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Lipschitz regularity and approximate
differentiability of the DiPerna-Lions flow

Lu1G1 AMBROSIO (*) - MYRIAM LECUMBERRY (**) - STEFANIA MANIGLIA (¥#%)

1. Introduction.

In a recent paper [7] Le Bris and Lions studied, among other things,
the differentiability properties of the flow X(¢,x) : [0, T] x R? — RY as-
sociated to a veetorfield b : (0,7) x R? — R? having a Sobolev regularity
with respect to the space variable. Under suitable global conditions on b
analogous to those considered in [8], where the flow X has been first
characterized, they show that

Xt x+ey) — X, x)

(1.1) ;

Z(t,x,y)

where the convergence, as |0, occurs with respect to the local con-
vergence in measure in Rz X R;, and uniformly in time. The map Z(¢, x, y)
can be considered, according to this limiting procedure, a kind of “deri-
vative” of the flow X (¢, ) at « along the direction y.

This result raises several questions about the nature of Z and the
convergence of the difference quotients: the main one is whether we can
infer some kind of Lipschitz property of the flow from this convergence.
This is indeed closely related to the problem of passing from the local
convergence in measure in R? x Rfj to the a.e. convergence to 0 as ¢ | 0 of
the quantities

12) / lA’X(t,ersz:)—X(t,x)

—Z(t,x,y)| dy R > 0.
Br(0)
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Notice that elementary Fubini-type arguments show that this passage is
possible only for a sequence (¢;) | 0, but the convergence to 0 of the in-
tegrals (1.2) only along some sequence (g;) does not seem to lead to any
kind of Lipschitz property. Indeed, after the completion of this paper, in a
joint work of the first author and Maly [4], a new characterization of the
convergence 1.1 (for ¢ fixed) is found, involving only the x variable, and an
example that no Lipschitz property can be derived from this weak differ-
entiability property is explicitely given.

Assuming for the sake of simplicity in this introductory discussion that
b is autonomous and that both b and its divergence are globally bounded,
we are able to answer positively these questions under an assumption
slightly stronger than W}, namely that the local maximal function of |Vb|

loc?

belongs to L. . (this holds if and only if |Vb|In (2 4 |Vb|) € L{ ). Under this
assumption we show in Theorem 3.3 that Z(t,x,y) is representable as
L(t,x)y for suitable linear maps L(t,x) : R? — R? (see also [4] and Re-
mark 3.7); moreover, for any ball Br(0) and any J > 0 we can find a Borel

set A C Bg(0) such that
;%”d(BR(O) \A)<d and X(,-)|, is a Lipschitz map for any ¢t € [0,T].

It turns also out that indeed the map L(t, z) can be characterized #%-a.e.
in [0, T'] x A as the classical differential, given by Rademacher theorem, of
any Lipschitz extension of X(¢,-)|, (see also Section 2.1 for a different
characterization in terms of the so-called approximate differential). Fur-
thermore, combining “forward” and “backward” Lipschitz estimates we
obtain in Theorem 3.4 also bi-Lipschitz estimates, on large sets depending
on time.

The countable Lipschitz property immediately implies that several
classical identities (known to be true under the assumptions of the Cauchy-
Lipschitz theorem), as the explicit formula for the density transported by
the flow, are still true in this setting, see Corollary 3.5.

The strategy in [7] is based on the analysis of the flow in R2?

X(t,x+ey) — X(¢, 90))
€

Yot x,y) = (X(t7 x),
associated to the vectorfields

(b(ac), bx + sys) - b(x))

and on the theory of renormalized solutions for the limit vectorfield
(b(x), Vb(x)y) (see also [10] for related results in a BV context). Our strategy
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still uses the same difference quotients, but does not require this extension
of the theory. Our starting point has been the observation that, in a smooth
setting, the time derivative of In [VX(¢, -)| can be controlled by |Vb|(X (¢, x));
looking for a suitable discrete counterpart of this fact we considered the
quantities (here and in the sequel § denotes the averaged integral)

B (%)

where f(s) is of the form In (1 4+ s A 1) for some A > 0. Their formal limit is

F r(vxc. oy
B1(0)
a quantity comparable to f (IVX(t,2)|). Then we consider the push-forward
p; of p; under the map X(¢,-) and the push forward wj(x,y) of
18,0 @)1 B, ) (%) under the map Y*(t, -) to obtain that f; satisfy a transport
inequality
a [ b+ ey) — bx)|
elyl

d . . . , .
%ﬂf +D,-(bp;) <v; with r/(x):=1 w; (x,y) dy,

B;(0)

whose right hand side can be controlled by the maximal function of |Vb|.
Standard representation results for the solutions of transport problems
then give estimates from above on 8 and then onf;.

It is not clear whether our argument can be improved, getting Lipschitz
properties in the Wlloc1 case, or even in the BV),. case considered in [2].
Some extensions of our result, together with some other open problems,

are discussed in Remark 3.8.

2. Notation and preliminary results.

Given a map w(t, x) depending on time and space, we will systematically
use the notation w; for the map x — w(t, x), while a derivative with respect
to time will be denoted by f in the case of ODE’s and by % f in the case of
PDE’s. The least Lipschitz constant of a Lipschitz function f will be de-
noted by Lip f.

We denote by #* the Lebesgue measure in R and by wg the Lebesgue
measure of the unit ball of R%. Recall that a sequence of Borel maps ( f;,) is
said to be locally convergent in measure to f if

Jim {2 € Br(0) : |fil@) —f@)| >d})=0 VR >0,0>0.

Equivalently, one can say that 1 A |fj, —f| — 0in L} (R%).

loc
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2.1 — Approximate differentiability.

We start by recalling the classical definition of approximate differ-
entiability: a Borel map X : R? — R™ is said to be approximately differ-
entiable at © € R if there exists a linear map L : RY — R™ such that the
difference quotients

Y X(x +ey) — X(x)

3

locally converge in measure as € | 0 to Ly. This is obviously a local property
and we still denote by VX(x) the approximate differential whenever no
ambiguity arises. The approximate differentiability condition can also be
stated in a seemingly stronger but equivalent way, by saying that there is a
map X , differentiable in the classical sense at x, such that X(x) = X(x) and
the coincidence set {y : X(y) = X(y)} has density 1 at x. The latter for-
mulation can be used, in conjunction with Rademacher theorem, to show
that if X| , is a Lipschitz map for some set A C RR?, then X is approximately
differentiable at #?-almost any point of A: it suffices to find a Lipschitz
extension X to the whole of R? of X |4 (see for instance 2.10.43 of [9]) to
obtain the approximate differentiability property at any point of density 1
of A where X is classically differentiable. It is worth to mention also (see
3.1.8 of [9]) a converse statement: approximate differentiability at any
point of a Borel set A implies that we can cover A by an increasing family of
Borel sets A, such that the restriction of X|,, is a Lipschitz map for any .
In connection with Sobolev (or even BV) functions, the following clas-
sical result holds (see for instance [1], Lemma 3.81 and Theorem 3.83):

THEOREM 2.1 [Approximate differentiability of Sobolev functions]. Let
Q c R be an open set and let f € WEL(Q: R™). Then we have

loc

If (y) — f(x) — Vf(x)(y — x)] i

. _ (,,/*d_
2.1) lg{)l Y] y=0 for Z%a.e xecQ.
B, (v)
Furthermore
1
(2.2) Wdy g/ ][ IVf|(y)dydt for any ball B,(x) CC Q.
B.(x) 0 By(x)

In the following theorem we state a basic criterion for approximate
differentiability: basically it says that if the asymptotic L' norm of trun-
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cated difference quotients can be bounded independently of the truncation
level, then the map is approximately differentiable. More precisely, in
order to study the Lipschitz properties of the flow, we are going to apply
Remark 2.3 with f(f) = In (1 + ¢ A 1) with A sufficiently large.

THEOREM 2.2. Let f; :[0,4+00) — [0,4+00) be subadditive and non-
decreasing functions such that sup, supf; = +oo, and let X : RY = R™bea
Borel map. Assume that

lim sup lim sup ][ fi <|X(y)7;X(x)|> dy < +o0 VeeA

1—00 7‘10
B, (w)

for some Borel set A C RY. Then X is approximately differentiable at #°-
a.e. x € A.

Proor. We denote by c(x) the double limsup appearing in the state-
ment and we assume with no loss of generality that Z%(4) < +o0. Since
c(x) is finite for any « € A, for any ¢ > 0 we can find a compact set K C A
and M € R such that :%d(A\K)<sandc§M71 on K, | X| <M on K.
Furthermore, by applying Egorov theorem to the family of functions

gr(x) ;== sup limsup ][ fi <w> dy xeK

>k rl0
B,.(x)

we can find a compact set K’ C K satisfying #%(K \ K') < ¢ such that

lim sup fﬁ(M) dy <M Ve e K

B,(x)

for 7 sufficiently large independent of x. Denoting by c; the Lebesgue
measure of the intersection of two open balls with radius 1 whose distance
between the centers is 1, we choose 7 in such a way that

2M Wq

fiGm) >

for some A3 > 0

and we apply in an analogous way Egorov theorem again to find a compact
set K” K’ such that #%(K’'\ K") < ¢ and

(2.3) ][ l(M) dy<M VexeK'

By ()
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for » < vy, with 7 > 0 independent of x. Notice that by construction
ZUA\K") < 3e.

We now claim that the restriction of X to K" is a Lipschitz map. Indeed,
for any pair of points x, y € K” we can estimate |X(x)— X(y)| with
2M\x —y|/roif jx — y| > rp. If v .= |& — y| < 7o we apply (2.3) twice and the
subadditivity of f; to obtain

1 (X@) —X@)|
o | AT e

B (x)NB(y)
B,(x) B.(y)

Since Z%(B,(x) N B,(y)) = cqr® we obtain
£ <X(90) —X(?J)|) < 2de7

i
r Cq

so that our choice of 13, and the monotonicity of f; give

X (@) — X@)| < mle —yl. O

REMARK 2.3. Let f:[0,+00) — [0,+00) be a subadditive and non-
decreasing function. The argument used in the proof of Theorem 2.1 shows
that the conditions

sup ][f<|X(y)_X(x)|)dy§M and |X|<M; onA

re(0,r9) r

(x
for some M > 0, My > 0, ry > 0 imply that

Lip(X|,) < max{z—M1 )v}

To ’
provided f(1) > 2Mwg/cq.

2.2 — Maximal functions.

Letf € Llloc(]Rd) be a nonnegative function. The local maximal function

f* is defined by

t€(0.1)

fH) = sup ][f(y)dy
By(x)



Lipschitz regularity and approximate differentiability, ete. 35

It is well known (see for instance [12]) that the weak L! estimate

] d
xd({x € Br(0) : fi(x) > i}) < ? / fapdy  Vi>0
Br1(0)N{f>i}
gives that f* is finite #?-a.e., and that
2p
(2.4) / 7 da < cgz)_p? / |fPde  Vpe(,o0).
Br(0) Br.1(0)
In the critical case p = 1 we have
(2.5) / frde < wgR + C(d) / fIn@2+f)de.
Br(0) Br1(0)

2.3 — Flow associated to a vectorfield.

In this section we consider a vectorfield B(¢,z) = By(z) satisfying the
following conditions:
[P11 B & L} ([0, T3 Wl (R”; R™));

[P2] {2 € L1(10, T1; L (R™)) + LY ([0, T L*(R™));

[P3] [divB,]~ € L}([0, T); L*(R™)).
We denote by L the constant

(2.6) L o)y NldivBI |t

If also
[P4] [div B;]" € L([0, TT; L=*(R™))
holds, we set

(2.7) 7o o)y NldivBI |t

The following definition of flow is a variant of the one adopted in [8], as
it does not involve the semigroup property. Basically in this definition the
flow is considered as a measurable map « — X(-, ) with values in the space
of continuous maps, while in [8] it is considered as a continuous map
t— X(t,-), with a suitable metric in the space of measurable maps in R?
that induces the convergence in measure. See Remark 6.7 of [2] for the
proof of the equivalence between the two definitions, at least under the
assumptions [P1], [P2], [P3].
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DEFINITION 2.4 [Flow]. We say that Y(¢,2) : [0,T] x R — R™ is a flow
(starting at time 0) relative to a vectorfield B(t,z) if the following two
conditions are satisfied:

(a) for £™-a.e. z € R™ the map t—Y(t,2) is an absolutely continuous
mtegral solution of the ODE y = B(,y) in [0, T, with y(0) = z;

©) Y(t, ) 2™ < CL™ for some constant C independent of t.

An important consequence of condition (b), that we will use later on, is
the property

2.8) / St eO,T): ¢ Y () e N} de =0
R™
for any #"*1-negligible set N c (0, T) x R™. Indeed, denoting by N; the
t-sections of N, we have that the integral above equals
T T
/c%’m({x e R™: Y(t,x) € Ni})dt = /Y(t, Ve "Ny dt =0,
0 0

where in the last equality we used the fact that N; is 4" -negligible for
Sae. te 0,7

THEOREM 2.5.  Under assumptions [P1], [P2], [P3] there exists a flow,
uniquely determined in [0, T] x R™ up to sets with £ -negligible projec-
tion on R™. Moreover, property (b) holds with C = L, the constant defined
m (2.6). The flow has also the following additional properties:

(a) there exist vectorfields By, smooth with respect to the space variable,
such that

2.9) I[div By 1|, < [I[div B,

|B1|
1+ 7|

e L0, TEL*(R™), By e L'([0, T Wy (R"; R™))

loc
and such that the classical flows Y}, associated to Bj, satisfy

lim / max |Y,(t,2) — Y(t,2)| Aldz =0 VR > 0.
h—o0 te[0,T]

Br(0)

(b) If [P4] holds, then Y(t, ), <™ > L™, with L as in (2.7).
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Proor. The existence of the flow is proved in [8], together with its uni-
queness according to the definition of flow adopted therein. Uniqueness ac-
cording to Definition 2.4 (a priori a weaker one) is proved in [2] for the case of
bounded vectorfields and in [3] in the general case. Statement (a) is proved in
[8] (see also [3]) by taking as Bj, the standard mollifications of B w.r.t. the
space variable. Statement (b) can be easily proved by approximation, using
the explicit expression for the densities of Y}, (%, -) %? namely

1
4ty (4 [¥i(t, )] @)
Since 4;,(t, x) := det VY, (¢, x) solves the ODE
[4,(t, ) = (div By, (Y, (¢, 2))) - 4,(t, )],

taking (2.9) into account with the positive parts we obtain a uniform upper
bound on 4;, and therefore a uniform lower bound on the densities. O

LEMMA 2.6 [Logarithmic sup estimate]. Let Y be a flow relative to B.
Then

1+1Y(,2) .
. _ <
(2.10) / %%111( o )dz_ IB|* VR >0,
Br(0)

where ||B||" denotes the infimum of all sums

LIy

among all decompositions of |B|/(1 + |z|) and L is defined in (2.6).

1 2

+ wp R™ )y
1 | | LY(LY) m 1 | | LY(L>)

ProOF. Let w; be the density of Y(t, )4 ;(BR(O)LZ”” w.r.t. 4" and notice
that ||wyl; = wnR™ and ||wy||., <L, by property (b) of the flow. Using
property (a) of the flow we get

T .
/?3%’]‘1“< 1+ R >d2§/ /1+|Y(t,z)ldtdz

Br(0) BH © 0

BUY(t,2) |Bt|wt
//1+\Y<t o) < // ded.

Splitting |B|/(1+]z|) in the sum of a function in L'(Z!) and a function
in L1(LL*) and minimizing among all possible decompositions we obtain
(2.10). O
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3. Approximate differentiability of the flow.
LEMMA 3.1. Assume that b: (0,T) x RY — R? fulfils [P1], [P2], [P3]
and let X(t,x) be the flow associated to b. Let € > 0 and let

X(t,x+ey) — X(, x))
: .

Ye(t, X, y) = <X(t, 96'),

Then Y. is the flow velative to the vectorfield B*(t,x,y) = B;(x,y) in R2?
defined by

(31 e e

In particular condition (b) is fulfilled with C = L?, where

T
(3.2) L= o vl

PRrROOF. Itis immediate to check that the condition X (t,x) = by(X(t,x))
Za.e. in [0,T] for #’-a.e. x implies that Ye(t,x,y) = Bi(Y<(t, x,y)) £ -
a.e.in [0, T] for #*-a.e. (x,y) (precisely, for #?-a.e. x, the property holds
for any y). In order to check that Y°(t, ), #* < L2 #* (with L as in (3.2))
we write the inequality in an integral form

/¢<X(t,x)’X(t,%+5?i)X(t,x)> do < L2 / o, y) dudy

R? RIxR?

for any nonnegative ¢ € C.(R? x R%) and we notice that the property is
trivially true if b; € C' (indeed, in this case the divergence of B;(x,y) is
div by(x) + div b;(x + y)). The general case can be immediately achieved
using the integral form and the stability property of the flows with respect
to approximations by locally Lipschitz vectorfields, ensured by an appli-
cation of Theorem 2.5(a) to the vectorfield b. O

LEMMA 3.2. Assume that b: 0,T) x RY — R? fulfils [P1], [P2], [P3]
and let X(t,x) be the flow associated to b. Let f be a bounded nonnegative
function satisfying

(3.3) % B+D, - 0p)=relLl, ([0, T) x Rd)

n the sense of distributions, and assume that
@) t— B, 1s w*-continuous between [0, T) and L“(Rd);
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(i) sup |X(-,®)| < +oo for some Borel set A C R".
[0,7TxA

Then we have

T
sup B (X(t,a) < LBy@) + L / 7], (X (s, %)) ds
teQN[0,7") 0

for Z%-q.e. x € A.

Proor. We first extend the PDE to negative times (as done im-
mediately before Theorem 4.11in [2]), setting b; = 0 and », = 0 for¢ < 0, and
Bi = Py for t < 0. Accordingly, we set X (¢, x) = « for ¢ < 0. Then we mollify
w.r.t. the space variable both sides to obtain smooth functions ﬁf = [, * p;
such that

%B(SJer-(bﬂ&)g KR in(—oo0,T)x R?

with |r[° — |r|in L} ((=00,T) x Rd) as 6 | 0 (by the commutator estimate

in [8]). Finally we mollify again w.r.t. the time variable both sides to obtain
smooth functions f° = (8°) * p, such that

%ﬁé’”+Dm(bﬂd’”)SC(5’” in(—oco,T—n)x R
with
oM — |7‘|5 * Py + (D, - (bﬁa)) %y — D, - (5(55 *,0,,))|.

Notice that the smoothness of f° w.r.t. the spatial variables immediately
gives, expanding the spatial divergences, that %7 — |fr\‘5 in
L} ((=00,T) x R?) as 5| 0. The smoothness of f° and the fact that it
solves the transport inequality (not only in the distributions sense, but also

ae.in(—oo, T —7n) x Rd)
% B4 b - VB < — div by + ¢
immediately gives

a4

t .. N
o {e L div b, (X(r,x)) dr ﬁ?,q(X( ‘) x))} <

<e I, divb,(X(r,x))drC?,n(X(t, x) Vte(—1,T—n)

for a.e. « € A. Precisely, this happens for those x € A such that the trans-
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port inequality above fails at X (¢, x) for a set of times ¢ with strictly positive
1-dimensional Lebesgue measure; this set is % “-negligible by (2.8). Hence,
if # € (0,1) we get

t
(3.4) BINX (¢t 2) <L) + L / (X (s, %)) ds
-1

¢
:Lﬂo*Pa‘(-?C)JrL/C?’”(X(S,oc))ds.
|

Foranyt € [0, T) we can use the w*-continuity property of t — f; (ensuring

the strong convergence of ﬁf‘” to /3? as 7] 0) to pass to the limit as #] 0 in

(3.4), using also condition (b) in Definition 2.4, to obtain

t
BIX () < Ly * psla) + L / P[0 (X (s, 2) ds =
s

t
= Ly # po@) + L / PP (X (s, ) dis
0

for #%-a.e.x € A.Passing now to the limit as 6 | 0 and using again condition
(b) in Definition 2.4, we eventually obtain

¢
P X (¢, ) < Lfy(x) —|—L/ |7 (X (s, 2)) ds for #%ae.xc A
0

for any t € [0, T). By letting ¢ vary in the countable set Q N[0, T'), we obtain

T
(3.5) sup S(X(¢,x) < Lpyx) +L/ |r| (X (s, @) ds
teQN[0,7) 5
for #%-a.e. x € A. O

THEOREM 3.3 [Lipschitz estimate]. Assume that b fulfils [P1] for some
p > 1, [P2], [P3], [P4] and let X(t,x) be the flow associated to b. Then, for
any ball Br(0) and any é > 0 we can find a Borel set A C Br(0) such that
ZUBR(0) \ A) < 6 and the restriction of X(t,-) to A is a Lipschitz map for
any t €[0,T]

In particular X(t,-) is approximately differentiable #“-a.e. in R? for
any t € [0,T].
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Proor. We consider the flow Y* and the associated vectorfield B as in
Lemma 3.1 and a ball B(0). By Lemma 2.6 we obtain

% ({x € Br(0) : trergg% X, x)| > M}) < [ln(l R 110]|

for any M > R, hence we can find a constant M; > R and a Borel set
A; C Bg(0) such that Z%(Bg(0) \ A1) < J/2 and

(3.6) r[r(}aTg]( X, x)| <M Vo € Aj.
We define

N = / In(1+ |y dy.
B1(0)
Since

T T
/ /|Vbs|(X(s,x))dsdac < L/ / |Vbs|(y) dyds < +oo,
0

Ay 0 By, (0

we can find M» such that
T
74, \A)<d/2 with A:= {x €A /|Vbs|(X(s,x))ds < Mz}.
0

Eventually we define M := NL + wqL?Ms and choose A sufficiently large,
such that In(1 4+ 1) > 2ML/cq, where

e ol N

Notice that by construction % d(BR(O) \A4) < 0.
Step 1. We fix the initial measure i = y, @)y, o)\¥)-7% 24 to obtain, by
Lemma 3.1, that Y=(¢, ) xz1 < L27% with L defined in (3.2). We denote by

w3 (2, ) the density of Y=(¢, -) xit w.r.t. #* and notice that |w*||,, < L? and
that w® solve the following Cauchy problem for the continuity equation:

d
(3.7 ﬁwg + D,y - (B*w") =0, w (0, ,9) = xa@)xp,0)Y)-

Moreover, for any nonnegative ¢ € Cc(Rd) and any t € [0, T] we have

/ o) / w; (x,y) dyde = / p(X(t, ) dedy < Lwg / () d

R? R? AxB1(0) R?
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and therefore

(3.8) / w;(x,y)dy < Lwg for 7 ae. x, for any t € [0,T1].

R¢

We are going to apply Remark 2.3 with the function f(f) :=In(1+
+t A A). To this aim we define

B@) = / FlyDws @, ) dy.

Step 2. (estimateson ) Lety € C°(—2,2)withy = 1on[ — 1,1]and let
wr(y) =w(y/R). Using the test function p(x)(fwz)(|y|), with ¢ € C;’O(Rd), in
(3.7) gives

zo) 4 / (@) / o)y e, ) dydac =

R¢ R¢
/(V(/)(x) by (x)) /(fl//R)(l?/Dwt(x ) dyda +
R¢ R¢

(by(xe + ey) — by(x), y)
Pe) / EPCER

wr(|yDw; (e, y) dydax +

bie + <) — i), ¢
+ / (@) / i) e — W oy o o, ) e
Rd Rd

in the distribution sense in (0, T'). Using (3.8), the contribution of b(x) in the
last integral in (3.9) can be estimated by

% / o) ()| / wi (e, y) dyda <

_ Louln £ Dl
= / 10@)|[b)| da.

Rr?

Using the inequality 1+ |x+ey] <C+2eR for «x€suppp and
Y € supp g, and writing b/(1 + |z|) as A + A’ with |A| € L*([0, T];Ll(Rd))
and |A'| € L} ([O,T];L”(Rd)) we can also estimate the contribution of
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b(x 4 ey) in the last integral of (3.9) as follows:

(C+2Re)In(1 + |||l o,
Re /\(0(90)|

[ LA ey + 1Al i) dydo

R? {ly|=R}

Hence, passing to the limit as R — oo in (3.9), the dominated convergence
theorem gives

% / @) @) dae —

R¢

_ e <bt(.’)(; + Ey) - bt(x)v y> <
_/<V(ﬂ(90)7bt(90)>ﬂt () da +/ () (/0) AT w; (x, y) dydc.

R? RY B,
Since ¢ is arbitrary this proves that
d E € c
(3.10) G+ De - OF) <7, ﬂ®m=MWﬁ/ﬂMMy
B1(0)
with

Pt @) = |(by(x + ) — by(x), )|

wi(x,y)dy <

o elyl?
<12 KM%mw;mmmH@'
B,(0) Elyl
By (2.2) in Theorem 2.1 we get
(3.11) ¥t x) < Lot |V for e <1

Notice that |Vb;|* € L} ([0, 77 x Rd) because of the maximal estimate (2.4).

Moreover, by (2.1) and (3.8) we infer

(3.12) lim sup 75 (%) < Lwg|Vby|(x)
cl0

for # " -a.e. (t,2) € (0,T) x R”.
Therefore, by applying Lemma 3.2 and using the definition of A and
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(3.6), Fatou Lemma gives

T

limsup sup f;X(¢, ) <limsupLB(0,x) + L/ |7°|,(X(s,2)) ds
el0  teQN[0,T) el0 0

T
<LN + ayl* / |Vbs|(X(s,2) ds < M
0

for #“%-a.e. x € A. Notice that the bound (3.11) and the integrability of
|Vbt|jj are used to ensure that Fatou lemma is applicable.

By Egorov theorem, possibly passing to a slightly smaller set A still
satisfying ,Zf’d(BR(O) \ 4) < J, we can assume the existence of ¢y > 0 such
that

(3.13) sup sup f;X(t,x) <M for “%-ae. xc A.
£€(0,) teQN[0,T]

Step 3. (Conclusion) We now claim that, setting
- X(@,x+ ey) — X (&, x) X(¢,y) — X, x)
it i= f p(BETED XD g [ (KO0 XCDD) g,

3
B (0) B.(w)

the inequality
(3.14) fix) < w£ Bi(X(t,x) “%ae.in A, for any t e [0,T]
d

holds. Indeed, recalling that «j is the density of Y*(t, )4 (x4 @)1, ) %)
w.r.t. 2% we have the identity

[ vos@de= [ sy dedy = o [ o0 ds
R¢ RYxR? A
that tells us that f; 27 = X(t, ) 4(wq ;2.4 #*). From [P4] and Theorem 2.5
we obtainff; < (L/wq)f; o X(,) v ae.in A, for any t € [0, T].
Summing up, from (3.13) and (3.14) we infer

swp sup ][ f<|X(t,y>;X<t,x>|> ay <M

£€(0,¢0) teQN[0,T) T wg
B.(x)

for #%-a.e. x € A and we can use the continuity in time of the left hand side
to replace the sup on QN [0,7) by a sup on the whole interval [0, T].
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Thanks to Remark 2.3 this implies that, denoting by B the Borel subset of
A where the inequality above is fulfilled, we have

(3.15) Lip X (¢, )|z < max{2M; /ey, A} O

In order to obtain bi-Lipschitz estimates we combine forward and
backward Lipschitz estimates and use the semigroup property of the flow,
as discussed in [8] and [2].

THEOREM 3.4 [bi-Lipschitz estimates]. Assume that b fulfils [P1] for
some p > 1, [P2], [P3], [P4] and let X (¢, x) be the flow associated to b. Then
for any absolutely continuous probability measure p in R? and any o > 0,
t € [0, T] we can find a set My such that p(Rd \ M) < dand X(t, ')|M; s a bi-
Lipschitz map.

Proor. Given s, t € [0, T] we denote by Y (¢, s, x) the flow associated to
b starting from time s (so that the 1-parameter flow in Definition 2.4 with
d = m, B = b corresponds to Y(t, 0, x)): for any given s it is characterized by
the conditions

Y(s,s,x) =, %Y(t,s,x) =b(t,Y(t,s,2), Y(ts,)u’?<Cs?

with C independent of {. Arguing as in [8] (see also Remark 6.7 in [2]) one
can use the characterization of the 1-parameter flows to obtain the semi-

group property

(3.16)  Y(t,s,x) =Y (t,r,Y(rs,x) foralte [0,T], for #%ae.
for any s, » € [0, T]. Notice that the ;Zd—negligible exceptional set N, a
priori depends on 7, s.

Given ¢ > 0 we can find a “forward” set A such that Y(¢,0,-)|, is Lip-
schitz and p(R?\ A) < §/2. By reversing the time variable we can find a
“backward” set A; such that

d 0
Y(&,0,).p(R™\ 4y) < 5

and Y(0,¢,-)| 4, is Lipschitz with constant 1. Finally we define M; so that
M, :=ANY(0,) A\ No.

Since M; C A we need only to show lower bounds on |X (¢, x) — X(¢,y)|. To
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this aim, notice that for & € M; we have
x=Y(0,0,2) =Y(0,¢,Y(t,0,x))

because, by definition, M; N Ny = 0. Therefore, for x, y € M;, since both
Y(t,0,2x) and Y(¢,0,y) belong to A; we obtain

| —y| =1Y(0,0,2) — Y(0,0,9) = |Y(0,£,Y(t,0,2)) — Y(0,, Y(£,0,y))]

As a consequence | X(t,x) — X(¢,y)| = |Y(¢,0,2) — Y(¢,0,y)| > |« —y|/4 for
x, y € M. O

In the following corollary we give an explicit representation of the
density of the (absolutely continuous) measures transported by the flow.
This enables to compute also integrals of nonlinear functions of the den-
sities, a computation that would be impossible without an explicit re-
presentation of the densities themselves.

COROLLARY 3.5 [Explicit representation of X(t,-)xpl. Under the as-
sumptions of Theorem 3.3, for any absolutely continuous probability
measure p= f <% in R and any t € [0,T] we have that the density w;
of X(t,)up w.r.t. s representable as

f___, [x.15]

(3.17) T 1 det VX @, o)

for a suitable Borel set %; C R? whose complement is %?-negligible.
Furthermore, for any nonnegative Borel functions ¢, i, we have the change
of variables formula

(3.18) /(o(wt)y/dy: / detVX(t,x)kp(

R? R?

f

m) WX (t,2)) da.

Proor. We recall the area formula for Lipschitz maps (see for in-
stance 3.2.3 of [9]): if w: A ¢ RY — R? is a Lipschitz map, then

(3.19) / h(x)|det V| de = > h@dy
" R reArnw1(y)

for any nonnegative Borel function /. By the remarks made in Section 2.1,

this formula still holds for maps that are approximately differentiable at

any point of A, since we can cover A by a sequence of sets A, such that w|,,

is Lipschitz for any #.
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Hence, denoting by 2 the set of points where X(¢, -) is approximately
differentiable, we can apply (3.19) to any Borel set A C X; with w = X(¢, -).
By applying the semigroup property (3.16) we obtain a Borel set X5 such
that (%‘d(Rd \ 29) = 0 and (with the notation of Theorem 3.4)

x=Y(0,0,2) =Y(0,t,Y(t,0,x) = Y(0,t, X(¢,x)) YV € Xy,

so that X(¢, -) is one to one on 2. Setting X' = X} N X5 we can apply (3.19)
with A = 21 N X(t, ) Y(E) and

_ frs
|det VX(, -)|

for any Borel set £ C R? to obtain

/ F@)de — / m X¢t, )] @ dy.

X@t,) (B)

Since E is arbitrary, this proves (3.17). To prove (3.18) we just apply (3.19)
again with

O

h(%)z%z(m)w(X(t,x))(ﬂ( S )

[det VX, )| )

In the following theorem we discuss the relation between the approx-
imate differential VX(¢,x)y and the derivative Z(t,x,y) of the flow con-
sidered in [7].

THEOREM 3.6. Assume that b fulfils [P1] for some p > 1, [P2], [P3],
[P4], let X(t,x) be the flow associated to b. Then for any t € [0, T] the dif-
ference quotients
X(t,x+ey) — X(t,x)

€

Z5(t,x,y) =
locally converge in measure in Rﬁ X RZ asel0to Z(t,x,y) = VX, x)y.

Proor. By the very definition of approximate differential the vector
fields Z¢(t, «,y) locally converge in measure in Rd as |0 to VX(¢,x)y for
any (t, ) where VX(t, x) is defined. Therefore, smce VX(t,x) exists for £*- d
a.e. x € R% one more integration w.r.t. x gives the result. O

REMARK 3.7. Using the theory of renormalized solutions for vector-
fields of the form B(x,y) = (b(x), Vb(x)y), developed in [7], one can also
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show that
(X, x), VX, 2)y)

is the unique flow associated to B, where “flow” is understood in a slightly
weaker sense than the one adopted in this paper (due to the fact that the
vectorfield B fails in this case to satisfy condition [P3]). Furthermore, even

in the W110c1 case not covered by our results, one can show using the stability

results of [7] that that the component Z(t,x,y) of the flow is still re-
presentable as L(t, x)y for suitable linear maps L(%, x) : RY - R? (precisely
L(t,x)y is the limit in measure of VX (¢, x)y, where X, are the approx-
imating flows).

REMARK 3.8 [Extensions and open problems]. (1) As the proof of The-
orem 3.3 clearly shows, the Wllo"f regularity for some p > 1 can be wea-
kened by requiring [P1] with p = 1, [P2], [P3] and

T
(3.20) / / Vb, () dadt < 400 VR > 0.
0 Bgr(0)

Equivalently, we may require that
T
[Vbi(x)| In 2 + |Vby(x)|) deedt < 400 VR > 0.
0 Bgr(0)
One can also notice, in the same spirit of [5], that the expression of »* in

(3.11) involves only the symmetric difference quotients of b;, namely those
of the form

(b + cy) — b(x), )
ely|

that can be controlled using only the symmetric part of the derivative.
Therefore, still keeping [P2] and [P3], [P1] and (3.20) can be replaced by

T
(V) + (Vb [[ (@) dewdt < +00 YR > 0,
0 Bgr(0)

requiring only that the symmetric part of the distributional derivative of b;
is in L] .; by the results in [5] the flow is well defined also under these
weaker conditions.
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(2) The local integrability of the maximal function of b; plays an es-
sential role in the pointwise estimate of #°, necessary in order to apply
Lemma 3.2. Therefore, as we said in the introduction, it is not clear whe-
ther our results can be extended to the W'! case or even to the BV case
considered in [2].

(3) The argument used in the proof of Theorem 3.3 does not lead to an
explicit bound of the Lipschitz constant of X (¢, -) as a function of J. More
precisely, assuming for simplicity that |b| is globally bounded, we have
clearly that the constant M; depends only on R, while M3 and therefore M
can be estimated from above with C(R)/d. Hence . ~ e“®/9 can be esti-
mated explictly and gives a bound on the L> norm of |VX]| on [0,7] x A.
On the other hand, due to the application of Egorov theorem, the global
Lipschitz constant of X(,-)|, depends also on ¢, as (3.15) shows. More
precisely, we have

X (¢, x) — X(E,y)| < e —y| Ve, y € A with | —y| < e, t €[0,T].
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