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Milnor’s conjecture on quadratic forms
and mod 2 motivic complexes.

FaBIEN MOREL (*)

ABSTRACT - Let F'be a field of characteristic different from 2. In this paper we give a
new proof of Milnor’s conjecture on the graded ring associated to the powers of
the fundamental ideal of the Witt ring of quadratic forms over F, first proven by
Orlov, Vishik and Voevodsky. Our approach also relies on Voevodsky’s affir-
mation of Milnor’s conjecture on the mod 2 Galois cohomology of fields of
characteristic different from 2, but, besides this fact, we only use some ele-
mentary homological algebra in the abelian category of Zariski sheaves on the
category of smooth k-varieties, involving classical results on sheaves of Witt
groups, Rost’s cycle modules and sheaves of 0-equidimensional cycles.

1. Introduction.

Let F be a field of characteristic # 2. In this paper we give a new proof
of Milnor’s conjecture identifying the mod 2 Milnor K-theory of F' to the
graded ring associated to the filtration of the Witt ring W(F') of anisotropic
quadratic forms over F' by the powers of its fundamental ideal [15]. This
result was first obtained by Orlov, Vishik and Voevodsky in [23] where they
proved more. This also appears in [11, Remark 3.3]. In both cases however,
sophisticated techniques and results from Voevodsky’s proof of Milnor
conjecture on the mod 2 Galois cohomology of fields [32, 33] are used, such
as triangles involving the Rost motives, the Milnor operations ;.

Our approach uses Voevodsky’s affirmation of Milnor’s conjecture on
the mod 2 Galois cohomology of fields, but, however, it is quite different in
spirit from the previous ones. Fix a perfect base field &, let Smz;, denote the
category of smooth k-schemes and let .Ab;, denote the abelian category of
sheaves of abelian groups in the Zariski topology on Sm;. Besides Voe-
vodsky’s result we will only use some elementary homological algebra in

(*) Indirizzo dell’A.: Mathematisches Institut der LMU, Theresienstr. 39 -
80333 Muenchen (Germany).
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the abelian category Ab;, involving sheaves of Witt groups, Rost’s cycle
modules [24] and sheaves of 0-equidimensional cycles [28]. It is also rather
different from our original proof announced in [16]. There we were using
the Adams spectral sequence based on mod 2 motivic cohomology and the
computation by Voevodsky of the whole corresponding Steenrod algebra.
In the approach taken here we don’t use these anymore. We will explain
the relationship between these two approaches in [19].

Let us denote by W(F) the Witt ring of anisotropic quadratic forms
over F'[14, 25]. The kernel of the mod 2 rank homomorphism W(¥) — Z /2
is denoted by I(F) and called the fundamental ideal of W(F). For each
integer n, the n-th power of I(F') is denoted by I"(F).

For any unit u € F*, the symbol (u) will denote the class in W(F') of the
quadratic form of rank one %.X? and the symbol ((u)) will denote the class
of the Pfister form 1+ (—u) =1 — (u) € W(F), indeed an element in I(F').
The following Steinberg relation:

(1) {((u)) (L —u)) =0

which holds in I2(F)) for u € F* — {1}, is a reformulation of the well-known
relation (u) + (1 —u) = 1 4 (u.(1 — u)) (see [25] for instance). One also has
the following equality for any pair (u,v) € (F )2

() + () = {(uv)) = ((u)((v)) € PP(F)

which shows that u — ((u)) induces a group homomorphism
2) F>*J(F*) — I(F)/I*(F)

The Milnor K-theory Ki” (F') of the field F' introduced in [15] is the
quotient of the tensor algebra Tens,F* on the abelian group of units 7'~ by
the two sided ideal generated by tensors of the form u ® (1 —u), for
u € F* — {1}. The mod 2 Milnor K-theory of F is the quotient

k (F) := KM(F)/2

As observed in [15] the above computations give a canonical graded ring
homomorphism extending (2)

sp : ko (F) — @,I"(F)/I" ™ (F)

which we call the Milnor homomorphism and which was shown in loc. cit.
to be surjective in any degree and an isomorphism in degrees < 2. The
Milnor conjecture on the Witt ring stated as question 4.3 on page 332 in
loc. cit., is the content of the following statement:
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THEOREM 1.1.  Forany field F of characteristic not 2 and any integer n
the Milnor homomorphism

$u(F) : ky(F) — I"(F) /" (F)

s an 1somorphism.

REMARK 1.2. The powers of the fundamental ideal of F' form alto-
gether a commutative graded ring denoted by I*(¥'), in fact a graded W (F')-
algebra because I°(F) = W(F). We have a canonical morphism of graded
W(F)-algebras Tensw(I(F)) — I*(F) where the left hand side denotes
the tensor algebra over W(F') of the W(#)-module I(F'). The relation (1)
above, which holds in I2(F), shows that this morphism factors trough the
quotient algebra KW(F) := Tenswa(I(F))/{(u)) ® ({1 —u)) by the two-
sided ideal generated by the tensors ((u)) ® ((1 —u)) € I(F) Qwe) I(F). It
is quite natural to call KIV(F) the Witt K-theory of F. In [17] we have
proven that the induced morphism of W(#")-algebras

KV (F) — I'(F)

is an isomorphism. This is in fact a reformulation of the main result of [2],
which relies on Voevodsky’s results and on Theorem 1.1. Observe con-
versely that Theorem 1.1 can be recovered from the isomorphism
K}:V(F) =~ [*(F') by tensorization by Z/2 over W(F).

We already mentioned that the surjectivity of the Milnor morphism
holds, so that the main point of Theorem 1.1 is the injectivity. Our proof will
consist in constructing inductively a left inverse to s, (¥), the so-called n-th
mvariant of quadratic forms

en(F) : I"(F)/I" T (F) — K (F)

The statement in the Theorem corresponding to a fixed integer n will be
called in the sequel the Milnor conjecture on the Witt ring of F' in weight n.
Denote by H*(F'; Z/2(n)) the mod 2 motivic cohomology groups of F
in weight n as defined by Suslin-Voevodsky in [27]. These groups
H*(F;7/2(x)) altogether form a bigraded commutative ring. We have
the particular element 7 := —1 € u,(F) = H'(F; 7./2(1)).
Our main result is:

THEOREM 1.3. Let k be a perfect field of characteristic # 2 and let
N > 0 be an integer. Assume that the following assumptions hold:

H1(N): Milnor’s conjecture on the Witt ring of k holds in weights < N.



66 Fabien Morel

Ha(N — 1): For any finite type field extension F|k and for any integer
1 <n <N —1, the cup product by t

H"™\F; 7./2n — 1) 55 H"\(F; 7,/2(n))

18 onto.
Then Milnor’s conjecture on the Witt ving holds for any field extension
Flk in weights < N.

PROOF that THEOREM 1.3 = THEOREM 1.1. The group H'(F; 7./2(n)) is
the group of sections on F' of the i-th conomology sheaf H'(Z/2(n)) of an
explicit chain complex’ 7 /2(n) in Aby, the mod 2 motivic complex in weight
n defined in [27]. The ring structure is induced by explicit morphisms of
complexes 7. /2(n) ® 7/2(m) — Z/2(n + m) by loc. cit. The cup product by
7 is thus induced by a morphism of the form

3) tU: 7/2m — 1) — 7./2(n)

Voevodsky’s main theorem [32, 33] implies the Beilinson-Lichtenbaum
conjecture on mod 2 motivic cohomology, which identifies, for
i€ {0,...,n}, the sheaf H'(Z/2(n)) to the sheaf associated in the Zariski
topology to the presheaf X — Hi,(X; u5™), see [27, 32]. This identification
being compatible to the cup-product and because the cup-product by
TE () = Hgt(Spec(k); ls) in étale cohomology induces isomorphisms
Hi,(X; 15" = HL(X; 15"), this implies that the morphism (3) induces
isomorphisms on cohomology sheaves of degrees < n — 1, for any n. This
establishes a fortiori Ho(N — 1) for any N.

Now choose for the field k¥ a prime field of characteristic # 2. The
Milnor conjecture on the Witt ring holds for & by [15], which proves H;(V)
for any N. Theorem 1.3 now implies Milnor’s conjecture on the Witt ring of
field extensions F|k in any weight, establishing Theorem 1.1. O

REMARK 1.4. It is possible to prove Theorem 1.3 without H; (V) but
this would make the exposition more complicated.

REMARK 1.5. Our method clearly emphasizes that Voevodsky’s proof

of Milnor’s conjecture on mod 2 Galois cohomology in weights <N —1
implies the Milnor conjecture on the Witt ring in weights < N.

M for us “chain complex” means that the differential is of degree —1
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In the rest of the paper, we will concentrate on the proof of Theorem
1.3. We now fix once for all a perfect field k of characteristic # 2. Let us
describe our strategy. Recall that we denote by .4b;, the abelian category of
sheaves of abelian groups in the Zariski topology on the category Sny; of
smooth k-schemes. We denote by

KM ¢ Ab,

the sheaf of unramified Milnor K-theory in weight n constructed in [13,
24]. Its fiber on a field F|k is Kﬁ/’ (F); see section 2.2 for a recollection. We
will denote by

k, = K;'/2
the cokernel in Abj, of the multiplication by 2 on I_{nM . We will denote by
We Abk

the associated sheaf to the presheaf of Witt groups on Smy: X — W(X)
constructed in [14] for instance.

We will then show how the filtration of the Witt ring W(#") = W(F') of
each field extension F'|k by the powers of their fundamental ideal naturally
arises from a decreasing filtration by sub-sheaves

...cI'c...cWwW

For each n, we set i, :=I"/I""" & Ab;. The Milnor homomorphism for

fields then arises for each » from an epimorphism of sheaves:
s, k, =1,

called the Milnor morphism in weight n whose kernel is denoted by j .
Our strategy to prove Theorem 1.3 can now be decomposed as follows.
First by induction we may assume the Milnor conjecture on the Witt

ring is proven for all fields F|k in weights <N —1, so that j =0 for

0<n <N —1. Then:

(1) Using H;(N) and Ha(N — 1) prove the vanishing of the groups
E’xt;bk(lin,l}v) for0 <n <N —1andic {0,1,2}).

(2) Using elementary homological algebra in .Ab;, deduce the Milnor
conjecture on the Witt ring in weight N for all field extensions F'|k from (1).

Proor or sTEP (1) will be given in section 3.3 below in a more general
form; see Theorem 3.10. The idea is to use two types of information about
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the Suslin-Voevodsky motivic complexes 7Z/2(n). The first one is the
vanishing for n > 0 of the groups of morphisms in the derived category of
Aby, of the form

Hompap,(Z/2(n), M[*])

for some type of sheaves M, like Jys which are birational invariant. This is
done by adapting a simple geometric argument due to Voevodsky [31]. The
second type of information concerns the cohomology sheaves Hi(7, /2(n)).
These vanish for ¢ > n, for i =n we have the Suslin-Voevodsky iso-
morphism?: k, = H"(7./2(n)) and hypothesis Ha(N — 1) provides an epi-
morphism k, ; — H"’I(Z/Z(n)) for n < N. The vanishing in step (1) is
then deduced from these facts combined to the universal coefficient
spectral sequence (see Lemma 3.9):

Eg’q = E%tﬁlbk(Hq(Zl/Z(n)),M) = HOmD(Abk)(Z/Z(%),M[]O — q]) O

ProoF oF STEP (2) will be given in section 3.4. Here is a sketch. Assume
the Milnor conjecture on the Witt ring in weights < N — 1 for fields F'|k
and the vanishing in (1) are both established.

For each integer n, set W, := E/["“. The sheaf W,,_; thus admits a
filtration with associated subquotients of the form I" /l”+1 =1,, for some
0 <n < N — 1. The Milnor conjecture on the Witt ring in weights < N — 1
gives isomorphisms k,, = i,,, and one deduces from the long exact sequence
of Ext groups and (1) the vanishing

Extitbk(wzvqa Jy) =0
for ¢ € {0,1,2}. Using the short exact sequence
(4) 0—>!N—>I£N—>LN—>O

one deduces that the morphism Ewthbk(quJiN) — E‘xthbk(ENfl,g’N) is

an isomorphism. There exists thus a commutative diagram
0—>]£N—>LN—>EN71—>O

(5) | ! l

0_>£.N—>EN_>EN—1_’O

with exact horizontal rows where the bottom horizontal row is the obvious

() see [33, 7] and section A.3
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one and where the left vertical map is the Milnor epimorphism. Next we
show that the canonical epimorphism

W—-Wy
canonically lifts trough the epimorphism I'y — Wy to a morphism
E - LN

This is one of the main arguments: it uses the fact that the presentation of
the Witt ring (or rather sheaf) uses units as generators and “open sub-
schemes of product of (5, as relations”; taking into account the inductive
assumption that j,, , = 0 which implies j,, is a birational invariant sheaf,
the existence of the hftmg follows easily (see section 3.4).

To finish the proof one observes that the composition IV ¢ W —
— I'y — Wy, is trivial by construction, and that the induced morphism

— k Ky = (Ke?" N — WN 1)
induces a left inverse to the Milnor morphism in weight N
ey IV/IVT S ky O

REMARK 1.6. Let Fj be the category of finite type field extensions
F|k. It is tempting to work in the abelian category of functors from Fj, to
the category of abelian groups implicitly considered by Serre in [9], instead
of the more elaborated category Ab;. If one could prove an analogue of the
step (1) (or Theorem 3.10) there, then our strategy could be simplified
further.

NoraTioNS. For a scheme X and an integer ¢ € N, we will denote by
X® the set of points of codimension i of the scheme X.

Given x € X € Smy, we will denote by Ox, the local ring of X at w.
For a given presheaf of sets M on Sm, we will denote by M(Ox,), or
simply by M,, the fiber of M at x € X, in the Zariski topology. Im-
portant examples for us will be that of a finite type field extension
F|k € Fj, considered as the local ring of the generic points of its
models in Smy, or that of a geometric discrete valuation ring. Such a
discrete valuation ring O, is one with field of fractions F' of finite type
over k and which is isomorphic to the local ring of some X € Sm;, at
some point & of codimension 1. The associated valuation v on F' will be
called a geometric discrete valuation on F; its residue field will be
denoted by x(v).
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2. The Milnor morphism as a morphism of sheaves
2.1 — Unramified Witt groups and related sub-sheaves

DEFINITION 2.1. A sheaf of sets M on Smy, in the Zariski topology is said
to be 0-pure if for any irreducible X € Smy, with field of functions F' the
canonical map

MX) — M(F)
18 mjective and induces a bijection

M(X) = N,exo M(Ox ) C M(F)

Let us denote by W :Sm; — Ab, X — W(X) the presheaf of Witt
groups on Smy; see [14] for instance, or [22] for a quick recollection. We will
denote by W the associated sheaf in the Zariski topology. The following
result is a reformulation of some results of [22]:

THEOREM 2.2. (Ojanguren-Panin) The sheaf W is 0-pure.

Proor. Fix an irreducible X € Smy, with field of functions F'. Clearly,
because W is a sheaf in the Zariski topology, the morphism

WX) — HexW(Ox )
is injective. Now by loc. cit. for each x € X the morphism
W(Ox.) = W(Ox ) — WE) = W(F)
is injective. This implies that the canonical morphism
WX) — W(F)

is injective. Now again because W is a sheaf in the Zariski topology, the
previous injection identifies W(X) with NyexW(Ox ) = NpexW(Ox ) C
C W(F). By Theorem A of loc. cit., for each point x € X one has
W(Ox ) = NyW(Ox,) where y runs over the set of all prime ideal in Ox,, of
height one, that is to say points y € XV whose closure contains . It follows
then that

WX) = NeexW(Ox ) = Nyexa W(Ox ) C W(F)
which establishes the Theorem. O

Let n € N be an integer. For any irreducible X € Smy, with funetion
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field F' we set
I'X) =1I"(F)nWX) Cc W(F)
We extend the definition to any X € Smy, by setting
I"(X) := ®pexol"(Xy) C Bpexo WX, = WX)

where X, C X denotes the irreducible component containing x € X©.

THEOREM 2.3. Given any morphismf : X — Y in Smy and anyn € N
the morphism

W) : W) — WX)

maps the subgroup I"(Y) C W(Y) into I"(X) Cc W(X). Thus the corre-
spondence X — I"(X) admits a unique structure of presheaf of abelian
groups, denoted by I", such that the inclusions I'(X) C W(X) define a
monomorphism of presheaves I' C W. Moreover, I is a 0-pure sheaf.

Proor. By Lemma A.1 of the Appendix below, it is sufficient to prove
that for any geometric discrete valuation v on a finite type field extension
F|k, the morphism

Py W(Oy) = W(O,) — W(k(v)) = W(k(v))

maps I"(0,) = I'"(F) N W(O,) into I"(x(v)). Let Oﬁ denote the henselization
of O, F" its fraction field. By naturality we have the following commutative
diagram of Witt rings

w©o,) — WObh
! !
W) = W)
and I"(0O,) clearly maps to I"(O") := I'"(F!") n W(O") ¢ W(F"). Lemma 2.4
(4) below implies the result. O

LEMMA 2.4.  Let v be a discrete valuation on a field F, with residue field
k() of characteristic not 2, and let = be a uniformizing element for v. Then

1) The ring homomom%@;sm W(O,) — W(F) is injective and the dia-
gram 0 — W(O,) — W(F) = W(k®)) — 01s a short exact sequence, where
07 1is the vesidue morphism of [15, 25].

2) For each n > 0 the residue morphism 0F : WIF)—W@(v)) maps
I'Y(F) onto I"1(x(v)).
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3) Let ij denote the henselization of O,, Ff} its fraction field. Then the
ring homomorphism p : W(ij) — W) is an isomorphism and the
canonical W(Of)-algebm homomorphism

WOITI/T? —1) — WED) | T (n)
an isomorphism (Springer).

4) For each n > 0 the intersection I ”(Fﬁ) N W(ij) 1s equal to the n-th
power I”(Q’f) of I (Oﬁj) and the exact sequence of 1) induces an exact se-
quence

0 — "0 — ' L 1 ew) — 0

ProoF. Statement 1) is proven in [25, Theorems 2.1, 2.2]. It follows
from the proof of [15] Corollary 5.2 that the residue morphism maps I"(F)
into I"~1(x(v)). The surjectivity is easy.

The first isomorphism in statement 3) is loc. cit. Theorem 2.4 and the
second one is Corollary 2.6, due to Springer.

The last statement is proven in loc. cit. §5 in the case of complete dis-
crete valuation rings but using 1), 2) and 3) the proof carries over to our
case: one proceeds as in loc. cit., proof of Corollary 5.2, establishing in-
ductively that I"(F"") = p1(I"(x(v))) @ {(r)).p~ I 1 (k())). O

REMARK 2.5. Let A be a regular local ring in which 2 is invertible with
fraction field F'. Assume that W(A) — W(F) is injective (for instance if it
contains a field of characteristic # 2 by [22]). We don’t know in general
whether or not for any n € N the group

I'Q) =I"F)nW@A) c W)

is always the n-th power of the ideal I(A) := I(F) N W(A), though the
previous Lemma establishes it for an henselian discrete valuation ring.

2.2 — Unramified Milnor K-theory and Rost’s cycle modules

Let n be an integer. For any field F' and any n-tuple (uq,...,u,) €
€ (F*)" of units we will denote by {u;} ... {u,} € Kfy (F') its image through
the obvious map (F*)" — Kfy (F). Recall from [15] that for any discrete
valuation v on the field F', with residue field x(v) there exists one and only
one homomorphism:

(6) 0y : K} (F) — K} ()
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satisfying
({n}{uz} ... {un}) = {u2}... {un}

if v(m) = 1 and v(w;) = 0 for each ¢ > 2. For u € O, the notation u € x(v)
means the image of % in x(v)”. This homomorphism is called the residue
homomorphism associated to v.

For any smooth k-variety X, we let Ij% (X) denote the kernel, in-
troduced in [13], of all the residue homomorphisms associated to points in
X of codimension 1:

Oy
I_(%(X) = Ker (@xgx(m K,]ZVI(K(%)) 2’ @ye)((l)KnAl_l(K(?/)))

The correspondence X HI_{% (X) is turned into a Zariski sheaf on Sm;, by
Rost in [24]. This sheaf will be denoted by _f;/’ and called the sheaf of
unramified Milnor K-theory in weight n.

More generally, let us recall briefly the notion of cycle module over k
from [24]. We just remind that a cycle module M, is a triple (M., ¢*, ;)
consisting of a functor

M, : F, — Ab,

with Ab, being the category of graded abelian groups, a transfer morphism
o M.(F) — M,(E) of degree 0 for each finite extension £ C F in F;, and
aresidue morphism 8, : M.(F) — M., (x(v)) of degree —1 for any geometric
discrete valuation v on F'|k € F.. These data satisfy some axioms which we
will not recall here; see loc. cit. p. 329 and p. 337.

The Milnor K-theory groups KM, endowed with the transfer morphisms
of Kato [12], and the above residue morphisms, form the fundamental ex-
ample of cycle module, as it follows from [15, 5, 12, 24]. The mod m Milnor K-
theory groups K /m also form a cycle module for any integer m. In fact, the
category of cycle modules, with the obvious notion of morphisms, is abelian:
the kernel and cokernel of a morphism are performed termwise on each
F|k € Fy, and the axioms of [24, p. 329 and p. 337] follow formally. In the
sequel, we will simply denote by k. the cycle module of mod 2 Milnor K-theory.

Given a cycle module M, and X € Sm;, we will denote by A°(X; M) the
group of unramified sections of M, on X, by which we mean® the kernel of

(®) Here we slightly differ from [24] where Rost considers rather the direct sum
@nezAYNX; M. (n)), see below.
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the sum of residue morphism at points of codimension 1:

Mo
OpexoMo(r(r)) = @yeXﬂ)M—l(K(y))

In [24, §12] these groups are turned canonically into a Zariski sheaf on
Smy, which we denote by M. A sheaf of abelian groups in the Zariski
topology on Sm;. will be said to come from a cycle module, or to have a
cycle module structure, if it is isomorphic to a sheaf of the form M,,. It
is easy to check that such sheaves are 0O-pure in the sense of Defini-
tion 2.1.

REMARK 2.6. By Déglise [7] the sheaf M, admits a canonical structure
of homotopy invariant sheaf with transfers in the sense of Voevodsky [28],
and these two notions of homotopy invariant sheaves with transfers and of
cycle modules are essentially the same.

LEMMA 2.7.  For any (termuwise) short exact sequence 0 — M, — M, —
— M" — 0 of cycle modules, the diagram

OHMO_’MO_’MO_’O

18 a short exact sequence of sheaves in the Zariski topology.

Proor. We will freely use the notations from [24]. For any Y € Smy, or
any localization Y of a smooth k-scheme, and any cycle module N, is defined
a cochain complex C*(Y; N.,), see loc. cit. p. 355 and p. 359. A short exact
sequence of cycle modules 0 — M’ — M, — M — 0 then induces a short
exact sequence of cochain complexes

0—CY;M)—C'Y;M,) - CY;M)— 0

and a corresponding long exact sequence of associated cohomology groups.
But Theorem (6.1) of loc. cit. establishes that for any x € X € Smy, and any
cycle module N, the cochain complex C*(Spec(Ox ,); N.) has trivial coho-
mology in > 0 degrees. The short exact sequence

0 — C*(Spec(Ox ); M) — C*(Spec(Ox ); M) — C*(Spec(Ox »); M) — 0
thus produces a short exact sequence
0 — A%(Spec(Ox »); M) — A%(Spec(Ox »); M) — A%(Spec(Ox »); M) — 0

in other words, of the form 0 — M'y(Ox ) — My(Ox ) — M"((Ox ) — 0,
which gives the result. O
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For any cycle module M, and any integer n € Z, we denote by M,(n)
the cycle module obtained in the obvious way by setting (M.(n)),, = M1n
and endowed with the corresponding shifted data. For instance, for each
n € N we have I_{% = Ki” (n) b and we define the sheaf of unramified mod 2
Milnor K-theory in weight n as

k, :=k.n), =K /2

More generally for a cycle module M. we will simply set M, := M..(n),.

DEFINITION 2.8. Let n € Z be an integer. We will say that a cycle
module M., is of weights < n if and only if for any F'|k € F, the group M;(F')
vanishes for 1 < —n.

Observe that if M, is in weights < n, M, (m) is in weights < n + m. Also
M. is in weights < n if and only if for any F'|k € Fi, M_,,_1(F') = 0. In that
case the sheaves M _,, all vanish for m > n + 1. The cycle modules K and
k. are in weights < 0.

LEmMa 2.9. Let X € Smy, and let Z C X be a closed subscheme every-
where of codimension > n, then for any sheaf M coming from a cycle
module of weights < n — 1 the groups

HX,X - 7);M)

vanish for any x.

Proor. This follows from the results of [24]: for any cycle module N.
one can compute H*(X,X — Z;N,) as the cohomology of the complex
C*(X,N.)/C*(X — Z; N,) which is of the form

DrexomczNow(@) — ... — Bpexo mezN-i(k(@X) — ...

Now because the codimension of Z is > n, that complex is trivial up to co-
dimension %. But if N, is of weights < n — 1, it is trivial from there as well,
so it vanishes. O

We will also need the following lemma whose first part is proven in [24,
12] and whose second part is due to Bass and Tate [5, Prop. 4.5 b)].

LeEMMA 2.10. Let v be a geometric discrete valuation on a finite type
field F\k. Then:
1) The diagram 0 — KM(0,) — KMF) % K (k) — 0 is a short

=n-1
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exact sequence. Moreover, given a uniformizing element = € O, the fol-
lowing diagram is commutative

kY0, c KY(F)
Pyl L O({myu(—=))
KM () = KM (k(v))

2) For any unit w € O, the symbol {u} I_{IIVI (F) lies in KJIVI (O,) and
moreover the group I_(% (Oy) is generated by symbols of the form

{ur} ... {u,}

with the u;’s in O,;.

2.3 — Sheafifying the Milnor homomorphism

For each integer n € N and any field F|k € F we set
i (F) = I"(F)/T" ™ (F)
We denote by i.(F) the corresponding graded abelian group.

THEOREM 2.11. There exists one and only one structure of cycle
module on the correspondence

Fir — Aby; F—1,(F)
such that the Milnor homomorphisms
$(F) 1 k. (F) — 1.(F)

altogether define a morphism of cycle modules, an epimorphism indeed.

Proor. We will show below that the transfers morphisms
9"k (F) — k(E)
for finite extensions £ C F' in F and the residue morphisms
Oy k() — ko1 ()

for geometric discrete valuations v on F|k € Fy;, descend to morphisms on
1. Endowed with these induced morphism, 7, becomes a cycle module be-
cause the axioms are automatic consequences of the corresponding ones for
mod 2-Milnor K-theory. Moreover, by construction, the Milnor homo-
morphism preserves the cycle module structures, defining an epimorphism
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of cycle modules of the form k. — 7.. The uniqueness of the structure is
clear.

To prove our claim for the residue morphisms, let v be any geometric
discrete valuation on F'|k € F}, and = be a uniformizing element for v. Let
us denote by

9y by (F) =11 ((v))

the homomorphism induced by the one on I"(F) given in Lemma 2.4 2)
above. Clearly from the explicit description of residues in Milnor K-theory
and in Witt theory [15, 25] the diagram

knF) 2 kyy(x)

! !

i

W@ L 00

is commutative. This also shows that 97 doesn’t depend on 7.

Let ' C F be any finite extension of fields and 7 be an integer. Assume
first this extension is purely unseparable. Then in that case, because the
characteristic p is odd, one has (x”) = (x) in W) and {xP} = {x} € k1 (F);
for any x € F, some power «”" is an E. Thus the extension of scalars
WE) - WEF) and k.(F) — k.(F) are both epimorphisms. But the same
formula shows that the Frobenius induces the identity morphism
W(E) = W(E); as some iterated of the Frobenius on F maps to £ C F' the
factorization of the identity as W(¥) — W(F) — W(E) this shows the ex-
tension of scalars is in fact an isomorphism. The degree [F' : E], being a
power of p, is odd so that the standard property of the transfer morphism
implies it is a monomorphism on mod 2 Milnor K-theory, showing that
k.(E) — k.(F) is an isomorphism as well. This clearly imply our claim on
the transfers in that case.

Assume now the extension £ C F is separable. Let ¢t : F — E denote
the trace morphism and ¢, : W(F) — W(¥), q—toq the corresponding
Scharlau transfer [25, §2.5]. By Arason [1, Satz 3.3] £, maps I"(F) into I"(E)
and thus induces a natural morphism ¢, : i,,(F) — i,(&).

To check that the diagram

k) 5 ko(B)
(1) ! ]

) )
is commutative one proceeds as follows. Let £ C £’ be a separable al-
gebraic extension of odd degree, and F' := E' Qg F, a finite separable
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algebra over E'. Clearly the square above maps by extension of scalars to
the corresponding one involving £’ and F’. But £ — E’ and F' — F’ being
of odd degree, the extension morphisms ?,(E) — %,(E’) is a mono-
morphism: this is proven after the proof of [1, Satz 3.3]. Thus to prove the
commutativity of our square (7) it suffices to prove it for the one obtained
by extending the scalars to E’. If we choose for £ C £’ separable alge-
braic extension such that the absolute Galois group of £’ is a 2-Sylow of
that of £, we may assume further that £’ — F” admits a finite increasing
filtration £ C K} C ... C E, = F' by quadratic extensions. Thus we re-
duced our claim to the commutativity of (7) in case £ C F is a quadratic
extension. By [5, Corollary 5.3 p. 29], k,(F') is generated as a module over
k.(E) by k<1 (F). So it suffices (by the projection formula both for ¢* and
t.) to prove it for n = 1, which is an easy computation (use for instance
[25, Lemma 5.8]). O

For each n € I\, i, denotes the associated sheaf to the cycle module
1+(n). The Milnor morphism of cycle modules
S 1k — 1,

being an epimorphism it defines for each n € N an epimorphism of sheaves
in the Zariski topology

Sy ¢ Lcn 1,

by Lemma 2.7. This morphism is called the Milnor morphism in weight n.

2.4 — The isomorphism I" /"1 = i,

The following result justifies a posteriori our quick definition of i,, in
the introduction as I" /",

THEOREM 2.12. Let n > 0 be an integer.

1) The canonical transformation between functors on Fj: I"(F) —
— 1,(F) arises from a unique morphism of sheaves I — i,,.

2) The kernel of this morphism is the subsheaf I'"™ c I'".

3) This morphism is an epimorphism (in the Zariski topology) and

thus induces a canonical isomorphism I"/I"™ ~i,,.
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Proor. 1) We use Lemma A.2. The first property follows easily from
the fact that the morphisms

[n(F) - 747,(14—')

commute to residue morphisms (see the proof of Theorem 2.11). The second
property means that for any geometric discrete valuation v on F'|k € Fj, the
following diagram commutes

I'0,) — i,(0)

1 !
I'"(k(v)) —  1,(x®)

This follows again from Lemma 2.4 by mapping O, to Off . This defines the
morphism I" — i, for each n.

2) It is sufficient to prove that for each « € X € Smy, the diagram
® 0 — I""(Ox,) — I'(Ox,) — i, (Ox )

is an exact sequence.

Choose for each point y of codimension 1 in Spec(Ox ;) a uniformizing
element 7, of the associated discrete valuation. From the fact that
W(Ox ) = W(Ox,) is the kernel of all the residue morphisms 6;”, from
Theorem 2.2 and from Lemma 2.4 one constructs the commutative diagram
in which F is the fraction field of Oy, and the right horizontal maps are
residues:

0 — I'Oxo) — I'M(F) = &,cqpmop " 6@®)
)

! !

0 — I'Ox) — D' — & guo &)
! 1 !

0 — in(OXﬂ:) — () - EByeSpec(OX_],)(l)infl(K(y))
! | '
0 0 0

The horizontal rows and the last two vertical rows being each exact se-
quences, the claim follows.

3) We want now to establish the surjectivity of the right homomorphism
in (8). Assume first that k is infinite. By [8, Proposition 4.3], the group
I_{,]n” (Ox ) is generated by symbols {u;} . .. {u,} with the «;’s units in Ox .
Thus so is the (quotient) group i,(Ox ). Now we conclude because these
symbols {u1}...{u,} in i,(Ox,) are clearly in the image of I"(Ox,) —
— 1,(Ox ) which is thus onto.
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Assume now that k is finite. Let k¥ C K be an algebraic extension with K
infinite, perfect and of odd degree. By Lemma 2.14 below we see that the
cokernel of I"(Ox ) — i,(Ox ) injects into the cokernel of I"(Ox ,|K) —
— 1,(Ox »|K), which is zero by what we have seen above. The theorem is
now proven in any case. O

REMARK 2.13. It is possible to give a more elementary and more
natural proof of the previous Theorem which doesn’t use the result of [8]
quoted above. It relies on the work [26] and on [24]: for any irreducible
X € Smy, with function field F and any » € IN one constructs as in [26] an
explicit and canonical complex C*(X; I") of the form (see also [4]):

IH(F) - EByGSPec(OX.m)(l)In71(K(y); T?/) - 69zEAS'Z!MBC(OXAx)(z)Iniz(K(z); AZ(TZ)) e

in which 7, means the tangent vector space a point y € X, the dual of the
x(y)-vector space m,/ (my)z. The technique from Rost [24] shows that this
complex gives for a smooth local ring Oy, a resolution of I"(Ox ). This
complex can be shown to extends on the right the horizontal lines of the
diagram above used in the proof of part 2); from this it is quite easy to
prove the surjectivity of I"(Ox ) — i,(Ox ).

The following Lemma is directly inspired by [3, 22].

LeEmMA 2.14.  Letk C L be a finite extension and x € X € Smy,. Let F be
the fraction field of Ox ..

1) For each n € N the Scharlau transfer s, : W(F @ L) — W(F) with
respect to a non-zero k-linearmap s : L — k[25, §2.51maps W(Ox , @ L) C
C W(F @y, L) to W(Ox ;) € W(F) and maps I"(F @y, L) to I'"(F).

Thus it induces a natural morphism
I"(Ox » @y L) — I"(Ox )

| I
W(OX,:@ ® L) ﬁln(F QL) — W(OXx) mln(F)

2) For any non-trivial s the natural morphism of 1) is compatible to the
morphism
in(OX,x ®k L) - in(OX,x)

mduced by the transferi,(F ®y L) — i,,(F) of the cycle module structure on
1. (see 2.11).
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3) If [L : k] is odd, the morphism I'(Ox ) — i,,(Ox ) is a direct sum-
mand of the morphism I"'(Ox , ®r L) — i,,(Ox » @y, L).

ProoF. The fact that the Scharlau transfer maps W(Ox, ®r L) C
C WF @ L) to W(Ox ) C W) follows from [22, §2 & §3]. The fact that
the Scharlau transfer (for any choice of s) maps I"(F') into I"(F) is [1, Satz
3.3]. This proves 1).

By the previous result of Arason, the induced transfer i, : ,(F) —
— 1, (K) doesn’t depend on the choice of s. Choosing for s the trace
morphism we thus get the transfer for the cycle module structure, see the
proof of Theorem 2.11 above. This proves 2).

If [L : k]is odd, choose for s the morphism of [25, Lemma 5.8 p. 49]. By
loc. cit. the composition I"(Ox,) — I"(Ox, ®; L) — I"(Ox,) is multi-
plication by the class s.(1) = 1. The same holds for i,, by [1]. The Lemma is
proven. O

3. Proof of the main Theorem

3.1 — Some Al-homological algebra

For any chain complex C, in Aby, any sheaf M € Abj, and any integer
n € 7, we denote by

HOW’LD(Abk)(C* ,M[n])

the group of morphisms in the derived category D(Ab;) of the abelian ca-
tegory Aby, from C, to the n-th shift M[n] of M. That group can be computed
as follows: choose an injective resolution M — I, of M in Abjy of the form
M — 10 — I,l — I,z — I,g — ....Then HO’WLD(Abk)(C*,M[’}’L]) is the group
of morphisms of chain complexes C, — I.[n] modulo the subgroup of those
which are homotopic to zero.

For technical purposes, we slightly extend the notion of smooth k-
scheme. Let us denote by Smj, the full subcategory of that of all k-schemes
consisting of k-schemes which are possibly infinite disjoint union of smooth
k-schemes. Any such X € Smj, can be written as IT,X, with each X, irre-
ducible and in Smy; the X,’s are called the irreducible components of X.
The associated free sheaf of abelian groups on X is the sheaf 7Z(X) =
= @, 7(X,) € Aby.

A morphism of sheaves of abelian groups of the form

f:72(X) — Z(Y)
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with X and Y in Smj, is said to be elementary if for any irreducible com-
ponent X, of X the restriction of that morphism to the summand 7(X,) can
be written as a finite sum

Zifai fai

with n,; € Z and with each f, ; corresponding to a morphism of k-schemes
X, — Y. An elementary resolution of a sheaf M is a resolution R, — M
whose terms R, n € N are free sheaves on smooth k-schemes (possibly in
Sm;,) and whose boundaries are elementary morphisms.

LEmMA 3.1.  Forany M € Aby, there exists an elementary resolution of
the form

7X)=...—w7ZX,) — ... > 7Z(Xy) =M — 0

Proor. Let Py, be the abelian category of presheaves of abelian groups
on Smy. Then for any X € Smy, 7(X) is just the associated sheaf to the
presheaf Z(X) € P, which maps Y to the free abelian group on the set
Homy (Y, X). These Z(X) are projective generators in Pj.. One can thus find
a resolution R, — M in Pj, with R), = 0 for n < 0, and such that R), is a
direct sum of sheaves of the form Z(X) with X € Sm,. Then the sheafifi-
cation of that resolution gives a resolution in 4b; with the required prop-

erties. O

DEFINITION 3.2. A sheaf M € Aby, is said to be Zariski strictly Al-in-
variant if for any X € Smy, the natural homomorphism

HX; M) — H"(X x A'; M)

18 an isomorphism.

By [24, §9], any sheaf arising from a cycle module is Zariski strictly Al-
invariant. Any homotopy invariant sheaf with transfers in the sense of [28]
is Zariski strictly Al-invariant by [29].

Recall the construction C, from [27, 28] (in [28] it is denoted by C*). It
associates to a sheaf N € Ab;, the complex of sheaves C,(N) with n-th term
the sheaf X — N(4" x X), with A" the n-th algebraic simplex*, and with
differential in degree n, 27 ( — 1)7782-, with 0; induced by the i-th coface
An—l N An'

* i.e. 4" = SpecklTy, . .., Tyl/(Z:T; — 1)
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LEMMA 3.3.  Let M be a Zariski strictly A'-invariant sheaf.

1) For any non-negatively graded chain complex C. in Aby the
morphism

Homp ) (C.; M) — Homp ) (C, @ Z(A"); M)
induced by the projection C, @ 7(A') — C,, is an isomorphism.

2) For any sheaf N € Aby the morphism N — C,(N) induces an iso-
morphism

Hompap,)(C,(N), M[x]) = Hompap,)(N, M[x]) = Ext’y, (N, M)

Proor. 1) By definition, for M to be Zariski strictly Aldinvariant ex-
actly means that for any X € Smy, the homomorphism

Hompap,(Z(X); M[x]) = H*(X; M) —

H*(X x AY; M) = Homp ) (Z(X) @ Z(AY); M)

is an isomorphism. The part 1) of the Lemma then follows easily from
standard homological algebra and the fact that the sheaves Z(X) are
generators of Aby.

The part 2) of the Lemma follows from 1) exactly in the same way as in
[20, Corollary 3.8 p. 89]. |

An Al-homotopy between morphisms f, ¢ : C, — D, of chain complexes
in Ab; is a morphism % : C, ® 7(AY) — D, which induces f (resp. g9)
through the 0 (resp. 1) section Spec(k) — Al

As a consequence of 1) of the Lemma, any two A'-homotopic morph-
isms f,9:C, — D,, with C, non-negatively graded induce the same
morphism Hompgap,)(Ds; M) — Hompap,(Cs; M), for M Zariski strictly
Alinvariant.

3.2 - Vanishing of some groups Hompap,)(Z/2(n), M[*])

For X € Sm;, we let 7;.(X) denote the sheaf which maps Y € Sm;, to
the group of finite correspondences from Y to X, that is to say the free
abelian group c¢(Y,X) on the set of irreducible closed subschemes
Z C Y x X which are finite on Y and which dominate an irreducible com-
ponent of Y [28, 27].
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For X; and X, pointed smooth k-schemes we let
Zy(X1 N Xz) € Ay,

denote the cokernel of the obvious morphism given by the base points
Zn(X1) ® Zp(X2) — Z4r(X1 x Xz). Iterating this construction we get for a
family (Xi,...,X,) of pointed smooth k-schemes the sheaf [27]:

TirXa N NXY)

For any integer n, the motivic chain complex in weight n of Suslin-Voe-
vodsky [27, 28] is the chain complex Z(n) := C (Z(GL")[ — nl.
The following result is a variation on a idea from [31]:

THEOREM 3.4. Letn > 1 and let M be a sheaf which comes from a cycle
module of weights < n — 1. Then one has

9 Hompap,)(Z(n), M[m]) =0

for any integer m € 7.

The proof will be given below, after a couple of preliminary Lemmas. Of
course the case m < 0 is trivial.

For X € Smy, we let z,4(X) denote the sheaf which maps Y € Sm. to the
free abelian group z.,(X)(Y) on the set of irreducible closed subschemes
Z C Y x X which are quasi-finite on Y and which dominates an irreducible
component of Y [28]. We have the following geometric lemma:

LeEmma 3.5.  (Voevodsky [30]) There exist explicit quasi-isomorphisms
of chain complexes in Aby, of the form

7(21) = C.(Zp (G4 1] — C(Zar(P") | Zap(P" 1)) = €, (g (A™)

The following two Lemmas and their Corollary below are inspired by
the proof of [31, Proposition 3.3].

LEMMA 3.6. Let X € Smy, and let z € 2,(A")X). Let us denote by
Q(z) € X x A" the open complement of the support |z| C X x A" of z. Let
2| o) be the pull back of z through the morphism Q(z) C X x A" — X. Then
there exists a canonical cycle

IZ) € 2og(A")(Q(2) x AV
such that 01h(z) = z|Q<z) and 9yh(z) = 0. This cycle is functorial in X.
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Moreover, given any (finite) decomposition z = Xin;z;, with n; € 7 and
2j € 2og(A")X), then first |z| C Ujlz;], so that M;Q(z;) C 2(z) and one has
the following equality in z,,(A")(N; 2(z;) x Al

]’L(Z) = Zjnjh(zj)

The assertion involving A'-homotopies follows from the explicit con-
struction given in loc. cit.. Beware that a priori it is not clear whether or
not given a morphism 7(X) ER 7(Y) and an element y € z,((A")(Y), one
has f(Z(Q(f*(y))) C Z(Q2(y)), although this is true for f: X —-Y a
morphism of schemes. For instance we will be in a situation where
f*(y) = 0. This is why we will need the next Lemma.

LEMMA 3.7.  Given an elementary morphism
[ ZX) — Z2(X)

an elementy € zq((A")Y), considered as a morphism 7(Y) — zq4(A"), and
an open subscheme Qy CY x A", whose complement Zy is quasi-finite
equidimensional over Y and contains |y| (in other words Qy C Q(y)), then
there exits an open subscheme

Qy C X x A"

whose complement Zx is quasi-finite equidimensional over X and con-
tains |x| (in other words Qx C Q(x)), with x = y o f = f*y, and such that f
maps 7(Qx) mto 7(Q2y). Moreover, the restriction to 7(Qx) of the Al
homotopy h(x) of Lemma 3.6 is compatible with the restriction to 'Z(Qy) of
the A'-homotopy h(y).

Proor. We may assume X isirreducible. Write ' = X;n;f;, a finite sum.
Define Z C X x A" to be the union over the finite set of indices j of the
support of the cycles ];-*(Zy) € Zog(X x A").

By construction one has

el = |Zm £l < Zilff Wl € 251 @yl = Z

Clearly Qx = X x A" — Z satisfies the conclusions.

To check that f maps Z(Qx) into 7Z(Qy) it suffices to observe that
7(2x) = ﬁjZ(QQ;.*(Zy))) so that each morphism f; separately maps 7(Qx)
into Z(Qy).

Following this, one proves easily the assertion on the Al-homotopies
using Lemma 3.6 above. O
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COROLLARY 3.8. Let p, : Z(X,) 5 zeg(A") be an elementary resolu-
tion (given by Lemma 3.1). Then there exists a subcomplex

7(Q.) C Z(X,) ® Z(A") = Z(X. x A")

such that for each q >0, Q, is an open subscheme in X, x A" whose
complement 1s a closed subscheme Z,; quasi-finite equidimensional over
Xy, such that the composition

Q) C UKD @ ZUA") = ZUX, x A") — ZUX) D 2gg(A")

is homotopic to zero.

Proor. We construct the subcomplex
7(R.) C ZUX.) @ Z(A")

by an induction on the degree ¢ > 0 using Lemmas 3.6 and 3.7 above, by
imposing that for each ¢, €, is an open subset of Q(z,), where z, = 0 for
q > 0andzy = py : Xo — 2eq(A"), and that the homotopy is the restriction in
each degree g of the homotopy on Z(Q(z,) x AD given by Lemma 3.6.

To start with, apply Lemma 3.6 to the morphism p, : Z(Xy) — Z(A")
which we see as an element zy € 2,,(Xy x A"). We get an open subset
Qy = Q(z9) C Xp x A" whose complement is quasi-finite equidimensional
over Xy such that the composition

Q) C Z(Xo) ® ZA™) = ZUXy x A") — ZUXp) 2 2gg(A")

is homotopic to zero, through the explicit homotopy of the Lemma 3.6.
Now Lemma 3.7 applied to the boundary, an elementary morphism by
assumption, d; : Z(X7) — Z(Xp), and to z, allows one to define Q; (observe
that even if 0j(z9) = Z; = 0, Lemma 3.7 works and is non trivial!). The
process continues thanks to Lemma 3.6 and the functorial property of the
homotopy. O

Proor oF THEOREM 3.4. Set M := M,,. To prove the vanishing of the
Theorem, it is clearly sufficient, by Lemmas 3.5 and 3.3, to prove for each
m € N the vanishing

Ex ”A}bk(zeq(A”); M) = Hompap,)(2eg(A"); M[m]) = 0
We proceed inspired by Voevodsky’s proof of [31, Prop. 3.6]. Choose an
elementary resolution 7Z(X.) — z,,(A"). As M is Zariski strictly Alin-
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variant, Lemma 3.3 implies that the morphisms
Z(X) @ ZUA") — ZUXL) — 2eg(A")
induce isomorphisms
Hompapy) #eq(A"); Mm]) = Hompap,)(Z(X.); M[m])
=~ Hompap,(Z(X,) @ 7Z(A"); M[m])
By Corollary 3.8 and Lemma 3.3 again, the restriction morphism
Hompap,(Z(X.) @ Z(A"); MIm]) — Homp ) (Z(2.); M[m])

is 0. The group Homp ) (Z(X.) @ Z(A"); M[m]) is thus a quotient of the
group Hompap,(Z(X,) ® Z(A")/7(82.); M[m]). By construction the com-
plex 7(X,) @ 7Z(A")/7(,) is degreewise a direct sum of sheaves of the
form Z(X)/7Z(X — Z) with Z everywhere of codimension > n; the groups
Hompap)(ZX) ) 7(X — Z),MIm]) = H"(X,X — Z; M) thus vanish by
Lemma 2.9. The Theorem follows. O

3.3 — Vanishing of some extension groups Emt;bk (K, M)

Let C, be a non-negatively graded chain complex in .Ab; and n € 7 an
integer. We denote by H,,C. its n-th homology sheaf or in other words its
(—mn)-th cohomology sheaf H™"C.. We have the following well-known
construction, which can be derived from standard homological algebra [10]:

LEmMma 3.9.  (Universal coefficient spectral sequence) Let C. be a non-
negatively graded chain complex in Aby, and let M be a sheaf of abelian
groups on Smy. Then there exists a natural, strongly convergent spectral
sequence of cohomological type of the form

EY = Batly, (HyC.; M) = Hompap,(C., Mlp + q1)

We are now in position to prove our main result on the vanishing of Ext
groups:

THEOREM 3.10. Let n > 0 be an integer and M, be a cycle module.
Then:

1) If M, (k) = 0 then Hom ,(k,,, M) = 0;

2) If M, is of weights < n — 1 then Exthbk(lgn,ﬂ_lo) =0
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3) If M. is of weights < n — 1 and M _,11(k) = 0 and if Ho(N — 1) holds
and 1l <n <N —1, then:

Eaxt?, (k,,Mg) =0

Proor. Set M := M,. Let n > 0be an integer. Let’s first prove 1). An
easy computation as in [27, Lemma 3.3 p. 23] shows that

n
M((Grm)n) = @Z@:() M—m(k)(WL)

As a consequence the intersection of the kernels of the morphisms
M) - M((Co)") — M((Gy)"™ 1Y), with 12 (Gy)" ™ — (Gy)" the closed
subscheme defined by ¢-th coordinate =1, is exactly M_, (k). Let
¢ : k,, — M be amorphism and let (G,,)" — k,, be the morphism of sheaves
of sets corresponding to the obvious symbol in k, ((G,,)"). From the pre-
vious observation we see that the composition (G,,)" — k,, KA M is zero
because M _,, (k) = 0 and its composition with the z;’s is 0 because a symbol of
length 7 containing 1 is trivial. Thus ¢ is the zero morphism on sections over
fields, and is thus zero because M(X) C @,cxoMo(r(x)) for any X € Smy,.
Now let’s prove 2). Assume M. is of weights < n — 1. By Theorem 3.4
the groups Hompup,)(7/2(n), M[+]) vanish. The universal coefficient
spectral sequence of Lemma 3.9 thus converges to 0. By definition of the
complex 7 /2(n) [27], see also section 3.2, the homology sheaves H;(Z/2(n))
vanish for ¢ < —n and by Theorem A.7 we have a canonical isomorphism:

k, = H_,(Z/2(n))
Looking at the Es-term gives the vanishing (already known by 1)):
Hom ap, (k,,, M) = Hompap,(Z/2(n), M[ — n]) = 0
and the vanishing:
Eatly, (k,, M) C Hompy,(Z/2m), M[ —n +1]) = 0

To prove 3) we go further into the study of the E2-term which also gives a
canonical isomorphism

10) Hom ap,(H_y1(Z/2(n)), M) 2= Ext?y,, (k,,, M)

By Ho(N — 1), for any integer 1 < n < N — 1 the morphism of sheaves
(11) kn_l = H,1l+1(Z/2(7’l - 1)) - H7n+1(z/2(n))

induced by the cup-product by 7, induces an epimorphism on sections over
any field F'|k € F. Because M is 0-pure, this easily implies that the induced
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morphism Hom ap, (H_n11(Z/2(n)), M) — Hom a4, (k,_,M) is injective.
Together with the isomorphism (1) we get an injection

E’mti{bk (Iirm M) - HOm_Abk (’_Cn—l ) M)

but by the case 1) already proven, the group on the right vanishes because
M _,,1(k) = 0 by assumption. O

3.4 — Construction of ey

We can now complete the proof of our main result Theorem 1.3, fol-
lowing the lines of the introduction.

Let N >0 be a fixed integer. We assume hypothesis H;(N) and
H>(N — 1) hold. Proceeding by increasing induction we may assume the
Milnor conjecture on the Witt ring in weights < N — 1 for fields F|k is
proven.

Let us denote by j. the kernel in the category of cycle modules of the
Milnor epimorphism k, — %, constructed in Theorem 2.11. By our in-
ductive assumption, j, = 0 for any » < N — 1. By Ha(N — 1) and Theo-
rem 3.10, for any integer 1 <n < N — 1 one has the vanishing

E%titbk(’—‘:nﬂl}v) =0

for 7 € {0,1,2}. This vanishing also holds for n = 0: use the short exact se-
quence of sheaves 0 — 7, 2 7, — ky — 0 and H; (V) which gives J’N(lc) =0.

For each integer n € N, set W, := W/I""'. Using the short exact se-
quences

(12) 0—i,— Kn - wn—l —0

and the inductive assumption that k,, = i, for 0 <n < N — 1, we conclude
from the above vanishing of Ext groups that for any ¢ € {0, 1,2}, the group

Bty Wy 1. j\)
vanishes as well. This implies, by the short exact sequence of Lemma 2.7
(13) 0—jy, —ky—iy—0
that the homomorphism
Extly, Wy 1, ky) — Extly, Wy 1, iy)

is an isomorphism for ¢ € {0,1} and a monomorphism for i = 2. For ¢ = 1,
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this implies the existence of a sheaf of abelian groups I'y; which fits into a
commutative square in .Ab;, of the form:

0 — ky - Iy — Wy, — 0
14) | ! |

OHiNHEN—»wALlHO

in which the horizontal rows are exact, the bottom one being of the form
(12), and which induces the Milnor morphism on the left.

LEMMA 3.11.  Let X € Smy, be such that J}V(X ) = 0. Then the morphism
I'yX) — WxyX)

18 an isomorphism, and thus so is k(X)) — iy(X) by (14).

Proor. The epimorphism I'y — Wy has kernel j,. We get for any
X € Smy, an exact sequence 0 — JN(X) —kyX) — zN(X) — HY(X; JN) By
definition for Y € Smy, one has

Jy(Y) = Ker(®,cyo jn1y)) — @ eyain-1(x(2)))

(see 2.2) and by our assumptions which implies that, for any field F|k,
Jn_1(F) =0), we see that any open immersion U C Y induces an iso-
morphism JN(Y) =] (U ); this sheaf is thus flasque and H'(X; JN) =0 for
any X by [10]. This 1mp11es the Lemma. O

This is for instance the case for X = G,, because ( jN)(Gm) =
= J'N(k) e j]\’—l(k) =0 (by H1(V) ). The same observation holds for a pro-
duct (G,,)" by the formula used in the proof above. This also holds for any
open subscheme X C (G,,)" because JyX) = J}v((Gm)n) =0.

As a consequence there exists a unique lift

‘G‘m i EN
through I'yy — W, of the obvious “symbol”
‘\(?Tm —>EN 5 u'_’<u> EEN

We denote by 6 : Z(G,,) — Iy the morphism of abelian sheaves induced by
this lift.

We denote by (—) : G, — 7Z(Gy,), 2 () the morphism of sheaves of
sets given by the “inclusion of the base” into the free sheaf of abelian



Milnor’s conjecture on quadratic forms and mod 2 motivic complexes 91

groups 7((Gy,,) on it. We let @, : Xy = G, x G, — Z((5,,) denote the
morphism

U, V)—U)-U.V?

where we denote by U : G,, x G,, — Gy, and V : G,,, x G, — G, the
projections to the first and second factor. We will also need the morphism
&y : X1 = Gy, — 7Z(Gy,) defined by

)~ )+ (= U)

Let X; C G, x (3, denote the open complement to the closed subscheme
of G, x Gy, defined by the equation U+ V =0. Finally we let
@y : Xo — 7((Gy,) denote the morphism

UN—=U)+V)—U+V)—((U+WV).UV)

LEmMA 3.12. Fori € {0,1,2,}, the composition
X; % 2GSy

18 trivial, i.e. constant with value the 0 section of I'y.

Proor. By the above observation, the morphisms
I'y(X;) — WyXp)

are isomorphisms. The Lemma now follows from the fact that the corre-
sponding statements hold for the compositions X; — Wy These are indeed
classical relations which hold in the Witt ring W(F') of any field F'|k (see [25,
Corollary 9.4 p. 66]) and we conclude by the remark below, which implies
that the W, are 0-pure. d

REMARK 3.13. If0 — M' — M — M"” — 0is a short exact sequence of
sheaves in the Zariski topology, and that both M’ and M" are strictly A'-
invariant in the sense of Appendix A.2, it is clear that M itself is also
strictly Al-invariant. This implies easily by induction, because the iy are
each strictly A'-invariant, that the W, are strictly A'-invariant as well. By
Corollary A.5 these are also 0-pure.

COROLLARY 3.14. For each finite type field extension F|k, the morph-
ism
OF) : 7Z(F*) — Ly(F)
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factors through the epimorphism Z(F*) — W) and thus defines a nat-
wral transformation on Fy:

o) : W(F) — Ly(F)
ProoF. This is clear from the previous Lemma and the fact that for
each field F of char #2 the relations (u) = (u.v?), (u)+ (—u) and

(u) + (v) = (u+v) + ((u + V)uwv), withu € F* andv € F* (u +v # Ointhe
last case), generate the kernel of the epimorphism

7(F*) — W(F)
by loc. cit. O

Lemma 3.15.  The natural transformation on Fy:
O:W(-)— Lyl
obtained above arises from a unique morphism of sheaves of abelian groups
0:W— Iy
Proor. We observe by Remark 3.13 that the sheaves iy and Wy_;
being strictly A'-invariant, the sheaf I'y, being an extension between two
strictly Al-invariant sheaves is also strictly A'-invariant, thus 0-pure. Both

sheaves in the statement of Lemma 3.15 being 0-pure, we reduce by Lemma
A.2 to checking that for any geometric discrete valuation v on F'|k € Fy:

(1) OF) maps W(O,) C W(F) into I'y(O,) C Ly(F).
(2) the following induced diagram is commutative
WO, — Iy
Pyl Loy
W) % LyGew)

It is well known that W(0O,) Cc W(F') is the subgroup generated by symbols
(u) with u € Oy, see [25]. This shows that the morphism of sheaves

is onto on geometric discrete valuation rings O,. Using the morphism of
sheaves 0 : 7(G,,) — Iy this clearly implies (1) and (2). O
We let (-)) : Gy, — Z((5,) denote the morphism of sheaves of sets
u—((U)) :=1- )
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and more generally for each n > 0 we let
(Gi)" — Z(Gipy)
denote the morphism of sheaves of sets
Uy, Up) = (UD) V... U(Un)
(whose definition uses the obvious structure of sheaf of commutative rings

on 7(G,,) with product denoted by U).

LEmMMA 3.16.  For each n € N the composition
en: (Go)' — ZAGoy) > Ty

1s trivial if n > N and its image is contained in the subsheafky C Iy for
n = N. In that case the induced morphism

(G — ky

1s the obvious symbol: (Uy,..., Un)—{U1}...{Unx}.

Proor. By our above observation, the morphisms
Ly((Gp)") = Wa((Gy)") and ky((Gp)"™) — iy(Go)™)

are isomorphisms. Thus it suffices to check each statements on Wy and iy
respectfully, which is clear, because the composition

(‘Gm)n 2) LN - EN
is the n-fold Pfister symbol. O

We can now easily combine the above results to prove the Milnor
conjecture in weight N, finishing the proof of Theorem 1.3:

COROLLARY 3.17. The composition
I'cW > Iy
1s zero for n > N and for n = N induces a morphism
en iy IV IV S ky = ker(Dy — Wy )

This is a left inverse to the Milnor morphism in weight N which is thus an
1somorphism.
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ProOF. Lemma 3.16 implies that the morphism I" ¢ W — Iy is zero
on fields F|k € Fj, for » > N and is thus zero. The induced morphism
IV /1YY — Iy, composed with 'y — Wy, is zero on fields by Lemma 3.16
again and is thus zero. Thus we get

ey iy & lN/lNH —ky=ker(Ly — Wx_1)
Lemma 3.16 implies that the composition
GV = IV - IV IV — ey

is the N-symbol; thus the composition

SN . enN
(Gm)N —ky =iy —ky

is also the obvious one, so that the composition ky &y iy it ky is the

identity on fields, thus is the identity. O

REMARK 3.18. In fact to prove the Milnor conjecture in weight N it is
not necessary to construct @ as a morphism of sheaves. The natural
transformation @ on fields suffices, and one can adapt the end of the proof
to that situation.

A. Complement on sheaves.

A.l. Elementary properties of 0-pure sheaves of sets.
We will not repeat here the definition of 0-pure sheaves of sets givenin 2.1.
Let M be a 0-pure sheaf and denote by
M| 7 Fk— Ab
its restriction to finite type field extensions of k. For any geometric dis-

crete valuation v on F'|k € Fy, one has an associated subset M(O,) C M(F)
and a restriction map

Py M(Oy) — M(x(v))

We will not try to describe explicitly the properties satisfied by these data
which characterizes exactly the one coming from a 0-pure sheaf®. We will
only use the following Lemma:

(®) Though this can be done
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LeEMMA A.l. Let M be a 0-pure sheaf of sets and N C M|z, be a sub-
Sfunctor. For any irreducible X € Smy, with function field F set

NX)=NFE)NMX) Cc M)

and for any X € Smy, set N(X) := Il ,cxoN(X,) C M(X).

Assume that for any geometric discrete valuation v on a finite type
field extension F|k, the map p, : M(O,) — M(x(v)) sends M(O,) N N(F)
mnto N(x(@)) C M(xc(v)).

Then for any morphism f : Y — X in Smy, the map M(f) : M(X) —
— M(Y) maps N(X) into N(Y) and the correspondence X — N(X) is a 0-
pure sheaf of sets.

Proor. We assume X and Y are irreducible with field of functions ¥
and F. Also it suffices to prove the claim separately for f a smooth
morphism and for f a closed immersion.

Assume first f : Y — X is smooth. The map M(f) : M(X) — M(Y) ex-
tends to a map M(E) — M(F'), and thus maps N(X) = M(X) N N(F) into
NY)=MX)NNF). Assume now f : Y — X is a closed immersion. Let
y € Y C X be the generic point of Y and Oy its local ring in X; a regular
local ring of dimension codimyx(Y)=d. Choose a regular sequence
(21, . ..,2q) generating the maximal ideal of Oy ,. Because k is perfect, we
get the existence of an open subscheme U C X containing y and a flag
YNU=Y, C...C Y4, = U of integral closed subschemes, smooth over
k, such that Y; is the principal divisor in Y; 1 defined by the function x;. We
observe that N(X) = N(U)NM(X) and N(Y) = N(Y1) N M(Y). It is thus
sufficient to check that M(U) — M(Y1) maps N(U) into N(Y7) and using
the above flag we reduce to the case f is a closed immersion with Y a
principal divisor in X defined by a function. Denoting by v the discrete
valuation on £ associated to Y we see that M(f) : M(X) — M(Y) extends to
Py M(O,) — M@(v)) = M(F); but then by construction and assumption
NX)=MX)NNE) =MX)NN(O,) maps to M(Y)NNEF) = NY).

The fact that X — N(X) is a 0-pure sheaf is proven as follows. We may
assume X irreducible. Let {U;} be a finite open covering of X. To check
that the obvious diagram

NX) C ILN(U) = 11, ;N(U; N U))

is left exact follows easily from the fact that it imbeds into the corre-
sponding diagram for M. The rest is easy. |

Now we can describe morphisms between 0-pure sheaves in analogous
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terms. Let M and N be 0-pure sheaves of sets and let ¢: N — M be a
morphism of sheaves. By restriction to 7}, this defines a natural trans-
formation

¢|fk:N|]'—k—>M|}-1c

between functors F — Sets. Moreover ¢|- has the following two prop-
erties, for any geometric discrete valuation v on F|k € Fy;:

(1) ¢(F") maps N(O,) into M(O,) C N(F).
(2) the following induced diagram is commutative

Py 4 L py
NG@) 7 M)

Conversely:

LeEmMMA A.2. Given 0-pure sheaves of sets M and N, the above corre-
spondence defines a bijection from the set Homi(N, M) of morphisms of
sheawves of sets on Smy, from N to M to the set C(IN, M) consisting of natural
transformations

¢ : N|Fp — M|Fy

satisfying, for any geometric discrete valuation v, properties (1) and (2)
above.

Proor. By the O-purity property, the injectivity of the map
Homy(N,M) — C(N,M) is clear. Now let ¢ : N|F, — M|F} be a natural
transformation in C(V, M). Then for each irreducible X € Sm,,, with func-
tion field ¥, ¢ induces by property (1) and Definition 2.1 a morphism

$X) : N&X) = NyexaN(Ox ) — NyexoM(Ox ) = M(X)

It only remains to show that the $(X) altogether define a morphism of
sheaves, that is to say a natural transformation on functors on Smy. To
do this one proceeds using the same argument as in the proof of
Lemma A.1 above: to check the property for pull-back along smooth
morphisms one considers everything embedded in sections over the
corresponding function fields and to check the property for pull-back
along closed immersions one reduces to the case of a principal divisor
using property (2). O



Milnor’s conjecture on quadratic forms and mod 2 motivic complexes 97

A2. Strictly A'-invariant sheaves and 0-purity

DEFINITION A.3. A sheaf M € Aby. is said to be strictly A'-invariant if
it is Zariski strictly A-invariant and if for any smooth k-variety X the
comparison homomorphism

H (X; M) — Hy;(X; M)

from Zariski cohomology to Nisnevich [21] cohomology is an 1iso-
morphism.

Any homotopy invariant sheaf with transfers [28, Definition 3.1.10] is
strictly Aldnvariant by [loc. cit., Theorem 3.1.12].

LEMMA A4. For any cycle module M, the sheaf M, is a strictly Al
mvariant sheaf.

ProoF. We know that it is Zariski strictly A'-invariant by [24, §9]. The
fact that it is a sheaf in the Nisnevich topology and that the comparison
homomorphism

Hy,, (X My) — Higyo(X; My)

is an isomorphism follows from [6, Theorem 8.3.1 and §7.3 Ex 5)]; O
Lemma 5.5.4 of [18] gives:

LEMMA A5. A strictly Al-invariant sheaf is 0-pure.

COROLLARY A.6. A morphism M — N of strictly A'-invariant sheaves
which induces an isomorphism on fields F'|k is an isomorphism.

Proor. By Lemma A5 both M and N are O-pure. Thus such a
morphism M — N is a monomorphism of sheaves. Let C be its cokernel. It
is clearly a strictly Al-invariant sheaf thus a 0-pure sheaf again by Lemma
A5. Moreover it vanishes on each field F'|k. It is thus 0. d

A.3. Motivic complexes and unramified Milnor K-theory
The cohomology sheaves H'(Z(n)) of the Suslin-Voevodsky motivic

complex Z(n) in weight n vanish by construction for ¢ > n. A standard
result of Suslin-Voevodsky [27] gives the computation of H"(Z(n))(F) for
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each field F'|k. More precisely, we know from [27] that there is a canonical
quasi-isomorphism Z(1) = G,,[ — 1]. This gives in particular for each field
F|k a canonical isomorphism

F* = H'(Spec(F); 7.(1))
It is shown in [27, Theorem 3.4] that it induces, using the product
(15) Z(n) @ 7(m) — 7(n +m)
a canonical isomorphism of graded rings
®.(F) : KM (F) = @, H"(Spec(F); Z(n)) = @, H"(Z(n))F)
Altogether these isomorphisms define an isomorphism of functors on Fy,
@, : K = H"(Z(n))| 5,
The following result ([33, Corollary 2.4 (and proof)] and [7]) extends natu-
rally the previous isomorphism to an isomorphism of sheaves:
THEOREM A.7. Let n € N be an integer.
1) There exists a unique isomorphism of sheaves
@, : K = H"(Z(n)

which iduces the natural 1somorphism of Suslin-Voevodsky on the field
extensions of k.

2) For each integer m > 0, the above isomorphism induces an iso-
morphism (in Aby):

KM Jm = H"(7,/m(n))

We include the proof for the comfort of the reader:

ProOF. 1) In the proof we simply denote by H" the sheaf of H"(7(n)).
We first construct @, using Lemma A.2. We thus have to check Properties
(1) and (2) of that Lemma. Uniqueness is clear.

Fix a discrete valuation v on F|k € F}, of geometric type. Each element
of H"(F") of the form

D, ({ur} ... {un})

with the u;’s in O}, can be expressed, using the morphism H'® ...
LOHY = H induced by 15) as the cup-product
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O1({ur HU...UD1({uy,}) so that it lies in H"(0,) C H"(F), because each
symbol @; ({u;}) liesin HYO,) = O, . Moreover we clearly have the formula

Po(@n{ur} .. Aun D)) = p(@1{ur D U ... U &1({un }))
= D1(p,({ua ) U... U D1(p,({un})) = ylp,({ur } ... {un}))

Properties (1) and (2) of Lemma A.2 follow immediately from that ob-
servation and from the result of Bass-Tate [5, Prop. 4.5 (b) p. 22], see also
2.10, that any « € I_(ff[ (O,) is a sum of symbols of the previous form. This
defines

@, K — N

The n-th cohomology sheaf H" being a homotopy invariant sheaf with
transfers by [28, Definition 3.1.9], it is strictly Al-invariant by [loc. cit.,
Theorem 3.1.12]; so is I_(f;/[ by Lemma 2.7. We conclude that @, is an iso-

morphism by Corollary A.6.
2) is an easy consequence of 1). O

REMARK A.8. As a consequence, the sheaves I_(;” and k,, have canonical
structures of homotopy invariant sheaf with transfers, given by the above
isomorphisms. By [7] any sheaf arising from a cycle module has a canonical
structure of homotopy invariant sheaf with transfers; it is also proven in
loc. cit. that the above isomorphisms of sheaves are compatible with these
additional structures.
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