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Generic 2-Coverings of Finite Groups of Lie Type (¥).

D. BUBBOLONI (**) - M. S. Lucipo (***) - TH. WEIGEL (*,*)

Dedicated to G. Zappa for his 90" birthday

ABSTRACT - In [10] it was shown by R.H. Dye that in a symplectic group
G = Sp(2') =Iso (V, (., .)) defined over a finite field of characteristic 2 every
element in G stabilizes a quadratic form of maximal or non-maximal Witt index
inducing the bilinear form (.,.). Thus G is the union of the two G-conjugacy
classes of subgroups isomorphie to 05,(2/) and O5,(2/) embedded naturally. In
this paper we classify all finite groups of Lie type (G, F) with this generic 2-
covering property (Thm. A). In particular, we will show that there exists also an
interesting example in characteristic 3, i.e., in the finite group of Lie type
G := F4(3") every element in G is conjuagte to an element of the subgroup
By(3") < Fy(3”) or of the subgroup 3.2D4(3") < Fy(3").

1. Introduction.

Let G be a finite group and let H, K 5 G be proper subgroups of G. The
pair of subgroups {H, K} is called a 2-covering of G, if every element in G is
conjugate to an element in H or K, i.e.,

(1.1) G=JH UK.

geG geG

If G is a Frobenius group with complement H and kernel K then {H, K} is
obviously a 2-covering of G. Another example of a finite group with a 2-
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covering is the group G := SLs(q), ¢ = p’. It can be 2-covered by the pair
{H,K}, where H is the normalizer of a p-Sylow subgroup, and K is the
normalizer of a maximal non-split torus. A more sophisticated class of
examples is the following: Let I'y; be a finite field of characteristic 2 and
order 2/, let V be an [Fyr-vector space of dimension 2¢ and let
(., ):V®V — Fy be a non-degenerate symmetric bilinear form on V. In
particular, G := Iso(V, (.,.)) = Sp2/(2/) is the symplectic group of degree
2¢ defined over the finite field Fy,. Let @:V — V be a quadratic form of
maximal Witt index inducing (., .), and let @: V' — V be a quadratic form of
non-maximal Witt index inducing (.,.). Then M; := Iso(V,Q) ~ OZQ(Zf )
and My :=Iso(V,Q’) ~ O§[(2f ) are maximal subgroups of G, and it was
shown by R.H. Dye ([10]) that every element of G is contained in a G-
conjugate of My or Ms, i.e., {My, My} is a 2-covering of G = Spa(2/).
The study of covering properties of finite groups was originally moti-
vated by number theoretic questions. In [15], W. Jehne discovered that
Kronecker equivalence of number fields is related to the existence of a
certain type of covering of a finite group (cf. [17, §1C]). Therefore, one calls
the proper subgroup U of the finite group G a covering subgroup of G, if

G= | U“ The study of finite groups with a covering subgroup was
ac Aut (G)
initiated by R. Brandl (cf. [2]), who also conjectured that a finite group with

solvable covering subgroup must itself be solvable. Finally, J. Saxl proved
this conjecture in showing that a non-abelian finite simple group does not
have a covering subgroup (cf. [19]).

The examples mentioned above show that in contrast to the non-ex-
istence of covering subgroups there are non-abelian finite simple groups
possessing 2-coverings. Special classes of finite simple groups with this
covering property have been investigated in [3] and [4]. For finite groups of
Lie type there exists a more particular type of covering — a generic 2-
covering — which allows to analyze the class of groups with this covering
property systematically. The main purpose of this paper will be to classify
all generic 2-coverings of finite groups of Lie type.

Let G be a simple algebraic group defined over the algebraically closed
field F. A closed subgroup H of G is called of maximal rank, if it contains a
maximal torus T of G. By a finite group of Lie type (*) (G, F) we understand
a simple algebraic group G defined over the algebraic closure ), of a finite
field of characteristic p together with a Frobenius morphism F:G — G.

(*) The finite group Gy of elements fixed under F is usually called the finite
group of Lie type.
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For such a group a pair of proper closed F'-stable subgroups {H, K} will be
called a generic 2-covering of (G, F), if

() every F'-stable maximal torus 7' is Gp-conjugate to a subgroup of
Hor K,
(i) {Hr,Kr} is a 2-covering of G,

where - denotes the subgroup of elements fixed under F'. In [25, §1] it was
shown that there is a canonical one-to-one correspondence between Gp-
conjugacy classes of F'-stable reductive subgroups H of maximal rank of G
and W-orbits of certain cosets of Weyl subgroups of W, where W denotes
the Weyl group of G. We refer to the W-orbit of this coset as the type of H.
This correspondence extends the well-known correspondence between G-
conjugacy classes of F'-stable maximal tori, and F-conjugacy classes in the
Weyl group of G (cf. [8, Prop. 3.3.3]). The main purpose of this article is to
establish the following theorem (Thm. 4.5, § 5).

THEOREM A. Let (G,F) be a finite simple group of Lie type, and let
{H,K} be a generic 2-covering of (G, F).

(a) Assume that for one of the subgroups - say H - the connected
component H° is not reductive. Then (G, F) is of type A1, As, A3 or 243, H
is maximal parabolic, and K° is reductive. Moreover, the types of
H/R,(H) and K° are as listed in Table 1.1. Every pair of F-stable sub-
groups {H,K}, H parabolic, K := Ng(K°), satisfying the conditions of
Table 1.1 defines a generic 2-covering of (G, F).

TABLE 1.1. — Parabolic-type generic 2-coverings

type (G, F) type H/R, (H) type K°
A, £>1 A v 2w
Ay w” 3w
Az WA 2. WAV
243 2.W(AHW 2.W(Az)"

(b) Assume that H° and K° are reductive subgroups. Then the types
of (G, F), H and K are as listed in Table 1.2 modulo interchanging the role
of H and K. Moreover, the characteristic of the algebraically closed field I
must be as indicated in the 5"-colummn. Every pair of F-stable subgroups
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{H,K}, H := Ng(H°), K := Ng(K°), satisfying the conditions of Table 1.2,
defines a generic 2-covering of (G, F).

TABLE 1.2. — Reductive-type generic 2-coverings

type (G, F) type H° type K° conditions
Ay, 0>1 Ay v 2w p=2
A, WY 3 p=3
24,, 0>2 24, 2.w" 6" p=3
Cp, £>2 Cs wHW 2.W @AY p=2
Cs | Wy xADY 3.W@AHv p=3
C WD) 2.WDy)" p=2
Fy WBYY 3WDHW p=3
G> W(A)" 2.W(A)" p=2

Here the connected component of an algebraic group X is denoted by
X°. In Table 1.2 we used the convention that a rootsystem with a ~ consists
of short roots. Moreover, for a subrootsystem ¥ of the rootsystem @ of G
and n € N, n.W() will stand for a coset ny W), ny € Nyw(W(W¥)), with
ny W) € Ny(WW@))/ W) of order n. While this notations is not in-
ambiguous, it will suffice for our needs, and from the context it will always
be clear which particular coset is meant to be considered.

It should be remarked that Theorem A is independent of the isogeny
class of G. The proof of Theorem A is organized in several steps. Using the
results in [25, § 1] one concludes that a pair of reductive subgroups {H, K}
satisfying property (i) corresponds to a certain type of covering of the Weyl
group (coset) which will be called an admissible 2-coset covering (cf. Thm.
2.2). All such coverings can be classified (cf. Thm. 3.4, Table 3.1).

In [20] closed subgroups of a simple algebraic group of positive di-
mension containing a regular unipotent element were classified. For-
tunately, there are few examples of these groups which occur also in Table
3.1. Apart from 3 exceptions this exclusion principle will lead precisely to
the examples listed in Table 1.1 and 1.2 (cf. Thm. 4.5).

In order to obtain a full classification of all generic 2-coverings, we have
to show that a pair of subgroups {H, K} with the properties described in
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Table 1.1 and 1.2 is indeed a generic 2-covering. This will be done in section
5, 6, 7 by a case-by-case analysis. Unfortunately, for some examples we
could not find a geometric argument, and hence in those cases the only way
in proving the 2-covering property is by brute force (cf. §6, § 7).

In a subsequent paper [5] we will determine all 2-coverings of classical
groups of Lie type using the classification of finite simple group. It turns
out that there are also 2-coverings of classical groups of Lie type which are
non-generic.

Acknowledgement: The authors would like to thank G. M. Seitz and A.
Previtali for two very illuminating discussions.

2. F-stable reductive subgroups of maximal rank

2.1 — Weyl groups and admaissible cosets

By W(®) < Iso(E,(.,.)) we denote the Weyl group of the finite cry-
stallographic rootsystem @ C FE in the euclidean space (F, (.,.)). Let 4 C @
be a basis of @, and let y € Aut (W(®)) be a graph automorphism of W(®)
leaving 4 invariant. In particular,

1) W = (). W(®) < Glr(E).
The coset y.W(®) carries a natural right W(®)-action given by
(2.2) (paw)” = y.(p@e Hwe), x,weW,

where y(x) = y~lay. We call the coset y.W(®) C W an admissible W(D)-
coset.

Let (G, F) be a finite group of Lie type, i.e., G is a simple algebraic
group defined over F,, the algebraic closure the finite field [, and
F:G — G is a Frobenius morphism. Let B < GG be an F-stable Borel sub-
group of the algebraic group G containing the F-stable maximal torus 7.
Then W:= Ng(T)/T is the Weyl group of a finite irreducible crystal-
lographic rootsystem @, i.e., W = W(®). Let 4 C @ be a basis of @ cor-
responding to the Borel subgroup B. The Frobenius morphism F: G — G is
acting on @ leaving A invariant, and thus corresponds to a graph auto-
morphism y € Aut (W). On the contrary, every pair (y, @), where @ is a
finite irreducible crystallographic rootsystem and y is a graph auto-
morphism of W(®), defines a finite group of Lie type (G, Fyy) for every
standard Frobenius morphism Fy (cf. [8, §1.1.18]).
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We use the same symbols which are used in the classification of finite
groups of Lie type for the definition of the type of an admissible coset
7. W(®), i.e., we say that y.W(®) is of type 24,, if @ is a rootsystem of type
Ay and if y is the graph automorphism of order 2, etc.

2.2 — Subrootsystems and saturated subrootsystems

Every subrootsystem ¥ C @ of the finite crystallographic root system
@ is again crystallographic. Moreover, there exists an easy algorithm de-
scribed in [6, p. 8] to determine all maximal subrootsystems of @.

For two roots a, f € @ one defines the root cone through a and f by

(23) C(a,ﬂ): = {kl.(l + kgﬁ | kl, ke € l\]} Nao.

A subrootsystem ¥ is called saturated, if for all a, f € ¥, C(a,f) C V.
Obviously, if in the finite irreducible crystallographic root system @ all
roots are of the same length, every subrootsystem ¥ C @& is saturated
(cf. [12, §9.4]). But for example, the subrootsystem A‘{ consisting of all
short roots in @(By) is not saturated. It is an easy exercise to show that a
subrootsystem ¥ is saturated, if and only if for every pair of roots a, f € ¥,
¥ contains also the a-string through f£.

Let ¥ = &(®P) be the simple finite-dimensional C-Lie algebra with
rootsystem @ and Cartan decomposition

(2.4) L=Co ]

aced
Then W) :=C @ [] &, is a Lie-subalgebra, if and only if ¥ C @ is sa-

turated (ct. [7, §4.2], [12, Prop. 8:4(e)).

Let G be the simple simply-connected algebraic group defined over
C with rootsystem @&, and let 7 < G be a maximal torus. From Che-
valley’s commutator formula (cf. [7, Thm. 5.2.2]) one concludes that
H:=(T,U, | a € ¥) is a reductive subgroup with rootsystem of type ¥,
if and only if ¥ C @ is saturated.

Let G be the simple simply-connected algebraic group defined over F,
with rootsystem @, and let 7' < G be a maximal torus. We call the sub-
rootsystem ¥ C & p-saturated, if H:= (T, U, | o € ¥) is a reductive sub-
group with rootsystem of type ¥. One has the following:

PRrOPOSITION 2.1.  Let @ be a finite trreducible crystallographic root-
system and let ¥ C @ be a subrootsystem.
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(@) If ¥ C Dy consists only of long roots, ¥ is saturated.

(b) If ¥ is saturated, it is p-saturated for all primes p.

(c) Assume @ has two root lengths vy, rs and that p # v /rs. Then, if
¥ is p-saturated, it is also saturated.

(d) If @ has two root lengths v, rs and p =1wv/rs, every sub-
rootsystem is p-saturated.

Proor. Let a,f € ¥ be linearly independent roots, and let I” C @ be
the subrootsystem generated by C(a, ). If I" is of type Az or Ay x Ay, I’
coincides with the rootsystem spanned by a and f. The same is true if I
is of type Bs or G2 and a and f§ are long roots (cf. [7, p. 46, fig. 1]). This
yields (a). (b) is a direct consequence of Chevalley’s commutator for-
mula. Assume that ¥ is p-saturated. The rootsystem I coincides with
the rootsystem spanned by a and ff unless I is of type By or G2 and a
and f are short roots. If p = 7;/7;, the constants C; ; .z (cf. [7, p. 62, p.
77]) vanish whenever ia + jf is a long root. This yields (d). However, if
p # 1,/7s, they do not vanish. Thus, if ¥ is p-saturated, C(a, ) C ¥ must
hold which implies (c). O

2.3 — y-Subrootsystems

Let y be a graph automorphism of the finite irreducible crystallographic
rootsystem @ and let ¥ C & be a subrootsystem of @. Then ¥ is called a y-
subrootsystem, if there exists an element w € W(®) such that ¥ = “¥.

Let G a simple algebraic group with rootsystem of type @ defined over
[y, and let F: G — G be a Frobenius morphism acting on @ through y. Let
T < G be a maximal torus and let ¥ C & be a subrootsystem of @. In [25,
Prop. 2] it was shown that G contains an F-stable reductive group
H=(T,U,|aec¥) geG,if and only if ¥ is p-saturated and if ¥ is a y-
subrootsystem. Additionally, for all twisted types the y-subrootsystems
were determined.

2.4 — Admissible 2-coset coverings for Weyl groups

Let @ be a finite irreducible crystallographic rootsystem, let
W = W(®) be its Weyl group, and let y: W — W be as in § 2.1. Let Gy be a
finite group of Lie type, where G is a simple algebraic group defined over
[, with rootsystem @ and assume that the Frobenius morphism F: G — G
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is acting on @ through y. Let B be an F-stable Borel subgroup of G
containg the maximal torus 7" and let U,, a € @, denote the root groups for
T in B and B~.

For a p-saturated p-subrootsystem ¥ C @ and ny € N~(WH))N
Ny.W(®), the W-orbit (g WD of the coset ny. W (%) coVIYresponds
to a Gp-conjugacy class of finite reductive groups Hp, where
H:=(T,U,|ac¥) is F-stable, F(g)g~! € No(T), nF(g)g1) = ny,
n: No(T) — W the canonical projection. This follows from [25, Prop. 4]
bearing in mind that left translation with y, y._: W — y.W, is a bi-
jection of right W-sets, where W carries the right W-action given by
w® = y(@ Dwx, x,w € W. In order to analyze the problem further we
make the following definition:

DEFINITION 2.1. Let y.W be an admissible W-coset of the finite Weyl
group W = W(®). Let ¥, Z C @ be proper y-subrootsystems of &, and let
ny, nz € 7.W be elements with the following properties:

(i) ny € No (W), nz € No(W(2),
(i1)
(2.5) G = (g W)Y U (n=. W(E)".

Then we call (ny W), nz.W(E)) an admissible 2-coset covering of y.W.
From the definition and [25, § 1] one concludes the following:

THEOREM 2.2. Let (G, F) be a finite group of Lie type with rootsystem
@ whose F-action is given by y € Aut (D). Put W := W(®). Let H and K be
F-stable reductive groups of maximal rank with Gp-conjugacy class cor-
responding to the W-conjugacy class (n«p.W(?’))W and (n_:.W(E))W, re-
spectively, ny, ng € y.W (cf. [25, Prop. 4]).

@) (ng WHW),ns.W(E))is an admissible 2-coset covering of y.W, if
and only if every F-stable maximal torus T is Gp-conjugate to a torus in
Hor K.

(b) If (g WHW),ns.W(E)) is an admissible 2-coset covering of
7. W, every semisimple element s € Gr is Gp-conjugate to an element in
Hyp or Kp.

Proor. For (a) see [25, Prop. 4, Thm. 5]. Since every semisimple ele-
ment s € Gy is contained in a maximal F-stable torus, (b) is a direct con-
sequence of (a). O
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3. Admissible 2-coset coverings for Weyl groups

3.1 — The Coxeter class

Let @ be a finite irreducible crystallographic rootsystem and let
W = W(®) denote its Weyl group. There exists a very particular W-con-
jugacy class w", the class of Coxeter elements (cf. [7, § 10.4]). Elements of
this class have the following well-known property:

ProprosITION 3.1.  Let @ be a finite irreducible crystallographic rootsys-
tem and let W = W(®) denote its Weyl group. Let w be a Coxeter element of W
and let ¥ C @ be a subrootsystem of @, such that w € W(¥). Then ¥V = .

Proor. We denote by E.: = I ® C the complexification of I, and de-
note by (., .)c the standard W-invariant hermitian form induced by (., .). Let
¥ C @ be a subrootsystem such that w € W(¥).

The Coxeter element w € W is an element of order k := |®|/¢, where
¢ = rk (®) is the rank of @. It is also regular, i.e., there exists a primitive k-
root of unity & € C* such that the eigenspace V:(w) of w on ¢ for the ei-
genvalue ¢ is one-dimensional, and all eigenvectors v € V:(w) \ {0} are
regular, i.e., they are not invariant under any non-trivial element of W (cf.
[23, Thm. 4.2]2.

Let ¥: = J ¥; be the decomposition of ¥ in irreducibility components,

and let V;: . Ei)an@ W), Vo:= (Vi & --- @ V)", where L denotes the or-
thogonal complement with respect to the hermitian form (., .)c. The sub-
spaces V;, 1 =0,..,r, are W(¥)-invariant subspaces, and hence in parti-
cular w-invariant. Since w does not have the eigenvalue 1 (cf. [7, Prop.
10.5.6]), Vo = 0 and ¥ must be of rank ¢ = rk (®).

Assume r > 2. As V:(w) coincides with the &-Fitting component of w on
[, it must be contained in one of the V;, i € {1, ..,r}. Hence W(¥}),j # 1,
fixes V:w), a contradiction. Hence ¥ must be an irreducible sub-
rootsystem of maximal rank.

The element w € W(¥) is also regular in W(¥), and hence its order o(w)
is a regular number of ¥. In particular, o(w) < |¥|/¢ (cf. [23, §5]). This
yields ¥ = &. O

3.2 — Conjugacy classes in W(A,)

The Weyl group W = W(A4,) of type A, is isomorphic to Sy, ;. The
conjugacy classes of W can be parametrizised by the set of partitions of
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¢ + 1. The mapping is given by assigning each element w € W its cycle type
of the action on the set {1,..,¢+ 1}. The Coxeter elements are the ele-
ments of cycle type (¢ + 1). We will make use of the following property:

ProposITION 3.2. (a) Let U < S, n > 2, be a subgroup containing
elements p, o, t of cycle type 2,1,..,1), ) and (1,n — 1). Then U = S,,.

(b) Let U < S,,, n > 4, be a subgroup containing elements p, o, t of cycle
type 2,1,..,1), A,n—1) and 2,n — 2). Then U = S,,.

Proor. (a) The subgroup U is 2-transitive on {1,..,n}, and thus in
particular primitive. Thus the claim follows from Jordan’s theorem (cf. [14,
Satz 4.5(b)]).

(b) From the hypothesis n > 4, one concludes that U is transitive, and
the cycle type of ¢ yields that U is 2-transitive. The claim then follows by
the same argument as used in (a). O

3.3 — Conjugacy classes in W(By)

Let W = W(B/) be the Weyl group associated to the rootsystem of type
By. In this case W is acting faithfully on the set €y:= {+e; |1 <7 </{} of
positive and negative vectors of an orthonormal basis ey, .., e, of the eu-
clidean space (I, (.,.)). Assigning every element w € W the cycle type of
this action yields a parametrization of W-conjugacy classes by partitions
(_]|_) with positive and negative parts. The W-conjugacy class containing
the unit element 1y € W corresponds to the +-partition (1,..,1]); the
Coxeter class corresponds to the +-partition (|¢).

The Weyl group W(B/) contains the element wy € W(B,) acting as —idg
on . Multiplication with wy yields an automorphism wg. _: WW — WW of
order 2. It corresponds to the automorphism of the set of +-partitions of
¢ fixing blocks of even length and changing the sign of blocks of odd
length. The conjugacy class consisting of the element wjy corresponds to
the the +-partition (|1, ..,1).

The subrootsystem @;,,, C @ consisting of long roots is of type D,. A
conjugacy class is contained in the Weyl subgroup W(®;,,,), if and only if
the number of negative blocks is even. The conjugacy class of long re-
flections, i.e., reflections corresponding to long roots, corresponds to the
+-partition (2,1,..,1|). The conjugacy class of short reflections, i.e., re-
flections corresponding to short roots, corresponds to the +-partition
,.,11).
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There exists a unique W-orbit of subrootsystems ¥ of type A,_1 con-
sisting of long roots. The W-conjugacy classes of elements being contained
in a W-conjugate of W(¥) correspond to the +-partitions with trivial ne-
gative part (_|).

Let E<«W denote the normal subgroup generated by all reflections
corresponding to short roots. The canonical projection n: W — W/E ~ S,
is mapping reflections to reflections, and thus in particular Weyl sub-
groups to Weyl subgroups. Omitting the “|” in the notation describes its
effect on the conjugacy classes. Let ¥ C @ be a subrootsystem such that
(W) = W/E. Then ¥ is of type A,_1, D, or By. This is a consequence of
the following more general property:

ProPOSITION 3.3.  Let @ be a crystallographic finite rootsystem with at
most two root lengths. Let ©: W(®) — S,,, m > 2, be a surjective morphism
mapping long reflections to long reflections. Then @ contains a subroot-
system of type A,,—1 consisting of long roots.

Proor. Let R(S,,) denote the set of reflections in S,,,, and let R; denote
the set of long reflections in W(®). Since R(S,,) is a single S,,-conjugacy
class, the hypothesis implies that ¢ induces a surjective map wz: R} —
— R(S,). Let 2" ={o/ |1 <i<m—1} C R(S,,) be a simple generation
system of S,,, and let X = {o; | 1 <i < m — 1} be a preimage of 2’ under
tr. For any pair (g;, g;) of long reflections the order of its product satisfies
o(o;07) € {1,2,3}, and either two of these numbers are coprime. This im-
plies that the Coxeter matrices of 2 and 2’ coincide. This yields the claim.

O

3.4 — Congugacy classes in W(D,)

Conjugacy classes in the Weyl group W = W(D,) can be best under-
stood to think of W(D,) as the Weyl subgroup of W(B,) being generated by
long reflections. For w € W(D,) let t(w) denote the +-partition associated
to w being considered as an element in W(B;). We call t(w) the type of w.
Obviously, W(D,)-conjugate elements have the same type, and a +-parti-
tion is the type of an element w € W(D,), if and only if the number of
negative blocks is even. If ¢ is odd, one has W(B,) = (wo)W (D). Hence for
every +-partition 4 with an even number of negative blocks, t~1({1})
consists of a single W(D,)-conjugacy class. When /is even, t~1({/}) consists
of either 2 or 1 W(D,)-conjugacy classes.
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Restriction of the mapping n: W(B;) — S, of section 3.3 yields a sur-
jective mapping #': W(D;) — S, with kernel ker(z') = W(A{™1). Note that
the only proper rootsubsystems ¥ of @ for which 7’/(W(¥)) = S, are of type
Ay (cf. Prop. 3.3). There is a unique W(D,)-orbit of such subrootsystems
in case that ¢ is odd, and there are two such W(D,)-orbits for ¢ even.

3.5 — The classification of admissible 2-coset coverings for Weyl groups

The information we have collected in the previous subsection can now
be used to classify all admissible 2-coset coverings:

THEOREM 3.4. Let @ be a finite irreducible crystallographic rootsys-
tem, let W = W(®) be its Weyl group and let y.W be an admissible 2-coset
(cf. 2.1). Assume that (ny W), nz.W(ZE)) is an admissible 2-coset cover-
g of p.W. Then the types of (ng W), nz.W(Z)) - or (ng. W(E), ny W¥)) -
are as listed in Table 3.1. Moreover, every tuple (ng. W(Z), ny W(P)) given
as in Table 3.1 1s an admissible 2-coset covering of y.W.

TABLE 3.1. — Admissible 2-coset coverings

type y. W ny W) nz.W(E)
Ay 21 A 1 2
Ay W(Ay) 3
As W(Ay) 2.W(42)
24, £>2 24, 2.W(A;) 6
2A3 2.W(Asz) 2.W(A2)
By, £>2 By W(A2) 2.W(A2)
B; W(Bz x Ay) 3.W(43)
By W(B;3 x Ay) 2.W(B2)
By W(D,) 2.W(D,)
Fy W(By) 3.W(D,)
W(Cy) 3.W(Dy)
Ge W(Az) 2.W(Az)
W(Ay) 2.W(Ay)




Generic 2-coverings of finite groups of Lie type 221

The case @ of type C; leads to the same examples as for @ of type By
with short and long roots exchanged. Therefore, we have not listed these
cases in Table 3.1 explicitly.

Proor. Assume that (ny WW),n=z.W(Z)) is an admissible 2-coset
covering of ».W. We denote by %y and %z the canonical homomorphic
images of ny and nz in Ny(WW))/ W) and Nyw(W(Z))/W(Z), respec-
tively. We may assume that y € ny . W(¥). Thus in case that y = 1, n=z.W(Z)
contains a Coxeter element and thus 7z # 1 (cf. Prop. 3.1). The proof
proceeds by a case-by-case analysis depending on the type of y.W.

3.5.1 — ».W of type A,

For ¢ < 3 an easy exercise shows that the cases listed in Table 3.1 are
the only examples one has in this case. Since for ¢ > 4 no proper Weyl
subgroup of W is normal in W, (W(¥), Nyw(W(Z&)) is a 2-covering of W.
From [3, Thm. 4.2] one concludes that this implies ¢ < 5. It remains to
analyze the cases ¢ = 4,5 explicitly.

Assume ¢ = 4,i.e. W = S;5. For any proper non-trivial subrootsystem &
of @, Ny (W(Z))/W(Z)is a 2-group. Hence & = () must be trivial, and nz is
an element of order 5. The maximal subrootsystems of @ are of type A3 and
Ay x A1, and thus W(¥) does not contain elements of cycle type (2,3) in the
first case and does not contain elements of cycle type (1,4) in the latter,
respectively. Hence admissible 2-coset coverings do not exist for ¢ = 4.

Assume ¢ =5, i.e.,, W = Sg. There is one W-conjugacy class of Weyl
subgroups W)V containing a 5-cycle corresponding to the sub-
rootsystems of type A4. The group W(¥) does not contain elements of cycle
type (2,2,2), (3,3) and (6). The only proper non-trivial subrootsystems =
for which Ny (W(Z)) contains elements of cycle type (6) are of type A2 and
Ag. However, for = of type A? and 7z of order 3, nz.W(Z) does not contain
elements of cycle type (2,2, 2); for Z of type A% and 7z of order 2, nz. W(Z)
does not contain elements of cycle type (3,3). This implies that n=.W(Z)
must contain elements of cycle type (1,5). As it already contains a Coxeter
element, one has = # (. This implies that Nyw(W(Z)) = Sg (cf. Prop. 3.2(a)),
and thus W(Z) = W, a contradiction. Hence admissible 2-coset coverings
do not exist for £ = 5.

3.5.2 — y.W of type 24,

In this case y is an inner automorphism, and W = MW = (—idg). W,
where —idy denotes the endomorphism acting as —1 on . Thus if
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(g WW),n=z.W(Z)) is an admissible 2-coset covering of y.W, the pair of
admissible cosets (( — tdg)ny W), (—idp)n=z.W(Z)) is an admissible 2-
coset covering of W. Thus the claim can be deduced from 3.5.1.

3.5.3 — y.WW of type B, (or Cy)

By 3.5.1 and the previous discussion (cf. § 3.3), we have to consider three
cases:
(1) (W) =W/E,
2) n(nz.W(Z)) = W/E,
B) £ <4 and ((WW)), n(nz.W(Z)) is an admissible 2-coset cover-
ing of S,.

Note that n(nz.W(Z)) is a group, if and only if n=z.W(Z) N E # (. Hence
n(nz. W(Z)) = W/E implies n(W(Z2)) = W/E.

Cases (1) and (2): The only proper subrootsystems ¥ of @ satisfying (1)
are of type D, and Ay 1 (cf. Prop. 3.3). A similar argument yields that (2)
implies that = is either of type D, or A,_;. Hence in order to prove the
claim it suffices to show that ¥ of type D, implies = of type Dy, and that =
of type D, implies ¥ of type D,.

Assume that ¥ = @y, is of type D,. Then nz.W(Z) contains a Coxeter
element and elements of the W-conjugacy classes (2,1, ..,1|1) and (1|¢ — 1).
Hence n(ns.W(Z&)) = W/E (cf. Prop. 3.2(2)). As n(nz.W(Z)) = s(W(&)), the
rootsystem = must be of type A, 1 or D,. Assume = is of type A, 1. As
wy € Nw(W(Z)) and |[Nw(W(A,-1))/W(A,-1)| =2, one has nz.W(&) =
= wy.W(Z). However, in this case wy.W(Z) does not contain short reflec-
tions corresponding to the £-partition (1, .., 1|1) (cf. §3.3). Thus ¥ = @y,
implies = = @yy.

Assume that &' = &, and that nz is inducing the graph automorphism
of order 2. Then ns.W(Z) does not contain any W-conjugacy class being
contained in W(®y,,). In particular, W(¥) contains elements of type
2,1,..,11,1), (1, ¢ — 1)), ¢¢)). Thus e(W(¥)) = W/E (cf. Prop. 3.2(a)), and ¥
is either of type A,_; or D,. However, since W(¥) contains elements of type
(2,1,..,1]1,1) the first case is impossible. This yields the claim.

Case (3): The 3 examples for @ of type Ay, £ =1, 2, 3 yield the 3 addi-
tional cases for @ of type By, ¢ =2, 3, 4. A straightforward calculation
shows that these are the only exceptions.

3.54 — y.W of type D,
By §3.5.1 one has to consider three cases:
L «W¥) ~W/E,
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@) anz.W(E) ~W/E',
B) =4, n(W¥)) ~ S35, n(nz.W(ZE)) = 2.W(A32) C S4.

Case (1): The hypothesis implies that W(¥) is of type A,_; (cf. Prop.
3.3). Hence nz.W(Z) must contain an element of type (1, ..,1|1,1), and thus
n(nz.W(Z)) is a group. Furthermore, nz.W(Z) must contain elements of
type (|1,£-1), (2,/—2) and (2,1..,1]1,1), and this implies that
n(nz. W(Z)) = W/E' (cf. Prop. 3.2(b)). So also W(Z) must be of type A,_;.
But this yields that £ must be odd and that nz.W(Z) = wy.W(Z). However,
in this case neither W(¥) nor nz.W(E) contains elements of type
a,..,11,1).

Case (2): The hypothesis implies that (W (%)) = W/E’, and thus Z is of
type Ay, 1, £ must be even nz.W(ZE) = wy.W(Z). So W(¥) must contain
elements of type (2,1,..,1]), (|2,£—2) and (1,¢—1|). This yields that
a(W)) = W/E' (cf. Prop. 3.2(b)) and thus ¥ must be of type A,_;1. As in
the previous case neither W(¥) nor nz.W(Z) contain elements of type
(1,..,1]1,1). So an admissible 2-coset covering cannot exist in this case.

Case (3) can be excluded, since in this case Nw(W(&)) is a 2-group, but
must also contain a Coxeter element which is of order 6, a contradiction.

3.5.5 — 7.W of type 2D,

If ¢is odd, y.W(®D) = wy.W(P) C W(By), and with the same argument as
used in § 3.5.2 one concludes that there are no admissible 2-coset coverings
in this case. So £ must be even. We may assume that ny = 7. Note that y is
of type (1,..,1|1) considered as an element in W(By). Hence n(W(¥)) is a
group. By §3.5.1, we have to consider 2 cases:

D) (W) ~W/E,
@) nlnzW(E) ~W/E,
(B) =4, (W) ~ S, n(nz.W(Z)) = 2.W(A3) C S,.

Case (1): The hypothesis implies that ¥ is of type A, 1. However, for ¢
even there does not exist a y-subrootsystem of type A, 1 (cf. [25, § 2, (O)]).

Case (2): The hypothesis implies that z(W (%)) ~ S,, and thus & must be
of type A;_1. The argument which was used in case (1) yields that this is
impossible.

Case (3): By hypothesis, n(ns.W(Z)) is not a group. Thus nz.W(Z)N
NE = (. The hypothesis n(y.W(¥)) ~ S3 yields that ¥ is of type Az and
that y is centralizing W(¥). So the elements of y.W(Z) are of type (1,1, 1|1),
(1,2]1), (3|1). Hence neither y.W(¥) nor n=z.W(Z) contains elements of type
(1]1,1,1), and thus an admissible 2-coset covering cannot exist in this case.
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3.5.6 — . of type 3D,

If one identifies the Weyl group W with the Weyl subgroup W(Dy) <
< W(Fy) associated to the subrootsystem of long roots in the rootsystem
of type Fy, y.W =3.W(Dy) C W(Fy) is a W(Dy)-coset in the Weyl group
W(Fy) of type Fy. Since W(F,) has an admissible 2-covering
(W(B4),3.W(Dy)) (cf. §3.5.11), one concludes that 3.W(D,) contains Cox-
eter elements of the Weyl group W(F4) which are of order 12 and which
are the twisted Coxeter elements in 3.W(D,) (cf. [23, § T]). Let w € y.W be
such an element being contained in nz.W(Z). From [25, Prop. 7] one
concludes that = = () must be trivial.

The proper y-invariant subrootsystems of the rootsystem @ are of type A},
A‘i’, As, Ay, 0 (cf. [25, §2, (B)]). The coset ny .W(¥) must intersect the two W-
conjugacy classes of elements of order 3 being contained in 3.W(D,) non-tri-
vially. Hence W(¥) cannot be a2-group which leaves only the case ? of type As.
In particular, one may assume that ny = yand that yis centralizing W(¥). Itis
straightforward, that 7y .W(¥) is a subset of a Weyl subgroup W(A4s x Ag) <
< W(Fy) of type Az X Az in W(#4). Hence ny . W(¥) has trivial intersection
with the W(#y)-conjugacy class containing y.( — idy), a contradiction.

3.5.7 — y.W of type E;

We may assume that ¥ C @ is a maximal subrootsystem of @. The
maximal subrootsystems of the rootsystem of type Es are of type Ds,
Ay x Ay and Ag. From Table 3.2 one concludes that W(¥) has trivial in-
tersection with a W-conjugacy class which is not the Coxeter class. This
implies that = is not empty.

Since proper Weyl subgroups of W = W(®) are not normal in W,
Nw(W(Z)) # W. Hence it suffices to show that W(®) cannot be covered
by the W-conjugates of W(¥), ¥ a maximal subrootsystem of &, and a
maximal subgroup M < W containing Nw(W(Z)). The maximal sub-
groups M < W of W ~ O (2) are known (cf. [9, p. 26]), and from their
permutation characters y;, corresponding to the left C[W] module
IndX}’(C) one can determine the W-conjugacy classes they do not contain.

In Table 3.2 we have listed some W-conjugacy classes which have trivial
intersection with some of the maximal subgroups, and also the decom-
position of the permutation character y,, in terms of the characters oc-
curing in the character table in [9]. We have used the symbol x to express
that the conjugacy class has non-trivial intersection with the maximal
subgroup and the symbol J in case the intersection is trivial. By
sgn: W — {£ 1} we denote the sign character.
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TABLE 3.2. — Maximal subgroups and conjugacy classes of Og (2)

maximal subgroup v 94 | 124 | 84 | 104 | 12C
My =W(Ds) 21+ X+ X9 %} %)} X %] x
My =W(A4;5 x Ay) 71+ xs + X g | @ | X %)
M =312 28, 21+ sgn - 17+ 1o x | x| x| @| @
My = Nyw(W(A3) 21+ 28+ X0 X %) ) ) X
M5 = Cw(24) 11+ X9+ x10 %) x x %) %)

Since M has to contain Coxeter elements (cf. Prop. 3.1) which corre-
spond to the conjugacy class 124, one concludes from Table 3.2 that M has
to be conjugate to either M3 or M5. Since M; and M, have trivial inter-
section with the conjugacy class 104, ¥ has to be of type A5 x A;. Hence M
cannot be conjugate to M5, as this group has trivial intersection with the
conjugacy class of type 9A. But M cannot be of type M3 either, since this
group has trivial intersection with the conjugacy class of type 12C.

3.5.8 — y.W of type 2FE;.

Since y.W = (— idg).W, the same argument which was used in §3.5.2
and the non-existence of admissible 2-coset covers for W = W(&s) (cf.
§ 3.5.7) show that admissible 2-coset covers do not exist in this case.

3.5.9 — y.W of type Er

We may assume that ¥ is a maximal subrootsystem of @. Thus ¥ is of
type Eg, A7, Dg x Ay or As x Ay. Let  : W — Spg(2) denote the canonical
projection on the symplectic group of degree 6 over the field with 2 ele-
ments. Some information on maximal subgroups and conjugacy classes of
the group Spg(2) has been collected in Table 3.3 (cf. [9, p. 46]).

From Table 3.3 one concludes that there exists a W-conjugacy class
which is not the Coxeter class having trivial intersection with W(¥). Hence
Z is non-trivial. Since proper Weyl subgroups of W are not normal,
Nw(W(Z)) is contained in a maximal subgroup M of W containing
wy = —idg. The same technique which was used in §3.5.7 and the in-
formation listed in Table 3.3 show that either ¥ is of type E¢ and M is W-
conjugate to (wg).W(A7), or ¥ is of type A7 and M is W-conjugate to
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TABLE 3.3. — Maximal subgroups and conjugacy classes of Sps(2)

maximal subgroup 3B TA 84 9A 154
M, = W(Ey) X %) X X %)
My =W(A7) %) X %) & X
Ms =W(Ds x Ay) %) %) X X %)
M, =Us@3):2 X %) X %) %)}
M; =25 L3(2) X X X %) %]
Mg =2.25]: (S5 x S3) X %) X %) 1%}
M7 = W(A5 x Az) X %) %) X
Mg = S»(8) X X %) X 6]

(wo).W(Ej). Since wy is not contained in Weyl subgroups of type A7 or Eg,
wy € ns.W(E), and we may assume that = is of type A7 or Eg, respectively.
However, in the first case, neither W(E¢) nor wy.W(A7) contain Coxeter
elements which are of order 18; in the second case neither W(A4;) nor
wo.W(E¢) contain elements of order 9. Hence admissible 2-coset coverings
cannot exist.

3.5.10 — 7. of type FEjy

Let y:W — {£1} denote the sign character of the reflection group
W =W(Eg), andlet W — 0§ (2) denote the canonical projection on the
orthogonal group of maximal Witt index of degree 8 over the field with 2
elements. As in the previous case we may assume that ¥ is a maximal
subrootsystem of @. Hence ¥ is of type E7 x A, Ds, As, E x As or A3 (cf.
[6]), and thus W(¥) is W-conjugate to a subgroup of one of the maximal
subgroups My, M4, M7, M1, M15 of W = 0§ (2) (cf. Table 3.4). We have
chosen the enumeration of the W-conjugacy classes of maximal subgroups
in such a way that it coincides with its appearance in the list of maximal
subgroups in [9, p. 85].

For each of the maximal subgroups My, My, M7, M1y, M5, there exists
one W-conjugacy class which has trivial intersection with the maximal sub-
group and which is not the homomorphic image of the Coxeter class (cf. Table
3.4). As y(w) = 1 for a Coxeter element w, this implies that = is not empty.
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Since W does not contain proper normal Weyl subgroups,
Ny(W(Z)) #W and Nw(W(Z)) is contained in a maximal subgroup
M < W. Let M denote its homomorphic image in W. From the previous
remark one concludes that y(M) = {i 1}. Hence M is W-conjugate to
one of the maximal subgroups My, My, My, M1y, M3 = (5 (24), My,
Mis. As M3 and M4 do not have elements of order 5, they cannot
contain the homomorphic image of a Coxeter element whose order is
divisible by 15. Hence M is W-conjugate to one of the maximal sub-
groups listed in Table 3.4.

Assume that ¥ is of type E7 x A;. Then W(¥) has trivial intersection
with the W-conjugacy classes 9B and 15B. The first fact implies that M
cannot be W-conjugate to M5, while the latter implies that M cannot be
W-conjugate to M1, My, M7 or M (cf. Table 3.4). The cases ¥ of type Ds,
Ag, Eg x Ay and A2 can be ruled out by a similar argument and the in-
formation listed in Table 3.4.

TABLE 3.4. — Maximal subgroups and conjugacy classes of Og (2)

maximal subgroup TA 94 9B 15B
=W(E7 x Ay) X X %
My = W(Dy) X %) &
My = W(Ag) x a x %)
My = W(Es x Ag) %) X X %)
M5 = Np(W(AY) %) %) %) X

3.5.11 — y.W of type F}

The maximal subrootsystems of @ are of type By, Cy, C3 x Ay, B3 X Al,
Ag x Ay, Ag X Al and As X Az. Note that since there exists a surjective
morphism f: W(Fy) — 82 with ker(f) a 2-group, W = W(F,) has precisely
3-conjugacy classes a , 1=1,2,3, of elements of order 3. The graph au-
tomorphism of F)y permutes 2 of these conjugacy classes and leaves a§V
fixed. We may assume that ‘71 has non-trivial intersection with Weyl
subgroups of type Cy, and ¢} has non-trivial intersection with Weyl sub-
groups of type Bj. Since no maximal Weyl subgroup contains Coxeter
elements of the Weyl subgroup of type B, - which have order 8 - and also

elements from the W-conjugacy class oY/, = cannot be trivial.
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Since n=z.W(Z) contains Coxeter elements, one concludes from [25,
Prop. 7] that Ny (W(&)) = Nw(W(Dy)) or Ny (W(E)) = NW(W(D4)). Hence
Z is either of type D4 or Dy.

Assume £ is of type Dy4. Since (W (By),3.W(Dy)) is an admissible 2-coset
covering, W(¥) must contain elements from the W-conjugacy class o) and
also Coxeter elements from the Weyl group W(B,). Thus from the knowledge
of maximal Weyl subgroups of W one concludes that W(¥) < W(By) is a
subgroup of a Weyl group of type By. Proposition 3.1 then implies that W(¥) is
of type B4. Applying the graph automorphism yields the case = of type Ds.

3.5.12 — ». W of type Go

The subrootsystems of @ are of type Ag, AQ, Aq x Al, Ay, Al or . The
W-conjugacy classes are 1, wy = —idg, p', pY, ", 1V, where p, is a long
root, p, a short root, o of order 3 and 7 of order 6. Straightforward argu-
ments show that for ¥ = A, or Ag, nz.W(Z) must be as described in Table
3.1, and that there does not exist an admissible 2-coset covering for ¥ of

type Al X Al.

3.5.13 — .V of type 2B,

Non-trivial y-invariant proper subrootsystems do not exist in this case
(cf. [25, § 2, (D)]). Hence ¥ = & = (), and this yields that admissible 2-coset
coverings do not exist in this case.

3.5.14 — ». W of type 2G>

Every non-trivial proper y-subrootsystem is of type Ay x A (cf.[25, §2,
(D)]). Note that W ~ D(24) is isomorphic to a dihedral group of order 24. In
particular, y.W contains two W-conjugacy classes of elements of order 12
and one W-conjugacy class of elements of order 4. As NV~V(W(A1 x A1) isa
2-group of order 8, an admissible 2-coset covering (ny W), n=.W(Z))
must satisfy ¥ = @ = () and ny and ne must be of order 12. However, for
this choice neither ny . W) nor n=z.W(Z) contains elements of order 4, and
thus admissible 2-coset coverings cannot exist in this case.

3.5.15 — y.W of type °F,

Every non-trivial proper y-subrootsystem is of type Bz, Ay x Ay or
A; x A;. (cf. [25, §2, (D)]). Let p;, © =1,2,3,4, be the simple reflection
associated to a basis 4 of & ordered in the natural way. Then
a: = yp1pe € 7.W is an element of order 24. We may assume that nz.W(Z)
contains an element W-conjugate to o. Since NW(W(Al x A1) and
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Nyw(W(B%) are 2-groups and as Ny (W(Az x Az)) = (— idi). W(Az x Ag)
(cf. [6, Tab. 8]), & must be trivial.

Moreover, y.W contains elements of order 6 and 8. Hence the same
argument yields that ¥ cannot be of type Al x Aj, Bg or Ag x Ag. But as
7.W has more than two W-orbits, also ¥ = () is impossible showing that
admissible 2-coset coverings do not exist in this case. O

4. The proof of Theorem A - part I

In this section we will prove that a generic 2-covering {H, K} of the finite
group of Lie type (G, F') must satisfy the conditions of Theorem A (cf. Thm.
4.5). In the subsequent 3 sections it will be proved that every pair of subgroup
{H, K} as described in Theorem A is indeed a generic 2-covering. We start
with the following property - the easy proof is left to the reader.

PrOPOSITION 4.1. Let (G, F) be a finite group of Lie type, and let
1:G — G be a finite F-invariant central isogeny. Let {H, K} be a pair of F-
stable closed subgroups of maximal rank, and let H and K denote their
canonical images under 1. Then, if {H, K} is a generic 2-covering of (G, F),
{H,K} is a generic 2-covering of (G, F). In particular, one has the
Sollowing:

(a) Let (G, F) be a finite group of Lie type of adjoint type. Assume
that the pair of F-stable subgroups {H, K} of maximal rank is a generic 2-
covering. Then for every group of Lie type G isogeneous to G and H and K
defined as above, {H,K} is a generic 2-covering of (G, F).

(b) Let (G,F)bea sitmply-connected finite group of Lie type, and let
H, K be F-stable subgroups of maximal rank. Assume that {Hp, Kp} is
not a 2-covering of Gp. Then {Hp, Kr} - with H and K as defined above - is
not a 2-covering of G for all groups of Lie type (G, F) isogeneous to (G, F).

4.1 — Three exceptions

It seems remarkable to us that almost all the admissible 2-coset cov-
erings listed in Table 3.1 give rise to a generic 2-covering - sometimes with
a further characteristic restriction. However, there are three cases in
Table 3.1 which will not correspond to a generic 2-covering:

1) (G,F) of type Cy, H reductive of type W(C3) x W(Cy), K° re-
ductive of type 2.W(C5),
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(2) (G,F) of type As, H reductive of type W(Asz), K° reductive of
type 2.W(43),

(3) (G, F) of type 243, H reductive of type 2.W(As), K° reductive of
type 2.W(45).

These cases will now be analyzed by a case-by-case analysis. If the
characteristic of the field is different from 2, neither Hy nor Ky will contain
regular unipotent elements (cf. [20]). Therefore, we may restrict our con-
sideration to the case when the field of definition is of characteristic 2.

Case (1): Let (G, F) be the simply-connected finite group of Lie type of
type Cy defined over the algebraically closed field I's of characteristic 2,
and let H and K° be F'-stable reductive subgroups of maximal rank of type
W(A; x C3)" and 2.W(C%)", respectively. We put K := Ng(K°). In parti-
cular,

(4.1) Gr ~ Sps(q), Hr ~Sps(q) x Sps(q), Kp =~ 2.Spa(q®)

for some 2-power q = 2/. One has:

PROPOSITION 4.2.  The pair of subgroups {Hp, Kr} is not a 2-covering
Of Gr.

ProOOF. Assume that {Hp,Kr} is a 2-covering of (G,F). Let
& := x5y, € G be an element where x; is a semisimple element generating
a Coxeter torus in Sps(q) and where x, is a regular unipotent element in
Sp4(q). Hence x € Spa(q) x Spa(q), and Sps(q) x Sps(q) < < Sps(q) is sta-
bilizing the 4-dimensional summands V4 and Vj of a orthogonal decom-
position of the natural module V' = Vg of Spg(q). From the action of x on V, it
is obvious that x cannot be contained in any Gp-conjugate of Hr. Hence it
must be contained in a Gp-conjugate of K, and thus we may assume that
x € Kp. Since x,, is acting as a Jordan block of size 4 on V}, ¥, cannot be
contained in Kj. Moreover, one concludes that x, € CK;(acu) ~ Sp4(q) is
acting diagonally on V. But this yields a contradiction, since we assumed
that x; is leaving a 4-dimensional subspace of V fixed. O

Case (2): Let G be the reductive group GL4 defined over the alge-
braically closed field [y of characteristic 2, and let H and K° be F-stable
reductive subgroups of maximal rank of type W(AZ)W and 2.W(A§)W, re-
spectively. We put also K := Ng(K°). In particular,

(4.2) Gr ~ GL4(q), Hp ~ GLs(q) x GL1(q), Kr ~ 2.GL3(q%
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for some 2-power q = 2. Let V4 denote the natural IF,[GL4(@)]-module,
and let V:=V, @V, be a direct decomposition in subspaces of I,-di-
mension 2. Then using the element x := xx,, where x; is a semisimple
element acting as a Singer cycle on V5 and fixing V3, and where ,, is a non-
trivial unipotent element fixing V5 and acting non-trivial on Vj, the same
argument which was used in the proof of Proposition 4.2 shows that
{Hp,Kr} is not a 2-covering of Gp. Moreover, since in this case
GL4(q) = SL4(q) x (¢ — 1) this yields that {SL4(q) N Hp,SL4(q) N Kr} is
not a 2-covering of SL4(q). Hence one has:

ProrosiTioN 4.3.  Let (G, F) be a simply-connected group of Lie type of
type Az defined over the algebraically closed field 2 of characteristic 2.
Let H be an F'-stable reductive subgroup of maximal rank of type W)Y,
and let K° be an F-stable reductive subgroup of maximal rank of type
2.W(A%)W. Then for K .= Ng(K°), {H,K} is not a generic 2-covering of
@, F).

Case (3): Let G be the reductive group GL, defined over the alge-
braically closed field [y of characteristic 2, and let ' be a Frobenius
morphism which is the composition of a standard Frobenius morphism
with a graph automorphism. Let H and K° be F-stable reductive sub-
groups of type W)W and 2.W(A%)W, respectively. There are obviously
two W-conjugacy classes of type 2.W(A?)W. The one we are considering is
the one corresponding to the Gp-conjugacy class of Levi complements of
the maximal parabolic subgroup of type A; x A;. Then for K := Ng(K°)
one has:

48)  Gr=~GUig), Hr=~GUs(q) xGUi(g), Kr=~2GLx(g*}

for some 2-power ¢ = 2/, where GLa(q%)* denotes the group of 2-by-2 ma-
trices X over Fp. whose norm of the determinant is equal to 1, ie.,
N 2 /;[,q(det(X)) =1.

Let V, be the natural [F:[GU4(g)]-module equipped with the non-de-
generate hermitian form (.,.). Let V4 = V5 & V] be an orthogonal decom-
position into non-degenerate 2-dimensional [ z-subspaces V> and V;. By
choosing an element x = x,x,,, where %, is acting as a non-trivial unipotent
element on V} and fixing V; pointwise, and where «; is acting as an element
of order ¢ — 1 on V> and fixing V; pointwise, the same argument as pre-
sented for Case (1) shows that {Hr,Kr} is not a 2-covering of Gp =
= GUy(q). Thus using Proposition 4.1 and applying the same technique
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which was used to reduce to the simply-connected case (cf. Case (2)) one
obtains the following:

ProrosITION 4.4.  Let (G, F) be a simply-connected group of Lie type of
type %Az defined over the algebraically closed field 'y of characteristic 2.
Let H be an F-stable reductive subgroup of maximal rank of type
2. WA, and let K° be an F-stable reductive subgroup of maximal rank
of type 2.W(A%)W corresponding to the Levi complement of the F-stable
parabolic subgroup of type A3. Then for K := Ng(K°), {H,K} is not a
generic 2-covering of (G, F).

4.2 — Generic 2-coverings

From Theorem 2.2 and 3.4 and the main result of [20] one concludes the
following:

THEOREM 4.5. Let {H, K} be a generic 2-covering of the finite group of
Lie type (G, F). Then H and K are of maximal rank.

(a) Assume that for one subgroup say H, R,(H) # 1. Then (G, F) is
of type A1, As, Az or 2As, H is maximal parabolic and K° is reductive.
Moreover, the types of the Levi complement H/R,(H) of H and of K° is as
listed in Table 1.1.

(b) Assume that H° and K° are reductive. Then the types of (G, F),
H° and K° and the characteristic of I¥ is as listed in Table 1.2.

ProoF. By definition, one of the subgroups - say H - must contain a
maximal torus, and thus it is of maximal rank. Then either K is also of
maximal rank, or H must contain an F-stable maximal torus of each Gp-
conjugacy class. Assume the latter case holds. If H° is not reductive, by
enlarging the group H° we may assume that H° is an F-stable parabolic
subgroup of G (cf. [13, Thm. 30.4]). In particular, an F-stable Levi
complement L must contain an F-stable maximal torus of each Gp-
conjugacy class. Thus in either case G must contain an F-stable
reductive subgroup R containing an F-stable maximal torus of each Gp-
conjugacy class. From Proposition 3.1 and [25, Prop. 4] one concludes
that this implies that (G,F) must be of twisted type. Moreover, the
arguments used in §3.5 show that (G,F) cannot be of type 24,, 2Dy, ¢
odd, 2E§ either. For none of the remaining types there exist an ad-
missible 2-coset covering for the Weyl group coset (cf. Thm. 3.4). Hence
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such an F-stable reductive subgroup cannot exist, and thus K is of
maximal rank, too.

If H° is not reductive, we enlarge it to an F'-stable parabolic subgroup
H°. Let L < H° be an F-stable Levi complement of H°, and let 1y WEHW
denote its type. If H° is reductive, we denote by 1w W)Y the type of H°.

Second we do the same for K° and denote by nz.W(5)" the type of
either K° - in case K° is reductive - or of an F'-stable Levi complement of an
F-stable parabolic containing K°.

Thus, the hypothesis and Theorem 2.2 imply, that (ne W), ns.W(Z))
is an admissible 2-coset covering of the Weyl group coset y.W (cf. §2.1).
Hence by Theorem 3.4, ».W and the admissible 2-coset covering
(ny WHW),n=z.W(Z)) must occur in the list of Table 3.1.

The only cosets corresponding to Levi complements occur for the
groups of Lie type Aj, As, A3 or 2As. From this one concludes that if H° is
not reductive, (G,F) must be of type A;, Az, As or 243 and K° must be
reductive. In particular, a direct verification shows that the groups {H, K}
listed in Table 1.1 are the only possibilities in this case. This yields (a).

For (b) we may assume that H° and K° are reductive of maximal rank of
one of the types listed in Table 3.1. From the covering property (ii) (cf. § 1)
one concludes that either H or K must contain a regular unipotent element
of G. Hence from [20] one concludes that {H, K} is one of the groups listed
in Table 1.2, or (G, F) is of type As, 243 or Cy, p = 2 and the type of H° and
K° must be as indicated in Table 3.1. In the previous section (cf. §4.1) we
showed that in neither of these cases {Hp, Kr} is a 2-covering for Gp. This
completes the proof. O

5. Some 2-coverings for finite groups of Lie type

In this section we shall give an easy geometric argument showing the
generic 2-covering property for the cases listed in Table 1.1 and for some of
the cases listed in Table 1.2. The two remaining case will be handled in the
two subsequent sections.

5.1 — Parabolic-type generic 2-coverings
For groups G of type A, ¢ = 1,2, 3, the covering proverty of the pair of

subgroups {H,K} as listed in Table 1.1 was shown in [4, Prop. 4.2].
Therefore, it remains to show the generic 2-covering property for G of type
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2As, and H and K given as described in Table 1.1. This property can be
deduced from the following elementary geometric fact:

PROPOSITION 5.1, Let ¥ 2 be a finite field with q? elements, where q is a
prime power. Let (V,(.,.)) be a 4-dimensional non-degenerate hermitian
[g2-space, and let GU4(q) := Iso (V, (., .)) denotes its isometry group. Then
for an element g € GU4(q) one (or both) of the following holds:

(i) There exists a 1-dimensional non-singular g-invariant F -
space V.

(ii)) There exists a 2-dimensional singular g-invariant [Fge-
space V.

ProoF. Let Ji(g) be the set of all non-trivial g-invariant non-singular
subspaces of g. Note that if W e Ji(g) is directly indecomposable,
dimpq2 (W) must be odd. Furthermore, for W € N(g), W+ € N(g). This
shows that either 9i(g) = ), or there exists a 1-dimensional g-invariant
subspace W € 9i(g).

Assume that g € GUy(q) is an element for which neither (i) nor (ii)
holds, and let W < V be a minimal non-trivial g-invariant subspace. Hence
from the previous remark one concludes that W must be singular. By
hypothesis, dirn-[«q2 (W) = 1. In particular, W < Wt = rad(W) has codi-
mension 2 in its radical.

Assume that there exists a 3-dimensional g-invariant subspace W’ dif-
ferent from W+. By hypothesis, rad(W’) # W and W' is not non-singular.
Hence either rad(W') < W+ and rad(W’) @ W is a 2-dimensional g-in-
variant singular subspace, or W+ @ rad(W’) = V and thus U := W n W+
is g-invariant and has dimension 2. Since U cannot be non-singular, it
contains either a g-invariant 1-dimensional subspace Uy or it is a 2-di-
mensional singular subspace. Hence by assumption, Uj is a 1-dimensional
singular subspace, and Uy ¢ rad(W') is a singular 2-dimensional subspace,
a contradiction. This shows that W+ is a unique 3-dimensional g-invariant
subspace, and also that W is the unique 1-dimensional g-invariant sub-
space.

The element g acts as unitary transformation on the induced hermitian
space W'/W, and thus has a 1-dimensional invariant subspace R <
< W+ /W. Let R < W+ be its canonical preimage, i.e., R is a g-invariant 2-
dimensional subspace containing W satisfying R = R/W. By hypothesis, R
cannot be singular and thus R is a 1-dimensional non-singular space. In
particular, R £ R+ and this implies W = RN R*.
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Let x; € W be a vector spanning W, and let y; € V be such that x; and y;
span a hyperbolic plane. Let 2 € R such that R = = = spany , (@1, %2), and
Y2 € R* such that R+ = span, 2 (21,y2). Then with respect to the ordered
basis (y1, Y2, 2, x1) the element ¢ is represented by an upper triangular
matrix over [ 2. The entries on the diagonal of this matrix are w2, A, ufor
some,uequ ={aeFpla?=a}, and 1,2 € Fp, 71 = 1. From the
Jordan normal form one concludes that either there exists another 1-di-
mensional g-invariant subspace different from W, or 1 = x. Similarly, the
non-existence of a 3-dimensional g-invariant subspace implies that z~ = /'.
Thus the semi-simple part of ¢ has to be a central element of order 1 or 2. In
particular, g satisfies (ii), a contradiction, and this yields the claim. O

5.2 — Reductive-type generic 2-coverings for groups of type A, or 2A,

Case (1): G of type Ay, p = 2. In case (G, F) is of type Ay, it is well-
known that {Hp, Kr}, where H is the normalizer of an F-stable maximally
split torus, and K is the normalizer of an F-stable maximally non-split
torus, is a 2-covering for G = GL3(q), ¢ = 2/ (cf. [14]).

Case (2): G of type As, p = 3. Let Gr := Gl3(q), g = 3/, andlet V = V3 be
its natural 3-dimensional I',[G]-module. We assume that Hp := GL2(q)x
xGL1(q), Kp: = 3.Tp, Tr a Singer torus. From Jordan’s normal form theo-
rem one concludes that a non-trivial element ¢g has either no proper g-in-
variant subspace - in which case it is Gp-conjugate to Ky - or it has a 1-di-
mensional and 2-dimensional g-invariant subspace, say V; and V. If there
exist V1 and V, with V1 NV, =0, g is Gr-conjugate to Hp. Thus we may
assume V; < V,. Hence the same argument which was used in the proof of
Proposition 5.1 shows that in this case g is either Gp-conjugate to
GL2(q) x GL1(g), or g has Jordan decomposition g = xsx, with x4 central and
a,, regular unipotent. In particular, g is Gp-conjugate into Kp, and this yields
the claim in this case.

Case (3): G of type 243, p = 3. For Gp := GUs(q), ¢ = 3/, the same
argument as was used in Case (2) shows the 2-covering property for the
subgroups {Hp, Kr}.

5.3 — Reductive type generic 2-coverings in characteristic 2

Case (4): G of type Cy, p = 2. Let (G, F) be a finite group of Lie type of
type C, defined over the algebraically closed field Iz of characteristic 2 and



236 D. Bubboloni - M. S. Lucido - Th. Weigel

let F:G — G be a standard Frobenius morphism. Let H° be an F-stable
reductive subgroup of maximal rank of type W(D,)", and let K° be an F-
stable reductive subgroup of maximal rank of type 2.W(D,)". Then by
Theorem 2.2, 3.4 and Dye’s theorem, {H,K}, where H := Ng(H°),
K := Ng(K°), is a generic 2-covering of (G, F).

Case (5): G of type Co, p = 2. Let £ = 2 and (G, F) as in Case (4). Let H°
be an F'-stable reductive subgroup of maximal rank of type W(A% )W, and let
K° be an F-stable reductive subgroup of maximal rank of type 2.W(A%)W.
By Theorem 2.2 and 3.4, every maximal F-stable torus of (G,F) is Gp-
conjugate to a torus in H° or K°. Let H:= Ng(H°®), K: = Ng(K°). Then
a(Hp) and a(Kyp) are Gr-conjugate to the subgroups constructed in Case
(4), where a: Gr — Gp denotes the non-trivial graph automorphism. Hence
{H,K} is a generic 2-covering of (G, F).

Case (6): G of type Gg, p = 2. Let £ =3, and let (G, F) be the finite
group of Lie type of type Cs, and let X < G be an F-stable subgroup of G of
type Gso. Let Y° < X be an F-stable reductive subgroup of maximal rank of
type W(A2)", and let Z° < X be an F-stable reductive subgroup of max-
imal rank of type 2.W(A)". We put also Y := Nx(Y°), Z := Nx(Z°). Then
Y is contained in an F-stable subgroup H as constructed in Case (4), and Z
is contained in an F-stable subgroup K as constructed in Case (4). More-
over, since X cannot be contained in H, and as Y is maximal in X, one has
Y = X N H. In a similar fashion one shows that Z = X N K.

By Theorem 2.2 and 3.4, every F-stable maximal torus of X is Xp-
conjugate to a maximal torus in Y° or Z°. Moreover, a straightforward
order argument shows that

(5.1) Gr =Hp.Xp, Gp=KpXp.

Hence the following proposition shows that {Y, Z} is a generic 2-covering
for (X, F):

PROPOSITION 5.2. Let A be a finite group with 2-covering {B,C}, and
let R < A be a subgroup satisfying A = B.R = C.R. Then {BNR,CNR}
s a 2-covering for R.

Proor. By hypothesis, A= |J B"U |J C". Hence since B"NR =
= (BN R)', this yields reR reR

(5.2) Rc|JBnRYulJCnRY. O
reR reR
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6. Groups of type C3, p =3

Throughout this section we assume that (G, F) is a finite group of Lie
type of type Cs of adjoint type defined over the algebraically closed field
I3, i.e., G = PCSps. Furthermore, we assume that H = H° is an F-stable
reductive subgroup of maximal rank of type W(Cy x AW, and that K° is
an F-stable reductive subgroup of maximal rank of type 3.W(A§)W.
Moreover, K := Ng(K°). We denote by W) and nz.W(Z) the Weyl
group coset corresponding to the Gp-orbit containing H and K°, re-
spectively.

In order to show that {H, K} is a generic 2-covering of G, it suffices to
show by Theorem 3.4(b) that every element x = x5x,, € Gr with non-trivial
unipotent part x, is Gg-conjugate to an element in Hy or Kp.

ProrosiTiON 6.1.  Let (G, F), H and K be given as described above. Let
x = x5k, € Gy be an element satisfying:

(@) the semisimple part xs of x is not contained in the center of Gr,
(i) Cqlxy)° 1s not of type W(Ag)W.

Then x is Gp-conjugate to an element of Hp or Kj,.

ProoF. Since 3 is not a bad prime for G, every unipotent element of
Ce(x) is contained in Cg(ws)° (cf. [24]). Thus ® € Cg(xy)p. If the rootsy-
stem of Cg(xs)° is of type 0, x; is a regular semisimple element and thus
2, = 1. Hence in this case Theorem 3.4 yields the claim. Thus it suffices to
show that every F-stable reductive subgroup C of maximal rank of type
n. WD - with IT not of type 0, Ay, Cs -is Gp-conjugate to a subgroup in
H or K°. By [25, Prop. 4], it suffices to show that n.W(T) is W-conjugate
to a subset in W(¥) or nz.W(Z).

In Table 6.1 we have listed all 3-saturated subrootsytem of the root-
sytem @ of type Cs. In the second column we have indicated whether such a
subrootsystem is W-conjugate to a subrootsytem in W(¥). If this is the
case, we assume /7 C ¥ and denote by Nw(W(T)) := Nw(W(UT)) JWUI)
and N weyWUID)) := Nwepry(WUT))/W(II) the respective outer norma-
lizers. We used the following notation: 2" denotes an elementary abelian 2-
group of order 2", S,, denotes the symmetric group of degree n, D(n) de-
notes the dihedral group of order 2n.

Every 3-saturated subrootsystem I7 of @ of type different from A
and C3 is contained in a subrootsystem of type Cs x A;. Thus we may
assume that /7 is contained in ¥. If N wey(W(II)) contains an element of
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TABLE 6.1. — p-Saturated subrootsystems of @ = &(Cs), p odd.
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type 1T Cw? Nw (W) Ny (WD)
Cs - 1 -

Cy x Ay + 1 1

A3 + Ss 2

Cy + 2 2

Ay - 2 -

A? + 22 22
A x Ay + 2 2

Ay + D4) D4)
A, + 22 22

0 + S3x 23 D@) x 2

every conjugacy class of Nw(W(II)), then every F-stable reductive
subgroup of maximal rank of type I7 is contained in a Gp-conjugate of H.
Hence by Table 6.1, the claim follows for elements x for which Cq(x,)° is
not of type A3.

Let « be an element such that C: = Cg(x5)° has rootsystem I7 of type Zl?.
There are 3 Gp-conjugacy classes of F-stable subgroups C with rootsystem
of type Al depending whether for the corresponding W-orbit n;.W(IT w
the element n; W(IT) € Nyw (WD) has order 1, 2 or 3. In the first 2 cases
C is Gp-conjugate to a subgroup of H; while in the third case C is Gp-
conjugate to K° (cf. [25, Prop. 4]). This yields the claim. O

6.1 - G and Gp-conjugacy classes

In order to relate Gr-conjugacy classes in Gy to G-conjugacy classes we
use the following lemma:

LeEmMA 6.2. Let X be a connected affine algebraic group defined over
the algebraic closure [, of a finite field I, and let F:X — X be a Fro-
benius morphism.

(a) Let x € X be an element of X. Then the X-conjugacy class x*
contains an F-fixed point, if and only if F(x) € x*X.
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(b) Assume x is an F-fixed point, i.e., F(x) = x. Then the mapping
6.1)  p:{af|geX, F’) =a’}—Cx(x)/Cx(x) =: Cx(x),
p@fYF): =F(g)g ' Cx(x)°,

18 surjective and yields a bijection p between Xp-conjugacy classes of F-
fixed points in xX and F-conjugacy classes of Cx(x). In particular, if Cx(x)
1s connected and if x is an F-fixed point, there exists a unique Xp-con-
Jugacy class of F-fixed points in x~.

(¢) Let Y <X be an F-stable closed connected subgroup and let
x € Y be an F-fixed point. Then if y: = «", h € Y, is an F-fixed point one
has

(6.2) oy () = px(¥y),
where : Cy(x) — Cx(x) is the canonical map.

Proor. (a) and (b) are direct consequence of the Lang-Steinberg
theorem. (c) is a direct consequence of (b). O

6.2 — Semisimple elements with connected centralizer of type W)Y and
2.W(A)"

In view of Proposition 6.1 we need to take a closer look at semisimple
elementg xs € Gp whose connected centralizer C;(x;)° is of type WA
or 2.W(A2)W.

(63) O————O0———eo

Let {a1, 02,03} denote a basis of the rootsystem & with numbering
given as in (6.3), i.e., a1, az are short roots and ag is a long root. The sub-
rootsystem 4 spanned by a; and ag is of type Ay. Let T < G be an F-stable
maximal torus of G being contained in an F-stable Borel subgroup of G,
and let

(6.4) X:=Hom (7, F}), Y:=Hom(F},T)
denote the character group and co-character group, respectively. We put
(6.5) C.:=(T,U,|ac4).

Note that C'is a Levi complement of the maximal parabolic subgroup Ps, in
particular C ~ GL3(I'3)/{£1} and thus C has precisely 3 unipotent con-
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jugacy classes: regular unipotent elements, root elements, and the trivial
element. Obviously, the centralizer in C for either of these unipotent ele-
ments is connected.

Let & € @V be the sum of all short positive coroots. Then with respect
to the canonical pairing, 4 C @ is orthogonal to & € @". In terms of affine
group schemes the kernel of & is non-trivial, but coincides with the con-
stant group scheme of order 3. However, on [F3-rational points & F — T
is injective. Moreover, ([5)r is a cyclic group of order ¢ — 1 = 3/ —1and
the induced map on F-fixed points &: (F5)r — T is also injective. Thus

(6.6) im(@) = Z(C), im(Er) = Z(Cr).

Moreover, every semisimple element x; € Gp for which Cg(x,)° is of type
W(A)W is Gp-conjugate to a non-trivial element in im(ép).

Let (—1) € W be the element acting as —idy on X, and let ¢ € G be
an element such that F(e)e™! € No(T), n(F(e)e!) =(—1), where
n: No(T) — W denotes the canonical map. Then C° is an F-stable re-
ductive subgroup of maximal rank of G. Let

(6.7) & T

denote the composition of & with _e. Then, if we let Fy act on F; by
Fo(x): = F(z1), » € [}, one has

(6.8) Fo& =%oF,.
Moreover, F}O is a cyclic group of order ¢ + 1 = 3/ + 1 and one has
(6.9) im(Eg,) = Z(Cp).

Thus every semisimple element x; for which Cq(x)° is of type (— DWW
is Gp-conjugate to a non-trivial element in im(é%o).

ProposITION 6.3. Let (G,F), H and K be as defined above. Let
x=xs-x, € Gp be an element such that Cg(xs)° is of type W(Az)W or
(—-HWA)".

(@) For x, one of the following holds: (i) x,, is trivial, or (1) x, is @
non-trivial short root element, or (111) x,, is a reqular unipotent element in
A= [Cow,)°, Calwy))

(b) If xy, is a short root element, then x is Gp-conjugate to an ele-
ment in Hy.

(¢) Ifx,is aregular unipotent element in A, then x is Gp-conjugate
to an element in Kg.
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ProoF. The type of Cg(x,)° is either W()W or (—=1).W(4)". Part (a)
has been proved already in the discussion above. Thus it remains to es-
tablish (b) and (e).

(b) Assume that Cg(x;)° is of type WY, Let H = (T,U, |a ¥,
where ¥’ C @ is the subrootsystem spanned by ag, a3 and the heighest long
root a,. Then ¥’ is a subrootsystem of type Cz x Ay, H' is an F-stable
subgroup of G of maximal rank of type Cy x A; and thus Gg-conjugate to
H. Hence we may assume that x, € im(ép) < Hy and Cg(xs)° = C. As
U,, < CNH', there exists an element h € Cp such that o = u € (U,,)p.
Hence 2" € H), and the claim follows.

Assume that Cg(x;)° is of type (—1).W(A)W. As (=1) e W), there
exists an element e € H' such that Fe)e™! € Ny (T), n(F(e)e ) = (=1). In
this case we may assume that x, € 1m(&5,) < H%. Moreover, Cy(x,)° is an F'-
stable reductive subgroup of H' of maximal rank of type (—1).W({+ .az})W.
Hence Cyr(xs); contains short root elements, and there exists & € Cg(xs)r
such that 2" € Cp(x5)p. Thus o € HY and the claim follows.

(¢) Assume that Cg(x,)° is of type W(A)W. Then we may assume that
xs € imGp), C = Cg(xs)” and «,, € Cp. In particular, W(4) coincides with
the stabilizer of & in W. Let t € W(4) be an element of order 3. As |Tr| is
coprime to 3, there exists an element u € N¢(T)r of order 3 with n(u) = .
Moreover, « is regular unipotent in G (cf. [20]). Moreover, since
A = SLs(I'3) has a unique conjugacy class of regular unipotent elements,
and as C4(u) is connected, x, is Ap-conjugate to u (cf. Lemma 6.2). We
assume therefore that x, = u.

Since C is connected, the Lang-Steinberg theorem implies the
existence of an element g€ A such that F(g)g~! =u. Note that
by construction xJ =x,. In particular, x is Ap-conjugate to af (cf.
Lemma 6.2).

Let K;:=(T,U, | a € £)°. As t is stabilzing =, K is an F-stable re-
ductive subgroup of G of type nzW(&E)" which is Gp-conjugate to K°.
Hence we may assume that K; coincides with K°. By construction,
v, =al € K37, and also, Y € Ng(K7). This yields the claim in this case.

Assume that Cq(x)° is of type ( — DWW, Lete ¢ G and & be given
as in (6.7). Then we may assume that x; € im(&°)r and Cg(xs)° = C°. As in
the previous case one concludes that there exists a regular unipotent ele-
ment % € N¢o(T9)r of order 3 which centralizes & € Y(7%), and that we may
assume that © = x;.u. Let g € A such that F(g)g~! = u. Then u? € A% and
x and aY are Ap-conjugate. Note that

(6.10) F(eg)g’le’1 = F(e)e leue ™ € Ng(T).
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Furthermore, n(F(eg)(eg)_l) is an element of order 6 and
K":=(T,U, | a € E)%is an F-stable reductive subgroup of G which is G-
conjugate to K. We therefore assume that K and K” coincide. By construc-
tion, 2] = x5 € K", and w9 € Ng(K"). This completes the proof. O

6.3 — Gp-Congugacy classes of unipotent elements

The unipotent G-conjugacy classes as well as their centralizers have
been determined already in [24, § IV]. It turns out that in this case the
Bala-Carter theorem (cf. [8, Thm. 5.9.6]) remains valid, and thus the G-
conjugacy classes can be parameterized by certain weighted Dynkin dia-
grams corresponding to Levi subgroups of G. We list the weighted Dynkin
diagrams occuring in the 1st column of Table 6.2 (cf. [8, p. 174, p. 400]).
Moreover, every such G-conjugacy class can be represented as a regular
unipotent element of reductive subgroup of maximal rank, and the satu-
rated subrootsystems corresponding to the respective conjugacy class are
listed in the 2nd column. As a consequence, every G-conjugacy class u® of
unipotent elements contains an F-fixed point (cf. [24, I11.1.19(a)]). In the
3rd column we describe the isomorphism type of

(6.11) Co(u): = Ci(u)/Cau)°

TABLE 6.2. — Unipotent conjugacy classes

type reg |Caw)| J(@) u? Hp Ky
2ie Cs 1 6 2e — +
898 | Cax Ay 2 4,2 g +/+ -/-
22 Cs 1 4,1,1 H n _
&3 A, 1 3,3 0 -
Se | AxA, 1 2,2,2 ] + +
A
S A 2 2,2,1,1 ] +/+ -/-
A7
. A 1 2.1,1,1,1 0 + -
] 0 1 1,1,1,1,1,1 ] +
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for every G-conjugacy class of unipotent elements (cf. [8, p. 400], [24, IV.2]).
From Lemma 6.2 one concludes that the F-fixed points of a unipotent G-
conjugacy class form a single Gp-conjugacy class apart from regular uni-
potent elements of type Co x A; and short root elements, where one has 2
Gr-conjugacy classes.

In the 4th column we list the size of the Jordan blocks of the unipotent
element % € Spg(['3) with (%) = u in the natural 6-dimensional representa-
tion. Here 1: Spg([F3) — PCSpg(I's) denotes the canonical map. These values
can be easily obtained from the 2nd column. In the 5th column the G-con-
jugacy class of %3 is given terms of weighted Dynkin diagrams. In the 6th and
Tth column we list whether an F'-fixed point of the unipotent conjugacy class is
contained in Gp-conjugate of Hy or K. In case that C;(u) is not connected,
there will be 2 Gp-conjugacy classes, and this is the reason why for some G-
conjugacy classes there occur two signs in this column.

ProposITION 6.4. Let (G, F), H and K be given as before.
(a) If u is a unipotent element of type

2 02 22

(6.12) o—o—e, 0=, gi %, 2 or 0

which is an F-fixed point, then u is Gp-conjugate to an element in Hp.
(b) If u is a unipotent element of type

(6.13) 223 82 23 or0

which is an F-fixed point, then u is Gp-conjugate to an element in K.

Proor. Let uy,..,us denote representatives of the unipotent G-con-
jugacy classes listed in Table 6.2.

(a) Obviously, Hp contains an F'-fixed point of either of the unipotent
classes uS, u, ug, u§, u¢, u§. For i =2,6 and u; € Hp the canonical

mapping ¢;: Cy(u;) — Cg(u;) induces a morphism
(6.14) ¢i: Cu(u;)/Cra(u;)°— Ca(u;)/Ca(uy)°.

Hence by Lemma 6.2, it suffices to show that c2 and cg are isomorphisms.
We will show that Cg(u;) = 1m(c;).R,(Ce(u;)) for i = 2, 6.

Since up € G is a distinguished unipotent element, Cg(ug)’ =
= R, (Cg(ug)). As Z(H) ~ 7,/27 consists of semisimple elements, Cg(u2) =
= 1m(c;).Ry(Cg(uz)).

Assume that ug € Hp. By [24, § IV.2],

Cri(ug) /Ry (Cr(ue)) = (I3 0 Ay).2
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(cf. [8, p. 400]), where A; is a simple algebraic group of type A; whose
rootgroups are long roots, and “o” stands for direct product modulo a finite
central subgroup. As this group is isomorphic to Cg(ug)/ R, (Cg(ug)), one
has Cq(ug) = 1m(cg).R,(Cq(ug)) and this yields the claim.

(b) Note that Ko ~ PGL5(3¥). Hence there exists a unique Kjp-con-
jugacy class of elements of order 3 being contained in Ky and thls con-
jugacy class is of type 2 o By [21, II1.1, Lemma 1], Kz contalns two con-
jugacy classes of elements of order 3 which are not contained in Kj.
Furthermore, there exist elements of order 9 (cf. [9, p. 18]), and for each

element v of order 9, v* is a unipotent element of type % o. Hence every
element of order 9 is of type %-2—s. This yields the claim. O

7. Groups of type F\y,p =3

Let (G, F) be a finite group of Lie type of type F; defined over the al-
gebraically closed field ['s. Let H be an F-stable reductive group of maximal
rank of type W(By)", and let K° be an F-stable reductive group of maximal
rank of type 3.W(D,)" . Note that G is simply-connected and of adjoint type.
By W we denote its Weyl group. We denote by W)V the type of H, and by
nz.W(Z) the type of K°. We also assume that 7z is an element of order 3.

Let 7 € Kr be an element of order 3 which is not contained in K;.. Then y
is a unipotent element. Its G-conjugacy class is the one of type Ay (cf. [8, p-
400]), and its Gp-conjugacy class corresponds to the class x?F in the list of
T. Shoji (cf. [22, Table 6]). In particular, Cs(7) is connected.

From Theorem 2.2(b) and 3.4 one knows already that every semisimple
element s € Gr is Gr-conjugate to an element in Hr or Kj. Therefore, it
suffices to consider elements with non-trivial unipotent part.

7.1 — Elements with non-trivial semisimple and unipotent part

In order to study elements with non-trivial semisimple and non-trivial
unipotent part we determine first all W-orbits of saturated sub-
rootsystems.

ProOPOSITION 7.1. Let IT C &(Fy) be a saturated subrootsystem of the
rootsystem of type Fy. Then the type of II is as listed in Table 7.1.
Furthermore, any two saturated subrootsystems of the same type are
W-conjugate.
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TABLE 7.1. — Saturated subrootsystems of @ = @(F})

i Nw (WD) ncy | Ny(WdD) = Nywy(WUD)
0 W(Fy) X no
Ay W(A; x C3) X no
Al W(Al x Bg) X yes
Az W(B3) X yes
Ap x A, W(A2 x A?) X yes
As (£idp) x W(As x As) X yes
A, (£ids) x W(Az x Ap) %) —
By W(B3) X yes
A3 WA} : Ss X no
A% x A, W(B5 x A?) X yes
Ap x Ay (£idu) x W(A; x Ap) %) —
A; x By W(A3 x Bp) X yes
Aj x Ay (£ids) x W(A; x Ap) x yes
As W(A; x Bs) X yes
Bs W(A; x Bs) X yes
Cs W(A; x Cs) 6] —
A} W(Cy) x no
A3 x By W(B3) X yes
A x C3 W(A; x Cy) %) —
A; x Az W(A; x B3) X yes
Ay x Ay (£ids) x W(Az x Ap) %) —
By W(By) X yes
D, W(Fy) X no
Fy W(Fy) a —
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ProoF. From the standard algorithm established by A. Borel and J. de
Siebenthal and E. B. Dynkin (ef. [1], [11]) one deduces easily that the type of
a subrootsystem ¥ C @&(F,) must be one of the types listed in Table 7.1.
Every W-orbits of subrootsystem consisting entirely of long roots or short
roots is uniquely determined by its type (cf. [6, Table 4]). Since sub-
rootsystems of type Bz, Bs, C3 are the saturation of subrootsystems of type

A2, A3, A3, this yields the claim. O

In the 3rd column of Table 7.1 we have indicated which subrootsystems
are W-conjugate to a subrootsystem of ¥. In the 4th column we specified
the subrootsystems for which there exists a containment 17 C ¥, satisfying

(7.1) Nw (W) = Nyu(WUD)).

However, the reader should be warned: ¥ contains two W(¥)-orbits of
subrootsystems of type A% and As. Only for one such W(¥)-orbit (7.1) is
satisfied.

From Proposition 7.1 one deduces the following property:

ProposITION 7.2. Let (G,F), H and K be as defined above. Let
X = x5y € Gy be an element with non-trivial semisimple part. Then x
is contained i Hp or Kp, or Cq(xs) is of type W(A2)W, W(A; x AZ)W,
W(Cs)V or W(A; x C)W.

ProoF. Since G is simply-connected, Steinberg’s theorem implies that
C: = Cq(xs) is an F-stable reductive group of maximal rank containing .
Let n.WUT)YW denote the type of C. In particular, /T C @ is a saturated
subrootsystem and thus one of the subrootsystems listed in Table 7.1. We
may assume that 17 # (), ®.

Suppose 17 is W-conjugate to a subrootsystem of 7. We may assume
that IT C ¥. In case that Nyy(W(IT)) ~ Nwu)(W(UI)), Cr is Gr-conjugate
to a subgroup of Hy (cf. [25, § 1]) and the conclusion follows.

In case I7 is of type A;, Ag, A:I’, A‘l1 or Dy, I is also a subrootsystem of
Diong = 5. Since W = W(ZE) : S3, this shows that for every element
n € Nyw(W(T)), n.W(II) is either contained in one of the W-conjugates of
W), or in one of the W-conjugates of the coset 3.W(Z).

As the defining characteristic equals 3, the reductive group with root-
system of type Az x A, is semisimple with trivial center. Hence C cannot
be of type W(Ag x A)" leaving the four possibilities. O

From the 2-covering property for groups of type Cs (cf. § 6) one deduces
the following:
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ProrosiTION 7.3. Let (G, F), H and K be defined as above. Let C < G
be a reductive subgroup of maximal rank of type W(A; x C3)" or W(Cs)".
Then every element x € Cr is Gr-conjugate to an element in Hp or K.

Proor. If Cis of type Cs, C': = C o Cy([C, C)) is an F'-stable reductive
subgroup of maximal rank of type A; x Cs. Hence it suffices to prove the
claim for C of type W(A4; x Cs)".

The character group Xy has index 2 in the character group X of G.
Hence C ~ SLy(I'3) o Spe([i3) is isomorphic to the central product of
SLy(I'3) with Spg(I'3), and thus is neither adjoint nor simply-connected.
From the 2-covering property of groups of Lie type Cs one deduces that
every element in Cr is Gp-conjugate to an element in Xp, X an F-stable
reductive subgroup of G of maximal rank of type W(A43 x B)Y, or Y,
Y = Ng(Y°), Y° an F-stable reductive subgroup of maximal rank of type
3.W(A‘{)W. In the proof of Proposition 7.2 it was shown that Xy is Gp-
conjugate to a subgroup of Hp, and Yy is a Gp-conjugate to a subgroup of
Kp. This yields the claim. O

From the 2-covering property for groups of type Az and 24 (cf. §5.2)
one concludes:

ProposiTION 74. Let (G, F), H and K be defined as above. Let C < G
be a reductive subgroup of maximal rank of type (£1).W(Ag X A) or
(£ 1).W(A; x A)". Then every element x € Cp 1is Gp-conjugate to an
element in Hyp or Kp.

Proor. Assume that C is of type W(Ay x AZ)W. Hence C =87 x Ss,
S; ~ SLs is generated by long root groups, and Sz ~ SL; is generated by
short root groups. In particular, Cp ~ SL3(q) x SL3(q). Let x = x1xs,
x1 € (SPr, 22 € (S2)p. From the 2-covering property for the groups of type
Ay one concludes that « € Cr is Gp-conjugate to

(i) Xp, X an F-stable reductive subgroup of maximal rank of type
W(As x AW, or
(ii) Yp, Y an F-stable reductive subgroup of maximal rank of type
3. W), or
(iii) x2 is a regular unipotent element in SLs generated by short
roots.

So by Proposition 7.2 only the last case has to be considered. Since w3 is
of type Ay, we may assume that xy = 7.
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Let Sf be an F- stable G-conjugate of S; centralizing 7. As C(;(Sl) =Sq
and C(;(Sz) =S, yg € S,. Hence there exists s € Sy such that yg = P,
and thus S = S} "9 In particular, S and S; are conjugate by an element in
Ce(®). Slnce CG(y) is connected, the Lang-Steinberg theorem implies that
SY and S; are conjugate by an element in C;(7)p.

As Ck-(7) ~ G, it contains an F'-stable subgroup which is Gp-conjugate
to S;. Hence the previous remark yields the claim in this case. The other
three cases follow by a similar argument and are therefore left to the
reader. O

7.2 — Regular unipotent elements

For our purpose it is important to know whether Ky contains regular
unipotent elements of G or not. In [20, Lemma 3.2] it was shown that the
algebraic group K contains regular unipotent elements of G. However, the
argument used there cannot be applied in our case.

From [16] (cf. [20, Lemma 3.2]) one knows that regular unipotent ele-
ments are the only elements of order 27 in G. Thus it suffices to show that
Ky contains elements of order 27.

Let 4={e; —e2,e2 —e3,e3 — eq,03 + €4} be the standard basis of
the rootsystem of @,, =Z, and let y be the graph automorphism
with cycle decomposition (e2 — eg)(e; — e2,e3 + eq,e3 + e4). We assume
that 7 € Aut(Kj) is acting on & through 7.

For simplicity we use the same notation as was introduced in [22], i.e.,
1—2 is a short form of the root e; — ez, ete. For s € Iy and ¢ € Fz we
define the root elements

(7.2) u1(8): = w2-3(8), 01(): = @1 _o(t) - w34 (t9) - w3447,
(7.3) U2(8): = X143(8), vat): = ®1_3(D) - 2 a (1) - a4 (t7),
(74) u3(8): = w142(8), V3(t): = @144 () - oy 3(tD) - 4 (4T),

which are obviously contained in K3, (cf. [7, § 13.6]), and which generate the
3-Sylow subgroup of Kj. In particular, for ¢ = 1,2,3 one has

(7.5) wi(s) = u(s),
(7.6) vt = v; (7).

If one chooses the sign of the structure constants as in [22, Tab. 1] one
deduces the following commutator formula from Chevalley’s commutator
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formula (cf. [7, Thm. 5.2.2]). Here [x, y]: = 'y 'xy denotes the standard
commutator.

PRrOPOSITION 7.5. For the elements as defined in (7.2) one has the
Sollowing formulae:

[u1(s), us(s")] = us( — ss'),
[ (s), v1(8)] = v2( — s1) - v3( — st'9) - uz( — SN(?)) - ug(s*N(?)),
(7.7) 1), va(@)] = v3(— o + t?) - ug( — TrEH9a®)) - ug(— Trta’ 7)),
[01(), v3(w)] = us( — Tr(tew?)),
[v2(?), v3(@)] = us( — Tr(tw?),

where s,8" € 'y, t,w € s, N:lig — I, denotes the morm map and
Tr: ¥ — Iy denotes the trace map. Furthermore, any pair of elements
not occuring i (1.7) commutes.

Proor. This follows by a lengthy but straightforward calculation. [

LEMMA 7.6. Let a, b, ¢ be elements of a group A with the following
properties:

() a® = =c =[b,alP =[c,b = [c,al =[[b,al,0F =1,
(i) [c,b], [c, al, [[b, al,b] € Z(A),
(ii) [[[b,a],al,b] = 1.

Then (abe)® = [[b, alalllb, al, b

Proor. This follows by a straightforward calculation using the basic
commutator identities (cf. [18, §5.1.5]). O

We finally obtain the following property:

ProposITION 7.7.  Let (G, F), H and K be as above. Then Ky contains
reqular unipotent elements of G.

Proor. Let g:=7-u1(s) - v1(¢). Then
(7.8) g = vi(Tr@®)) - va(s(t? — t)7) mod U,

where Up: = (uz(s), us(s),v3(t) | s € Iy, t € ['s ). Hence

(7.9) & = v1(Tr(®)) - va(st? — 1)) - v3(w) - ua(s) - uz(s’)
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for suitable numbers w € Fg, s, s' € ;. Since ua(s) and u3(s’) centralize the
subgroup generated by v (t), va('), v3t"), t,t', 1" € Fg (cf. (7.7)), one has

(7.10) 9 = (01 (Tr®) - a5t — D))’

It is easy to check that Lemma 7.6 applies for a:= vi(Tr(t)),
b:=ve(s(t? — t)?) and c¢: = v3(w). Moreover, for a, b, ¢ as defined above,
one has

[[b, al, b]] = us@s* Tr®(Trt**") — Tr(t*))),

(7.11) ,
[[b,al, a]l = ue@sTr@®)>Tr@? —t)) = 1.

For q # 3, Tr(t)(Trt?™) — Tr(t?))is a polynomial in ¢ of degree 3¢ and thus
there exists an element ¢ € I3 with Trt)(Trt1) — Tr(t?)) # 0. Hence the
claim follows. For g = 3, the polynomial T%(#)(Tr(t?") — Tv(#?)) as a func-
tion on [Fg7 is equivalent to a polynomial of degree 21, and hence the claim
follows also in this case. O

7.3 — Gp-conjugacy classes of unipotent elements
From the information obtained in [22] one concludes the following:

ProrosiTION 7.8. Let (G,F), H and K be as above. Then every
unipotent element in G is Gp-conjugate to an element in Hp or Kp.

Proor. The unipotent Gp-conjugacy classes in the finite group of Lie
type Gr of type Fy defined over a finite field of characteristic 3 were de-
termined by T. Shoji (cf. [22]). There are 28 unipotent Gr-conjugacy classes
x?p ,1=0,...,27 where x; is the representative given in [22, Tab. 6].

From the definition of the elements x; it is obvious that unipotent
elements in the classes xfp ,

(7.12) j€{0,1,2,3,4,5,6,8,9,10,12,13,14,15,16,17,19,23,24 }

are Gp-conjugate to an element in Hp.

Furthermore, for j € {20,21,22}, x; is Gp-conjugate to the group Cr of
F-fixed points in C, where C is an F-stable reductive subgroup of maximal
rank of type W(A4; x C5)". Hence by Proposition 7.3, x; is Gr-conjugate to
an element in Hy or Kp.

The unipotent element 7 € Kr is Gp-conjugate to x7. A similar argu-
ment shows that 7.x,(1), a the simple root fixed by 7 is Gr-conjugate to x1;.
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By Proposition 7.7, Kr contains a regular unipotent element u of G.
Note that there exists a unique Gp-conjugacy class of F-stable reductive
groups of maximal rank of type 7. W(Z)". Since 3 is a bad prime for Fj,
Ce(u)/Cq(u)° is a cyclic group of order 3 being generated by u (cf. [24,
1.14(d)]). For k = 1,2, let g € G be such that F(gk)g,;1 = u¥*. Then K% is
the normalizer of an F'-stable reductive group of maximal rank of type
nzW(E&)" and thus Gr-conjugate to K. By construction, (K%)p contains
the regular unipotent element u/: fixed by F' corresponding to the Gp-

conjugacy class #*.Cq(u)°. This shows that Kp contains an element of ei-

ther of the Gr-conjugacy classes of regular unipotent elements sz§, acgg ,

x2G7F (cf. Lemma 6.2(c)).
A similar argument shows that K contains also an element of the
conjugacy class xfg. This yields the claim. O
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