
equation g - - - &, — t (r € N) with independent variables xy, . .. ,«, over R
(I have learnt this notion from K. Fujiwara.). Extending a scalar extension
Q c C, we may assume that Spec(R) is a smooth curve over C. Now (2)
follows from (1) and GAGA. O

ProBLEM. How does the log Hodge symmetry for a proper SNCL
variety X/s fail? For example, is the difference dimH/(X, Ag;/‘(’;)—
— dimcH(X, A /) bounded for all proper SNCL varieties X over s of a
fixed dimension d >2? (If d =1, then the equality dim-H'(X,Ox) =
= dimcH°(X, A}( / ~) follows from the log Serre duality of Tsuji [Ts2, (2.21)].)

In order that the Problem make sense, the condition “the fixed di-
mension” above is necessary:

PROPOSITION 9.17.  Let X /s be the proper SNCL surface in (6.5), where
x = C. Let n be a positive integer and let X" be the n-times product of X.
Then dim-H(X™, Ak,,,/@) = ng and dimc H (X", Ox») = n(g + 1).
Proor. The log Hodge de Rham spectral sequence
EY = BIX", Ay, ) = Higl o (X"/C)

degenerates at E;. By (7.6) (5), we obtain dim-H°(X, Ay ,.) =g and
dim-H'(X, Ox) = g + 1. By the log Kiinneth formula (cf. [B, V Théoréme
4.2.1] and [KKk1, (6.12)] for the (log) crystalline case),

(9.17.1) Hip qgX"/C) = (Hjpg_qp(X/C)™".

Taking the log Hodge filtration on (9.17.1), we obtain (9.17) (cf. [B, p. 379]).
O

10. First log Chern classes over C

In this section we establish a relationship between the first log Chern
class ((9.7.5)) and El-Zein’s Chern class ([E]) of an ample invertible sheaf on a
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SNCL analytic variety X over s := (Spec C, M;) := (Spec C,N & ). By
abuse of notation, we sometimes omit the symbol o in the notation X below.
Let c¢;14r be the following composite morphism

* dl [ ]
(10.0.1) cLar: O —5 Ay —— Ay, {1}
of complexes. Then c;gg induces a morphism of cohomologies, which is
denoted by the same symbol c; j4r:

(10.0.1; H) crar: H' (X, 0%) — H*X, A% ).

We also have a morphism

Cin (dlog ):N/\*){l}
(10.0.2) Cl,ldRSZ:O} — A;(/({l} — A%/L{l}

of complexes. In particular, we have a morphism
(10.0.2; H) cruarsz: H' (X, 0%) — H*(X, A% )

of cohomologies.

On the other hand, asin [E, IOI (3.15)], we can define a class ¢; ¢ gz(L) of
an ample invertible sheaf £ on X in H*(X, A% /) by using the Steenbrink
complex A% Jo For the completeness of this paper, we recall El-Zein’s
construction. By using the argument in [loc. cit], we shall define ¢; ¢ gz (L)
for a more general invertible sheaf than an ample one.

DEFINITION 10.1. Let x be a point of X. Let D be an effective Cartier
divisor on X. We say that D meets X transversally at x if there exist in-
dependent variables zg,...,zg such that there exists an isomorphism
Ox.» =~ C{z0,...,2a}/(20 - 2;) and D|x ,, is defined by 2,1 = 0. We say
that D meets X transversally if D meets X transversally at any point x of X.

Note that the scheme Supp D with the restriction of the log structure of
X is a SNCL variety over s. By abuse of notation, we denote Supp D only
by D in the following.

Assume that an effective Cartier divisor D on X meets X transversally.
Consider the following exact sequence

1) 'Res
A0.11)  0— A3,(D) — Ay, (log D)D) * L1 s 1} —o0.

(Though we can formulate the logarithmic differential forms A% .(log D) in
terms of the log structure in the theory of Fontaine-Illusie-Kato ([Kk1]), we
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suppress the formulation here.) The boundary morphism induces a
morphism

(10.1.2) Op: H'(D, A3,)) — H*(X, A3, )(D).

Let X = |J X; be an open covering of X such that there exists alocal equation

el o
t; =0(@ €I)of DN X;. Then 2nv “1) 'Res(d logt; ® 2nv/—1) = 1. Follow-
ing the convention on the sign of torsors in [SGA 4%, Cyecle 1.1] and using a
standard argument, we have the following formula in H?(X, A% o)

10.13)  crur(Ox(D) ® 20V —1 = [{dlog ¢ (t;H ™)}l @ 2nv/~1
= [{dlogt; — dlogt;}] ® 2nV—1
= —dp(D).

Following [E, I (3.3.1)] and [SZ, (5.5)], consider a sheaf

A% (log D):= Q1 (log My)(log D)/P;* @ (log My)(log D) (i, jeN)

on X, where P]MX is the weight filtration with respect to the log structure
Myx of X ([St2, p. 113]). Then we obtain the following double complex
AS(./U( log D) with boundary morphisms

Ai‘g/zl (log D)
(1014) (—l)idlog t/\T
.. +1 X
AZ)J(/C(IOg D) ——— Ay,¢ (log D)
and the associated single complex A% / (log D) := s(Ay /{'f(log D)). Here tis

a global section of M, whose image in I'(s, M;/O}) is the generator. Then
we have the following exact sequence:

. 0 2nv/=1) " 'Ry .
0 —— Axe(l) —— AyscllogD)(1) EYTIES, 4 (-1} —— 0

(1015) dlogt/\T dlogt/\T dlogt/\T
(27v/=1)"'Res

0 —— AS

X/c(l) — A;(/c(IOgD)(l) A.D/C{_l} — 0

Thus we obtain a morphism
(10.1.6) BD:HO(D,A;J/C) —»HZ(X,AS(/C)(I).

El Zein’s Chern class c; ¢ gz(Ox(D)) of Ox(D) is, by definition, —0p(1). By
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(10.0.2; H), (10.1.3) and (10.1.5), we have the following formula
(10.1.7) c11arsz(Ox(D)) @ 21V -1 = ¢1 ¢ 5z(Ox(D)).

Let £ be an invertible shoeaf on )O( such that £ ~ Ox(D), where D is an
effective Cartier divisor on X which meets X transversally. Set

(10.1.8) c1,c.Ez(L) == c1,0,5z2(0x(D)).

Then, by (10.1.7), ¢1 ¢ gz(£) is independent of the ch01ce of D.

Let {X,},,_; be the irreducible components of X.Let Lbea very ample
invertible sheaf on X the SNC analytic variety %( is the associated analytic
space of a projective scheme X" over C. Let X% be an irreducible com-
ponent of XP such that ()O( e = Xom. Let s X S, P, be the closed
immersion defined by the very ample invertible sheaf on X" whose ana-
lytification is £. Then, by using Bertini’s theorem ([Ha2, IIO(8.18)]), we can
find a hyperplane H' such that H' meets any intersection X1, N---N X},
(re€Zsp, 1 <my <--- <my <n) transversally in PE. Set H:=H'N )%
Then H,, meets X transversally in the sense of (10. 1)

More generally, let £ be an ample invertible sheaf on X. Let [ be a
positive integer such that £%' is very ample. Let H be as in the last
paragraph with respect to L2, Then we define c1,cEz(L) in H2(X, A% Jc )(1)
by the following formula:

(10.1.9) c1.cpz(L) = 1ty o pz(Ox(H)).

By using the formula (10.1.7), it is easy to check that this definition is in-
dependent of the choice of I. Moreover, by (10.1.7) again, we have the fol-
lowing formula:

(10.1.10) c11arsz(L) @ 2nV =1 = ¢1 ¢ gz(L).

Summing up, we obtain the following:

ProrosiTION 10.2. The following hold:

(1) Let L be an inveftible sheaf on )O( such that there exists an effective
Cartier divisor D on X such that £ ~ Ox(D), and such that D meets X
transversally. Then cy1qrsz(L) ® 2nv/—1 = c1e Ez(L).

(2) Let L be an ample invertible sheaf onX Then c11grsz(L) ® 2nv/—1 =
= c1,0,57(L).

Next, we consider the “Q-structure” of ¢; jgrsz-
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By (9.7.4) we have a morphism
(10.2.1) 0% — C(DI1]
and hence a morphism
(10.2.1; H) HY(X, 0%) — H*X,0)Q).

Let £ = Ox(D) be an effective invertible sheaf on }O( We follow the
convention on the sign of torsors in [SGA 4}, Cycle 1.1]. Let {X;}, be an
open covering of X such that D is defined by an analytic equation ¢; = 0.
Set Xj; := X; N X; and Xy := X; N X; N Xj,. We may assume that a branch
log ;) € I'(Yy;, Oy,) of t;; is defined. The line bundle Ox(D) defines a co-
cycle {t;;} € HY(X, G,,) defined by tij == t;/t;. The 2-cocycle defined by the
image of {t;} by the boundary morphism of the exponential sequence
0—7(1)— Ox oL O;( —0is Uik = log tjk —logt;, + log tij € Z()x

ijk *

Consider the Cech double complex replacing KU(Q3}) in (4.1.2) by A%.
]?y the same proof as that of (4.1), we have [{dlogt;}] = [{usr}] in
H(X, A% /c)- Hence we have the following commutative diagram

HY(X,0%) —— H*(X,Z)(1)
(10.2.2) H l

C1,ldR

HY(X,0%) —— H*(X,A%,c)(1).

Moreover, by (10.1.2; H) and by the functoriality, we have a morphism
(10.2.3) 1.0 HY(X, Oy) — H*(Xo, C)(1).

Then the morphism c¢; o, (resp. c1,¢) is induced by the left (resp. right)
vertical morphism in the following commutative diagram

S —— Je()[1]

I I

(10.2.4) Qx(D)[1]] —— Cx(D[1]
0% = O%.

Therefore, by (9.7.4) and by a composite morphism Qx — J?, — A*(J7),
we have a morphism

(10.2.5) crosz H'(X, 0%) —>H2(X,A'(J}3))(1).
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Analogously, by a composite morphism Cy — J¢& — A*(J}.), we have a
morphism

(10.2.6) o8z H' (X, Oy) — HAX,A*(J2))D).

THEOREM 10.3. (1) Under the identification H?*(X,A*(J &) with
H*(X,Q) by the isomorphism pi: H*(X,Q0) = H*(X, J?) — H*(X,A*(J}),
€1,0,82 = €100

(2) The compositeofci o sz with anatural morphism H*(X,A*(J o) —
— H?(X,A*(J))Q) is equal to ¢y ¢ s7.

(3) By the identification (3.10.1; H), ¢; g7 = C€11dRSZ-

Proor. (1): (1) immediately follows from the definition of ¢; ¢ g7.
(2): (2) follows from the following two obvious commutative diagrams:

0% — Qx(1)[1]

(10.3.1) | l
Ox —— Cx(1)[1],
Qx (1) Jo A*(J)
(10.3.2) l l l
Cx(1) Je A*(J¢).

(3): (3) follows from the definition (10.0.2) and the commutativity of
(10.2.4), (10.2.2), and (3.10.1; H). O

11. Appendix.

In this Appendix we determine the log x-adic (x = [, p, o0) cohomologies
of X = E, (L) in §6 with deg £ = 0.

THEOREM 11.1.  Assume that deg L = 0. Then the following hold:

(1) The log *-adic (x = I, p, o0) cohomologies of X are the following:
(a) HY), () = 1,.

(b) Poﬂllogw*(X )=1, grffillog,*(X ) =H(0), gry ﬂllog,*(X )=L1(-1).

(e) P1ﬂ120g¢*(X):ﬂi(C), grfﬂ?ogﬁ*(X):l*(—l)‘“, grﬁﬂ?og,*(X):ﬂi(C)(—l).

() PoH;,, (X)=1,(- 1), grf Hy,, (X)=H(C)(-1), gr} Hy,, (X) =1,(—2).
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(e) log*(X) =1(-2).
(2) The monodromy filtration and the weight filtration on HI
(h=0,1,2,3,4) coincide.

0g+X)

Proor. We may assume that x is algebraically closed. Here we give the
proof only for the l-adic case.

(1): Let E"z (r € Zs1U{oo}) be the E,-term of the weight spectral
sequence (2.0.7;1). By the same proof as that of (7.1), we obtain
B}, = Hy(C, 7)) = By, E, > = Hy(C, Z)(~ 1) = EY}. Let {Xi};c;, be
the irreducible components of X such that C; := X; N X;,; # ¢ and let
7;: X; — C be the projection. As in (6.5.1),

m; (L) = Ox,(£(C; — Ci-)).

This element in H2(X;, 7;) is the zero since the first chern class of £ in
H*(C,7;) is so by the assumption. Hence, as in the proof of (6.5), we
see that Ez_zl2 = 7;(—1). By using the variant of (7.2) (Set « =0 in
(7.2), though this « is a zero-divisor.), we see that E2l = 7,(—1) and
Egzl = 7:(—1)®% by (7.2.4) and (7.2.7). Since E%l and E%l are free 7;-
modules, we have E;}* = E_'}, E}}, = E'! |, E; }3 =E !} and B} = B,
by the Es- degeneratlon of (2.0.8;1) ((Nak3, (2.1)]). (In the p- adlc case
we use the FEg-degeneration of (2.0.8;p) ([Nakk3, (3.6)]).) Thus we
obtain (1).

(2): Let E"z (r € 7Z>1 U{oc}) be the E,-term of the weight spectral
sequence (2.0.8;0). As in (8.4), we have only to prove that v;:Ej]
— E3(— 1) is an isomorphism. Since E;;* and E%OI are 1- d1mens10nal we
have only to prove that v; is not the zero morphism. By (1), £ 2=
={(@,qa,...,a)a € Q(-1)}C Hot(X(2> Qp(—1). On the other hand, the
boundary morph1sm

d: Y = HO,(XD, Q) — EIS = HY(X®, 0))

is given by (a1, ag, . .., ae)— (Ag—a1, a3 —ag, . . . , a1 —0,). Since v;: E 2,
— E{%(—1) is the 1dent1ty by the same argument as that of [NakkS
(11.7)] for the p-adic case, the image of a non-zero element of £, ZinEY 5 18
not the zero. O

To the reader, we leave the statements and the proofs of the analogous
formulae of (7.4), (7.5), (7.6), (7.10), (7.11) and (7.12) for X with deg £ = 0.
(For the proof of the analogues of (7.10) and (7.11), we use [Ue, (6.1) 2)]
instead of [loc. cit., (6.1) 3)] used in the proofs of (7.10) and (7.11).)
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