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(S3, Sg)-Amalgams IV.

WOLFGANG LEMPKEN (*) - CHRISTOPHER PARKER (**)
PETER ROWLEY (¥*%)

Introduction.

This paper in the fourth in a series of seven papers devoted to the study
of (S3, Sg)-amalgams. We continue the section numbering of the first three
parts [LPR1], and refer the reader to Sections 1 and 2 for notation and
background material. However for the readers’ convenience we summarize
some of the main points from these sections.

Adopting the philosophy of Goldsehmidt [Go] our study of (S5, Se)-
amalgams proceeds by examining the action of a group G (which is a
certain free amalgamated product) on a certain tree I. Now G has two
orbits on V(I'), the vertices of I, and one orbit on the edges of I". Let
a1,az, € V(I') be adjacent vertices. Then the properties of (S3, S¢)-amal-
gams translate into this situation as follows:

1) G = <G(117Ga2>;

2) Gy, NGy, = Gyyq, contains no non-trivial normal subgroup of G;

3) Ga1a2 € S?/ZZ(Gal) N SyZZ(Gag);

4) Cg, (02(Gy,) < 02(Gy,) for i = 1,2; and

5) G4, /02(Gy,) =2 S5 and Gy, /02(Gy,) =2 Se.

The overall aim is to determine the group theoretic structure of the
vertex stabilizers G,, and G,.

For 6 € V(I'), we set

AW) = {4 € V(I |d(,7) =1},

where d(,) in the standard graph theoretic distance on I'. Also for ¢ € N,
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we let
AS) = {2 e V() |d(, 2) < i}

The two orbits of G on V(I") are, in fact, af and af; for § € V(I") we use
0 € O(S3) (respectively 0 € O(Sg)) to mean that o € af (respectively 6 € ag).

For 6 € V(I') put Qs = O2(Gs). Various normal subgroups of G5 con-
tained in Qs will be analyzed extensively. We begin with Zs which reappears
over and over again in our arguments and is defined by

Zs = (@1(Z(Gs) | 1 € A©)).
Letting k£ € N we further define
G = (2,7 € AM()).

We shall concentrate on these subgroups mostly for £ < 4, and we use the
following abbreviations

_ ]
‘/rs - G(j ;
Us = GE;Z], and
W =G,

The first phase of our investigations, which amounts to a very con-
siderable step in pinning down the possible structure for G, and Gy,
consists of bouding the parameter b. This parameter, called the critical
distance, is defined by

b=min{b, |u e VUI)}
where
b, =min{d(u, ) |21 V), Z, £ Q;}.
We note that b > 1. For a,a' € V(I'), if d(a,a’) = b and Z, £ Q,, then
we say that (a, a) is a critical pair and denote the set of critical pairs by C.

Suppose that (6,6’) € C. Since I is a tree, there is a unique path in I" be-
tween 6 and ¢’ which we label in one of the following ways.

0 o+1 o+ 2 0+b—2 5+b-1 o
o ——0 [ 2 L 2 L ]
d—-b+1 o -2 o -1

Often we use J — 1 and &' — 1 to stand for, respectively, an arbitrary
vertex of A(9) \ {d + 1} and A(d') \ {¢' — 1}. When using (a, a') € C we shall
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always set f = a + 1. Let (a,d’) € C. If [Z,, Z,] # 1, then we say that (a, ')
is a non-commuting critical pair and if [Z,,Z,]=1, (a,d') is called a
commuting critical pair.

This paper marks the beginning of our work on the commuting case for
(Ss3, Sg)-amalgams — the non-commuting case so far as bounding b, being
covered in [LPR1]. Here we consider commuting critical pairs (a, o) with
a € O(Sg)-those commuting critical pairs with a € O(S3) are the subject of
parts V, VI and VII and the determinations of the structure of the (Ss3, S¢)-
amalgams once the critical distance in bounded can be found in [LPR2].
Our main conclusion here is contained in the following result.

THEOREM. Suppose that for (a,a’) € C we have [Z,,Z,]=1 and
a € O(Sg). Then b € {1,3}.

We conclude this introduction with some comments on the proof of this
theorem as well as discussing some module facts.

Section 8 contains three preliminary results. One of these is the Core
Argument given in Lemma 8.3. This is used frequently to lure subgroups
into the G,4-cores of Z, and Z! (see Section 8 for the definition of Z%). The
structure of Z}, dealt with in Lemma 8.3, is also important in many of our
later deliberations.

The majority of Section 9 is taken up with the proof of Theorem 9.2
which proves that [Z} : Z; NZ} ;] # 2 so long as b > 1. Most of this proof
is concerned with examining a particular Goldschmidt subamalgam
(H,, Hp) chosen so that it acts upon an FF-module V. This gives us access
to results of Goldschmidt and Chermak which classify the possible amal-
gams and FF-modules. Our task then becomes the elimination of each of
these possibilities. The most stubborn resistance is offered by the cases
H~ Se and H~ G2(2) (where H = (H,,Hg) and H= H/Cy(Vy)). To deal
with these cases we need to make use of another result of Chermak’s [Ch2].
The last section of this paper investigates the case [Z; : Z; NZ; ,] # 2.
Here we make greater use of the tree I". An important step in our analysis
is Lemma 10.2 which says that our critical pairs are, in a certain sense,
symmetric. Then in the next lemma we discover that, in fact, Z = Z,.
Lemma 10.4 observes certain facts about commutators and Lemma 10.5
describes some properties of Sp4(2) which are used in Lemma 10.6. Both
Lemmas 10.7 and 10.8 focus upon U, and, with these results to hand, the
proof of the above theorem follows quickly.

If, for o e V(I'), M5 < N5 < Qs with M5 and Ns both normal in G, then
n(Gs,N5/Ms) denotes the number of non-central Gs-chief factors in
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Ns/M;s. When looking at Gs-invariant sections such as Ns/M ;s we find that
we need to know many details about irreducible GF(2)-modules for S5 and
Sg. The former group has just one non-trivial irreducible GF(2)-module
which has dimension 2. For H = S¢ there are (up to isomorphism) four
irreducible GF'(2)-modules the most important for us being the two of di-
mension 4. Either of these modules will be referred to as a natural Sg-
module (and sometimes denoted by 4). These two modules are related by
the graph automorphism of Sp4(2) =2 Sg. The 6-dimensional permutation
module V for Sg is indecomposable and has an irreducible composition
factor of dimension 4. Calculations in V are easy and enable us to find out
all we need to now about natural modules. Let U be a GF(2) H-module. We
call U an orthogonal module if U is indecomposable of dimension 5 and

U /Cy(H)is anatural module. Such a module is sometimes denoted by G)
while W =~ @) indicates that W is an indecomposable module of dimen-

sion 5 with [W, H] a natural module.

For an extensive (and up to date) account of amalgams the reader may
consult [PR].

The authors thank Bernd Stellmacher for suggestions (too numerous to
mention) which have substantially improved and shortened an earlier
version of this paper.

8. Three Lemmata.
We begin by stating the following:
HyporHEsis 8.1. If(a,a') € C, then [Z,,Zy]1 =1, a € O(Sg) and b > 1.

Before investigating the consequences of this hypothesis we state some
well-known general observations on the commuting case.

LEMMA 8.2. Let (a,d’) € C and assume [Z,, Zy] = 1.
(i) b =10, 1is odd and bg = b+ 1.
(i) Zp=2(Z(Gup) = 21(Z(Gp)) < Zy, Z(G,) = 1 and Cg,(Z,) = Q.
Also WGy, Zy) > 1 and, if b > 1, 5(Gy,Vy/Zy) > 1
If; additionally, a € O(Sg), then
(i) G = QuQp; and
@v) if Ald) ={d — 1,711,712}, then Zy_1, Z;, and Z., are pairwise
distinct, Z, is transitive on {t1,72} and Z., and Z, are conjugate by an
element of Z,,.
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ProoF. Since Gy /Qu = S3 or Sg and Z, £ Qu, Go = Gy w-1Cg,,(Zy)
whence Za/ = .Ql(Z(Ga/af_l)) § Z(Ga/). Then Zaf = Ql(Z(Ga/af_l)) =
= (Z(Gy)). If b = 02), then Z, = 1(Z(Gyp)) < Zp < Qu, acontradiction.
So b =1(2) and (i) holds. Suppose b > 1 and #(Gy,Vy/Zy) = 0. Then, as
Zw < Zy_1 < Vg, we obtain 0%(G,) < Ng,(Zy-1), against Lemma 1.1 (ii).
Thus WGy, Vy/Zy) > 1; the remainder of (ii) is a consequence of Lem-
ma 1.1 (ii).

Clearly Qu—1 £ Q, and so as a’ € O(S3) by (i) and a € O(Ss) we have
(iii). We note that G, is generated by two distinct edge stabilizers and so
(iv) follows easily. O

For the rest of this paper we assume Hypothesis 8.1 holds (with the
exception of Lemma 10.2 where we do not require b > 1). Let (a,d’) € C.
We choose Z? to be a minimal normal subgroup of G, contained in Z,. By
Lemma 8.2 (ii), Z; is an irreducible G,/Q,-module. Now for € O(S¢), we
define subgroups Z* := (Z})?, where g € G is such that a - g = z. This is
easily seen to be well-defined. For A € O(S3) and 7 € A(1) we also define
Vi = (Z:%), Y: = coreg (Z3) and Y, = coreg,(Z)).

Lemva 83. (The Core Argument) Let 1€ 0(S3) and
A(t) = {1, 42, A3}. Suppose that H < G,,, and H £ Q.. Then
O Y =2 ﬂZ* and Y, = Z;, N Z,, fori#j € {1,2,3};
(ii) H s tmnsztwe on {J2,23}; and
(i) of H normalizes a subgroup M* of Z7;, (respectively M of Z;,) for
some 1 € {2,3}, then M* < Y (vespectively M <Y_).

Proor. Note that G, normalizes Z* ﬁZ* and Z;, ﬂZ where
{i,7,k} ={1,2,3}. So, since [Z},Q,]= [ZA Q; 1=1, Z; OZ* and
Z;; N Z,, are both normalized by (Q, G.),) = G, and (i) holds Part (i) is
clear Whlle (iii) follows from (i) and (ii). O

LEmMA 8.4. Let (a,0') € C.
Q) If1Z; : 2,0 2,51 = 2, then nGy, Vi) = 1.
(i) Q. & Syl((Q")).

(i) Z; is natural G,/Q.-module.

ProoF. (i) Assume that [Z; : Z; N Z; ;] = 2. Then [Z : Y*] =2. By
Lemma 1.1 (ii) Z: < (Z,%) = WMW%%WW%(%%Ll

(ii) Suppose that Q, € Sy12(<Qa” )). From Lemma 8.2 (iii) X; := (Q, Gy )
covers (p/Qp. Set @ = Q. N Qp. Then Q = 02(Xj). Now Lemma 1.1 implies
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that no non-trivial characteristic subgroup of @, is normal in Xg. Appealing
to 3.2 yields that

84.1) nXp,Q) =1and
(N ZWQ)" |x € Aut(Q,) and x has odd order)

s a normal subgroup of X contained in Q.

Noting that @ = coreg,(Q.), we see that @ centralizes (Zf/’) = V3.
Hence, as b>3, Vp<i(Z(Q). So (84.1) implies that U, =

<V*02<G )y < Q. Since 7(X5,Q) =1=nXp,Vp) and V< U, < Q,, We
have U, is normal in X; which is impossible by Lemma 1.1 (ii). Thus
Qu 7 SyL(Q")).

(iii) First we consider the case when (G, V;;) > 2.Then V;, NQp £ Qu.
Since (a,d’) € C and o' € O(S3), Z, acts transitively on A(d) \ {a' — 1} =
= {7, p} and hence Z; N Q, < Cg, (V). So we have

(8.4.2) [Z;: Cr(Vin@Qpl < [Z,: Z,nQul < 2".

Now Proposition 2.9 (i) and (8.4.2) show that Z* is not isomorphic to the 16-
dimensional irreducible GF(2)Sg-module, whence Z? is a natural module by
Lemma 2.2 (i). So we may suppose that n(Gﬁ,Vﬂ*) =1. Thu§ [V};,Qﬁ] =

= [Z4,Qp). If Z is the 16-dimensional Steinberg module for G, = G,/Qu,
then, by Proposmon 2.9, [Z;,Qpl = E@2Y) and Cy.(j) = E(2) for each in-
volution j of G,. Therefore, Ce, /;([V/;,Q/;]) = Q.. Set H 5= CGﬁ([Vﬂ, Q).
Then Hy< Gy and so Q, € Syly,(Hp). But, as Hy = <Qa ), this contradicts
part (ii), so completing the proof of (iii). O

9. The case [Z; : Z; N Z; ,] =

Suppose that (a,a’) € C. Our main result in this section is Theorem 9.2
in which we show that the case [Z] :Z;NZ; ,]=2 cannot occur. If
(Z;, : Z;, N Z; , ,]=2, then from Lemma 8.4 n(Gg, V*) =land Z ~F@2Yisa
natural G,/Q,-module. Moreover we have that Y[’; = [ Q] =1Z;,Qp] =
E(23). We shall use these facts without further references in this section.

Set Cy = Ce, (V)), Ky = (IV},Qu%) and Hy = Cg,(Y;). Observe that
Hp= (QS"). Our first lemma looks at the structure of Kp and V.

LEMMA 9.1. Assume that [Z;:Z;NZ; ,1=2. Then |Kp|= 28
Ky Z; = Cr,(Gop) and Ky = [V}, OZ(Hﬁ)] In particular, |V| = 2°.
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Proor. Since [Z; : YE] =2=1[Z;,: Y/}‘], we have [Z; ,, Q. NQp] <
< ZgN Z;. Therefore, Q, acts as a group of order 2 on V/’; /(Zg N Z?) which
centralizes the subgroup [Vﬁ*, Q.1Z;/(Zy N Z7). Since this latter group has
index2inV;;/(Zy N Z;) and [V, Q. £ Y5, we have | [V, Q.1(Zg N 7| = 22,
If K has order 22, then K3 7, = Vi which then gives Vs, Q.] = 1, contrary
to 17(Gg,V;) = 1. Thus K; has order 2° with |K;Y;/Y;| = 2% Suppose
Vi = KgY;. Then [V§,Q,] < Z; and, as [V},Q,] in normal in G, the
uniseriality of Z as a G,s-module, implies that [V/}‘7 Q. < Yg which is of
course impossible. Thus [V /Y| = 22 and KyNZ: = Kpn Y;=27,NnZs=
= Cz,(Gup).

THEOREM 9.2. If(a,d’) € C,then [Z; : Z; N Z} ;] # 2.

a

ProOF. Suppose that [Z}:Z;NZ; ,]=2 for (a,d’) € C and put

a:

Q = Q. N Qp. Then we have that Hg has a Sylow 2-subgroup 7' where
752 T/Qu < Z(Gup/Qq) With T/Q, acting as a transvection on Z?. Let
t € O2(Hp) \ Q. Then O2(Hp) = Q(t) and T' = (t) Q.

We identify G,z/Q, with ((56), (13)(24),(12)) and assume that Z, is the
natural module which admits (56) as a transvection. Then tQ, = (56). Let
I={1,2,3,4} and let d; € G, i € I, be such that

diQq = (156), d2Q. = (256), dsQq = (356), dsQ, = (456).

Then tQ, inverts d;Q, for each i € I. Set T = {(d;Q,)|t € I}. For i € I we
define the following subgroups:

H;, =(T,d;);
H; =(Hp,H;,);
N; = corey,(T);
Vi =1(Z(N;)) and
Ui =[Vi, H;].

Note that for each i € I, 0s(H;,) = Q, and that H; ,/Q, = Ss. Fori € I, we
additionally set

H;=H;/N;, H;, = H;,/N; and H;z=Hy/N;.

Obviously we have

92.1) foriel, (H;, Gy) = G,.
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Since Hy/O02(Hp) =2 S3 and H; ,/Qq = S, H; = I?Z/a * ITIT/; is a Gold-
schmidt amalgam. Because G.5/Q, permutes the set {(d;Q.)|i €I}
transitively and normalizes Hy, the type of the Goldschmidt amalgam is
independent of 7 € I.

Note that N; < Oz(Hm) N OQ(H/;) =Q, N Oz(Hﬁ) =@ and so, by
Lemma 8.4 (i),

(92.2) O2(0*(Hp)) £ Q, .

Let 7 € I. Recalling that ¢ acts as a central transvection on Z, we have
Zi=Cr((d;,t) = Cp.(d) = E@% with Z; <Cp(t) = Y;. Hence,
Z; < Z(H;) and so0 Z; < N;. Therefore, |Z: | < 22. We next show that

9.2.3) Z: <N, foreachicl.

We suppose that (9.2.3) is false, and seek a contradiction. If |Z!N;/N;| = 2,
then Z: = ((Z: NN)"«) <N;. So we must have |Z:N;/N;| =22 with
W(H;a, Z%) = 1. Also, from (9.2.2), 7(Hi g, O2(H; 4)) > 1. Let b be the critical
distance of the amalgam (ﬁ\i;,%). Then b > 3 forces b > 3 which then
yields, using Theorem 3.5, b >3 and FZ is of type G5 or Gi. Both of these
amalgams have the property that \Z(OQ(I%)N = 2. Now b = 3 means that

there exists & € H; such that Z* < Hh but Z £ Og(Hh 8-
Since [N;, Z;] =1, this leads to [N1, Oz(Hﬁ)] — 1. Hence using (9.2.2),

[N;, (O*(Hp), O*(H; )1 = 1.

Combining (9.2.1) and Lemma 1.1 (ii) gives
(9.2.3.1) N; contains no non-trivial G.s-invariant subgroups.

Let g € Gyp. Since Gyp normalizes O*(Hp), [NY,0%(Hp)] = 1 and so, as
|Z(02(H1 p)| = 2, it follows that N; Ng < N,;Z%. Therefore N;Z} < G, and
consequently N;Z 2 G, by (9.2.1). Because Qa normalizes N;, [N 2, Qal =
=[N;,Q.)isa normal subgroup of G, contained in N;. So [N;Z},Q,] = 1 by
(9.2.3.1). Clearly, ®(N;Z?) < N; and thus, using (9.2.3.1) again, we obtain
N;Z; < 1(Z(Qy). Since Q,/N;Z; is a G,-invariant section of @, with
n(HZ 0y Qu/NiZ%) # 0, n(Gy, Qa/N; Z*) # 0. Now, by Theorem 3.5, |T| <27
which then shows that Q,/N;Z* =~ E(2%) is a natural G,/Q,-module. As
V5, Qul # 1, Vi £ NiZ;,. Hence @, is generated by involutions and thus,
appealing to Lemma 3.11, @, is elementary abelian. But then Q,/N; is
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elementary abelian which is not the case as @,/N; contains subgroups
isomorphic to 74 x 74. With this contradiction we have verified (9.2.3).

From (9.23), Z; <V; and therefore Vj = (Z,"") < V; for all i e 1.
Since

N <Cyx(V)<Cp<Q<T and N;<Cy, (V))<Cp (Z)<Q.<T,

we deduce that Cp, (V) = Cy,(V;). Hence N; = Cy, (V;) = Cy,(V;). Be-
cause (H; ., Gup) =G, by (9.2.1), H; , does not normglize V/}‘ and so
CH V; )H7 o F CH (Vi)Hp.  Consequently, putting H;=H; / Cu,(V3),
H HZ o %5 H,; is a Goldschmidt amalgam with f[z «=H;, and
H p Hz, B-

The first part of the next claim has been discussed a moment ago.

9.24) Foriel,

@) V/;? <Viand N; < Cp; and

(i) J(Cp) £ N; (J(Cp) being the elementary abelian version of the
Thompson subgroup of Cg).

For (ii) note that J(Cp) < N; implies that J(Cp) = J(NV;) is normalized by
(H;,Gg) = G and, as J(Cp) # 1, this contradicts Lemma 1.1.

It follows from (9.2.4) (ii) that J (C/;) contains an offender on V;. Further,
as fy(H i3 OZ(H)) >1 and J(Cp)2 Hg, Theorem 3.6 ([Table II and Corollary
3, Chl]) yields that H i =S¢ or G2(2) and all the following additional in-
formation.

9.2.5) Foriel
@) (/IEI 10, Hi ) is of type G or G and is independent of i € I

(D) H; = Ss or G2(2);

(iii) of H; = S¢, then U; is isomorphic to either the natural or or-
thogonal Sg n/@\odule and Cg/N; acts as a transvection on U;; and

iv) if H; =2 G2(2), then U;/Cy,(H;) is isomorphic to the natural 6-
dimensional Ge(2)-module and |U;| < 27. Furthermore, Cs/N; has order
23 and is an offender on U,

We will need the following result about amalgams of type G or Gj.

(9.26) Let i€l and suppose W< H,. If either WﬁHw;él or
WﬂH/;;él then OX(H;) < W.

If, say, we W where (w) € Syl3(ﬁlﬁ) then [w, Og(ﬁl,;)] < W. Since
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(ITIi,a,I:}/;) is of type G} or Gy, w, Og(i‘]ﬁ)] £ Qg(ﬁiﬁa) which forces v 6~W
where (v) € Syls(H;,). This yieldsNOz(Igi) < W. So we may suppose W N
NHp < Os(Hy) and likewise that W N H;, < O2(H;,). But then 1 # Wn
NHg =W nNH,;,Jd H;, a contradiction.

Note that G,;/Q. permutes the set 7 transitively by conjugation. As-
sume that g € Gy and (d; Q,)° = (d;Q.). Then, as @, < T, we have

Hga = Hjaa
and, because G, normalizes Hy, we conclude that HY = H;, NY = Nj,
V¢ =V; and UY = Uj. Set, for i, j € I with i # j,
Hy = (H;, Hj)

Ny = coreHﬁ(T)
Vij = .Ql(Z(NU)) and
Hjj = H;j/Ny;.

Note that G,; has two orbits on the pairs {7, j} C I. One orbit has
length two and consists of {{1,2},{3,4}} and the second orbit has length
four and consists of all the other pairs.

Set M = (| N;. Then M is normalized by G.s. If [N1,d;] < M were to

el
hold then, M2 (di,G.,Hpg) =G which yields V/}‘ <M =1. Thus
[N1,d1] £ M and so there exist j € I \ {/} such that [Ny,d;] £ N;. Since
there is an element in G, which exchanges 1 and j, we then have
[N;,d;] £ N1. The action of Go5/Q, on pairs in I shows that

(9.2.7) there exists j € {2,3} such that [N1,d1] £ N;.
Note that if 7, j € I, © # j, and [N;,d;] < Nj, then Njj = N; N N;.

(9.2.8) Suppose thatj € I and [N1,d1] £ N;. Then
0 ;@) <Qyand
Gi) fork € {15}, Cq (Ni) <Ny, Cg, (Vi) < Nig, nH g, Oo(H o)) > 2
and ﬂ(H/;, Oz(H/;)) > 2.

If (i) is false, then d; would centralize Q,. Hence, since Ny; < Cp < Q,, ds
normalizes Cy whence Cy < (G, d1) = Gy, a contradiction. Thus (i) holds.
Suppose Cﬁﬁ(ﬁ ©) % N (where k< {1,7}). Applying (9.2.6) with
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W = Cy (Nk) yields that dj. centralizes Ny. So [Ny, d;] < Nlj <NiNN;
which is not the case. Therefore C—/ (N}) < Hj, and likewise C (N ©) < N
for k =1, 5. Now, appealing (9.2.5) (ii), the remainder of (ii) follows

In the language of Chermak [Ch2], (9.2.7) and (9.2.8) say that, provided
[N1,d1] £ Nj, {T CHy4,H;,,Hp} is a “Large Triangular Amalgam”.
Since O2(H1,4) = Q, = O2(H; ,), we may apply [Theorem A, Ch2] to obtain
the following result.

(9.2.9) Assume that [N1,d1] £ N;j. Then, for k € {1,j}, Ni/Ny; is ele-
mentary abelian, contains exacitly one non-central Hy-chief factor and
N1 N N; is not normal in Hy.

(9.2.10) Suppose that [N1,d1] £ N;. Then Hy and H; have no non-central
chief factors within Ny;.

Suppose that C7(Ny;) < Ny;. Then V1 V; < Vy;. Define

= i AlAZ N A £ N.
m Ag%lﬂ){\ |A £ NyiorA £ Na}

and
K(Cp) = {B € ACp)||B| < m}.

Then, by the definition of m, (K(Cp)) < N1 N N; and consequently is in-
variant under the conjugation action of H; and H;. Therefore,
(K(Cp)) < Ny;. By (9.2.4) (ii), J(Cp) £ N; fori € I, som > 1. Furthermore,
as there is an element of G4 which interchanges 1 and j we know that there
is A € A(Cp) with A £ Ny and |Z| = m. From among all such A select one
with |A N V;| maximal. Then by the Thompson Replacement Theorem A is
an offe/n\der on V1. So, since [Cg : N1] = 2 in the case H; = S¢ and by [ON]
when H; = G2(2), we have

it H, =~ S

2
AN/ N1| = [V1/ Oy, ()] = _
23 if Hy = G»(2)

In particular, _this yie_lds that B =(ANNV1 € A(Cp). Clearly, as
Vi <Nyj, B< N; and |B| < |A|. Hence B € K(Cg) and thus B < Ny;. In
particular, A N Ny < Ny; and so

2 if Hy~Ss
[V1;/Cv,;(A)] = [V1;/Vi; N A| = |AJANNy;| = -
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Therefore Vy; = Cy, (A)Vi. Since Vy;/Vy admits H; and A £ Ny, using
(9.2.6) gives V1V; < Hy which contradicts (9.2.9). From this contradiction
we deduce that CT(Nlj) £ Nlj. If CT(Nlj) <NiN N;‘, then CT(Nlj) =
= CN1(N1j) = CNJ.(Nlj)ﬂH, whence CT(Nlj) < N1j~ Thus CT(Nlj) ﬁ Nz
where i € {1, j}. Appealing to (9.2.6) we infer that O*(Hj) centralizes Ny,
and then, by (9.2.6) again, we have proved (9.2.10).

One consequence of (9.2.5), (9.2.9) and (9.2.10) is that U; £ Ny; and that
UiN1;/N1; contains the unique non-central H;-chief factor in N1/Ny;.

92.11) Z; = Z, and Zg = Cz.(Gyp).

Since every Hj,-chief factor of N; is contained in U; and
NH14,Cy, Qo)) = 1, n(H1 4, 1(Z(Q,))) = 1. Hence, as Z(G,) = 1, Lemma
2.2 implies that Q;(Z(Q,)) is either a natural or a dual orthogonal module
for Sg¢. In particular, (9.2.11) holds.

(9.2.12) Suppose that [N1,d1] £ N; and y = f.dy € Ala). Then
() [Zo 11K < Uy, [ Za: diJKg| = 24 and Z, O [ 20, di 1K = [Zay do;
(i) [K,,Cpl £ Zy; and
(iii) UiN; = U;N1 = NN, = Cy.

Since n(H1,N1) =1, [Z,,d1] < [Ny,di] < Uy. Now [Z,,d1] = ZgZ, and
so Zp < U;. Now Lemma 9.1 implies that Kz < [Za,dl]H/f < U; and that
[Z,,d11K5| = 2*. So (i) holds.

Because #7(G,, K,) = 1 and Cg £ Q, from the structure of the amalgam
(H1,4/N1,Hg/Ny), part (i) holds. Suppose that U; < N;. Then [Ny, d;] <
< U; < Nj, a contradiction. Hence (iii) holds by (9.2.5) (iii) and (iv).

(92.13) Hy 2 Sg.
Suppose that I?l =~ Sg. Then [U;,Cg] has order 2. Assume that
[N1,d;] £ N3. Then, by (9.2.12) (iii) and by symmetry,
[Us, Cgl = [Uy, Us] = [Uy, Cgl.
Since also [U1,d;] £ N4, we have
[U1,Cpl = [Uy, Us] = [Us, Cpl.

Therefore, [Ui,Cp] is normalized by ((14)23),(34),(56)) = Gup/Qu-
Hence, as |[Ui,Cpl| =2, [Ui,Cygl = Zp by (9.2.11) and this contradicts
(9.2.12) (ii).
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Next suppose [N1,d1] £ Nz and that [Ny, d;] < N3. Applying (1 3)2 4)
to [N1,d1] £ Ne gives [N3,d3] £ Ny. If Us £ Ny, then, as |Cp/Ny| = 2,
(U1, Us] = [Uy, Cpl = [Uy, Us] is normalized by ((12),(13)2 4),(56)) =
=G./Q, and we have the same contradiction as above. Therefore,
Us <N; and so UsU; is normalized by H; and, recalling that
[N3,d3] £ Ny,
[Us,N1] < [Us, U4].

If [Us,N1] =1, then N3 = N; and so from the action of G,; on I we get
Ny =Ny =N3=N4=1, which is impossible. Therefore, [Us, Ni] =
= [Us, U4] and conjugating by (1 2) we have [Us, U] is normalized by
((84),d1,dz) = Sy x 2. In particular, [Ul/,\U4] < Z, and we have a contra-
diction to (9.2.12) (ii). We conclude that H; 2 Se.

By (9.2.5) (ii) and (9.2.13), to cor/gplete the proof of Theore@\ 9.2 it re-
mains to eliminate the possibility H; =2 G2(2). So assume that H; = G2(2)
and that [Ny,d;] £ N;. Then from [ON], [U;: Cy,(Cp)l = 23 and so
|Cy,(Cp)| < 2* by (9.2.5) (iv). Now (9.2.12) (ii) implies that Cy,(Cp) =
Kyl Z,,d1]. Set y= p.dy. Then 1 # [K,, Cs] = [K,, U;]. Since U; does not
admit transvections from H;, we have that |[K,, Csl| = 22 by Lemma 9.1. It
follows that Z, < [Uy, U;] and hence

Cu,(U)) = [U1, Uj] = Cy,(Uy) .
But then [Z,,d;][Z,, d1] < Cy,(Cp) and this contradicts |Z, N Cy, (Cp)| = 22,
O

10. Determination of b.

Again, let (a, a’) € C. From Theorem 9.2 we have that [Z} : Z; N Z7_ ,]> 2.
In this section we show that this situation leads to b < 3, so establishing
our main theorem. So, by Lemma 8.3 (i), we have [Z} : Y[}‘] > 2. First we
observe

LemMmA 10.1. Suppose t € O(S3) and 1 € A(r). Then no element in
G: \ G, centralizes a hyperplane of Z.

Proor. This follows from [Z : Y/}‘] > 2 and Lemma 8.3 (iii). O

By Lemma 8.4 (iii), Z* is a natural G,/@Q,-module-this fact will be used
without reference. The next lemma is also needed when we later in-
vestigate the b =1 and b = 3 cases.
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LEmMmA 10.2. Ifb > 1, then
@) foreach a' +1¢€ Ala)\ {d — 1}, Z, | £ Qp;
(i) V; £ Qp; and
(i) Z7 £ Qu-

Proor. First we prove part (i), sowe let o' +1 € A(@) \ {a¢' — 1}. As-
sume that Z;, , <Qp, and argue for a contradiction. Since Z, £ Qu,
Lemma 10.1 gives

[Za 41 - a’+1 n Qa] > 4.

S0 12,1Qu/Qs >4 and hence [Z:/(Z5N QuiD] > [Z:: Cp (%, )] > 4
because a fours subgroup of Ss does not centralize any hyperplane of the
natural module (see Proposition 2.5).

Set R=[Z; N Qu, 2}, 1. Clearly, R<Z3NZ}, . Since[Z}, : Cz.(Z}, )] >
>4 R#1LAsoR<Z;NZ, | <Cg, (Z)gesR <Z; , ﬂZa+1 =Y,
by Lemma 8.3. Hence |R| 2 or 4. First we examine the case Rl =2.If
7 < Qu,thenweget[Z} : Z! N Qui1] < 2whereas[Z} : Z: N Qu41] > 4. So
Z* % Qu.Nowchooset € Z;; \ Q. Looking at Z;, , , acting on Z; we have that

Zy, .1 leaves R invariant and by Proposition 2. 5 @, |12, Z%, le]| < 4. Hence
7y, acts (quadratically) on the 3-space Z; /R with |[Z} /R, Z}, ;1| < 2. As a
consequence there exists X <77, with [Z, ,:X] <2 and such that
[¢,X] < R. Therefore t normalizes X R, whence X B < Y, by Lemma 8.3 (iii)
which contradicts |Y}| < 4. Thus |R| # 2 and so we have |R| = 4. Because
|27, 1Qu/Qu| > 4, |[Z,Z, 11| > 4 by Proposition 2,5 (i) which, as |R| = 4,

a'+1
forces R = [Z}, Z;, 1. Therefore

(2,7, N=R<Z) \NZ) =Y.
Thus Z}, normalizes Z, . ; and so Z}, < Q by Lemma 8.3 (iii). Since
R <[ZaNQu, 2y 11 <2025y < Cp, (Za)

and Z, £ Q,,Lemma 10.1 and |R| = 4 imply that
[ZeNQu.Zy 1=R < Z.

So Z3, ., centralizes a hyperplane of Z,/Z; and therefore, because

|Za’+1Qa/Qa| > 47 U(Gaaza/ZZ) =0
Because Z! < Qy and (a,d) € C, Z, < Z,. However, combining Lem-

1
mas 8.2 (ii) and 2.4, we then have Z, = ( 4). But by Proposition 2.6 (ii),

(CZu(G,,/g)G“> =+ 7, contrary to the definition of Z,. With this contradiction
we have completed the proof of part (i).
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Clearly part (i) gives part (@ii). Also part (i) implies that for
a+1eAld)\{d -1}, (@ +1,6 €C. Thus applying (i) to this critical
pair we obtain that Z* £ @, so proving the lemma. O

LEMMA 10.3.
W) Z, = Z: is a natural G,/Q,-module.
(i) For /€ A®\ {a}, Y5 = Z, N Z; = E@?).

Proor. We begin by establishing part (i). Pick ¢’ + 1 € A(a’) \ {o’ — 1}.
Lett € Z \ Q. Then, using Lemma 8.3 (iii),

Ya’ < Za’+1 ﬂZa’fl < Za’+1 N Qa < CZ,er(t) < Ya’ .

So, for every t € Z3\ Qu,Zy+1NQy =Cz, (). Set B=Z,,1NQp. We
claim that at most one element in BQ,/Q, acts as a transvection on Z*. For
suppose 1, tz € B are such that {0, and t2Q, are distinct transvections on Z*.
Then without loss of generality Cy.(t1) # Z; NQy and so we may find
teZ;\ Qu with t € Cz.(t1). Hence t; € Cz, ) = Zy11 NQ,. But then
[Z:,t1] = 1 whereas ¢; acts as a transvection on Z7, so verifying the claim.

Since B acts quadratically on Z! we infer that |BQ,/Q.| < 4. A sym-
metric argument yields that |(Z, N Qy)Qu+1/Qw+1| < 4. Then we conclude
that [Z, : Z, NQu N Q1] < 2% and so [Z, : Cz,(B)] < 23.

We now show that #(G,, Z,/Z})=0.1f |BQ,/Q.| = 4.then[Z, : C (B)] <
< 23 gives WGy, Zq/Z7) = 0. So we may assume that |[BQ,/Q.| <2. By
Lemma10.2 () Ggor2 = QpZ;,,; = QpZy 11 from which it follows that Z, 1 =
Zy (Zyi1NQp). Now Lemma 10.1 implies that Z7, ; N Qs £ Qu, Whence
BQ, = (Z;, ., NQp)Q, from which we get B=Z,,1NQp=(Z), 1 NQp)
(Za’+1 N Q/)’ N Qa) So

Zigi1 =2y 1 (Zy1NQu NQp).

Since (o' +1,0) € C, Z, N Qy £ Qu.1 by Lemma 10.1 and hence, as Z, N Q
centralizes Zy 1/27 1, Gy 11, Za+1/Z;,.1) = 0.

1
From #(G,,Z,/Z?) = 0 we deduce that either Z, = Z* or Z, = <4>

The latter is impossible as, by Proposition 2.6 (i), we have
(Cy, (Gaﬁ)G”> # Z,. So we conclude that Z, = Z}, which establishes (i).
Moving on to part (ii), if |(Zy11 N Qp)Q/Qu| > 4, then Lemma 10.2 (iii)
and Z, £ Qu forces [Z,,Zy1 NQpl < Z, N Z;, which yields (ii). While, if
|(Zw11 N QBQ./Qu| < 2, then (ii) again follows from Lemma 10.2 (iii) since
it gives Zy 11 NQpNQy <Yy and |Zy1 N Qs N Q.| > 4. O
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LEMMA 10.4.
@ 7(Gy, Vp) =2.
i) [[Vp, Vil > 2%
i) [Yp[Vp, Qul| < 24,

Proor. Lemma 10.3 (ii) imediately gives n(Gg,Vp) = 2. Hence, as
Vi £ Qp, |[Vp/Yp, Vil > 22 From1 # [V, N Qp, Z,] < Ypwe then see that
Vs, V1| > 23.

Since Vi £ Qp, using the transitivity of Gy on A(f) we may find an in-
volution ¢ € @, \ Q. Thus Q, = (Q. N Qp)(¢) with ¢ interchanging the ver-
tices in A(f) \ {a}. Hence, [V, Q.1 = [V3, Q. N Qpl[Vp,t] and |[Vi,t]] = 22,
Because [Y[)’; Q. N Q/)’] =1, [Vﬁv Q. N Q[)’] =[Z412,Qa N Q[)’] [Z),Qa N Q[f] <
<Yy, where A(B) = {a,a +2,2}. Therefore, as |Yj| =22, |Y;[Vj, Q.1 <
< 24, O

The following property of Sp4(2)(=2 Sg) will be deployed in Lemma 10.6.

LEmMA 10.5. Suppose H =2 Sps(2) and that V is a natural Sps(2)-
module for H. Then there exists a maximal subgroup L of H such that
(i) L =~ Ss;
(ii) L contains no transvections (on V);
(iii) Vs a natural SLo(4)-module for L'; and
(iv) there are 5 isotropic 2-subspaces Wi,...,Ws of V which are

5
permuted by L and such that V = |J W; and W; N W; = 0 for i #j.
i=1

Proor. Choose L to be a maximal subgroup of H with L = S5 and so as
for {(g) € Syls(L), Cy(g) = 0. Then V is a natural SLz(4)- module for L' and
we also get (ii). Further {Cy(R)|R € Syl,(L/)} is a partition of V consisting
of 5 isotropic 2-subspaces of V (that they are isotropic follows from
Stab;,(Cy(R)) = S4), and the lemma is proved. O

Since |Yp| =4 by Lemma 10.3 (ii), Y3 = [Z,, G,p; 2] and so, by Propo-
sition 2.8 (i), Y is an isotropic 2-subspace of Z,. Now G, acts transitively on
the isotropic 2-subspaces of Z, and therefore we may find a subgroup L, of
G, such that L,/Q, = S5 has the properties in Lemma 10.5 with Y; a
member of the partition given in Lemma 10.5 (iv).

Set U, = (V/;L“). Now fix a—1=pY where g€ L, is such that
Yo1nYp=1. Also choose, and fix, o' +1¢€ A(d)\ {d' —1}. Since
|Yy| =22, if [X,Ys] =1 and X < Qp, then [V}, X] < Yj-we shall use this
fact without further reference.
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LEMMA 10.6. Ifb > 5, then
(@) Cz,(Zy1) =Ypand Cy,
(i) Yon Ve #1;
(iii) Vo1 < QaLl; and
(IV) Yo 7é Yﬁ'

(Zo) =Yu;

Proor. Part (i) follows from Z, 11 £ Qp and Lemma 10.1. From part (i)
and |Yy| =4 we get that Z, 1 NQp £ Q,. Thus

1 7é [ZaaZa’Jrl N Qﬂ] < Za N Va’ < CZ,I(Za’Jrl) N Va’ = Y/)’ N Va’ 5

and so (ii) holds.

We next prove (iii). If there exists a —2 € A(a — 1) such that (a — 2,
a —2)eC, then by part (i) applied to (a—2,0' —2) we have
Y, 1NVy_2#1.Because b>5[Y, 1NVy 9, Zy 1]=1andso Y, 1NV, 2 <
< Cz,(Zy11) = Y which is impossible as Y,_1 N Yz = 1. Thus we conclude
that V,_; < Qu_2. We further deduce that (¢’ — 1,a — 1) € C as otherwise,
using Lemma 10.2 (i), we get (¢ —2,a' —2) € C for some a — 2 € A(a — 1)
whereas V, 1 < Qu_2. S0 Zy_1 < Q1. Clearly Z, 1 centralizes Y, ; and
hence [Vaflaza’fl] < Yafl- AlSO, as Vafl < QaLZ < Gu’fl, [Vafhza’fl] <
Zy 1. Therefore, using (i),

Vic1, Zo 11 <Y NZy 1 <Y NCr(Zyi1) =Y NYp =1

Consequently, V, 1 < Qu_1, as required.

Finally, assume that Y, = Y3. Then [Z, N Qu, Zy 1] < Yo = Y. Hence,
Zy, normalizes Z,NE, and so Lemmas 10.2 (i) and 8.3 (iii) force
Z, N Qy < Yg, a contradiction. Therefore, Y, # Y. |

LEMMA 10.7.  Suppose thatb > 5and Yy # Yy 2. Then U, < Cg,(Yy).
In particular, if b > 5, [U, N Qy, Vyl < Y.

Proor. FromY, # Y, o we see that Y, Y, » is a subgroup of Z, _; of
order at least 8. Suppose [U,, Yy]=1. Then [U,, Y, Y, 2] =1, whence
U, < Qu_2 < Gy_1 by Lemma 10.1. This then gives

Ua S CGaLl(Ya’) g Ga’—l(l’v

and the lemma follows. Thus we may assume that [U,, Y] # 1. In parti-
cular, Yy £ V. R
According to Lemma 10.6 (iii), U, < Qy_1 < G,. Hence

ﬁa = Za(ﬁa N Qa’)-
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Set R =[Zy+1,VsNQy]. Then R #1 and, by Lemma 10.6 (i), R <Y,
Since Y, £ Vj, |R| = 2 which implies that Vs N Q, centralizes a hyper-
plane, say X, of Zy,1. So [Vj: Cy,(X)] <2 and thus, as n(Gg, Vg) =2 by
Lemma 104 (i), X < Q. Hence X = Z, 1 N Qp. In particular, [Z, 1 N Qp,
Z, N Qy] =1 which gives that Z, 1 N Qp acts as a transvection on Z,.

Observing that [17,1 NQu,Zyi1NQp)l < Yy, it follows that either
RIU,NQu,Zu1NQgl =Yy or [UsNQu,%Zui1 NQsl = R. The former
case yields [U,,Y,]1=1, so the latter must hold. As a consequence
Zy+1 N Qp normalizes Za(lA]a NQy) = lA]a. From Lemma 10.5 (i) L,/Q,
contains no transvections and therefore (L,,Zy.1NQp) =G, Thus
U, = lA]a, a contradiction since [ﬁa, Y/ 1=1.

Finally, U, N Q. centralizes Y, (especially if Y, =Y, 2) and so
[Ua mQaHVa’] S Ya’-

LEMMA 10.8. Suppose b > 5. Then for all (a,a’) € C, U, £ Gy.

ProOF. Suppose the lemma is false. Then we have an (a,a’) € C with
U, <Gy.Put R = [V, Vy], and let A(f) = {a, 4,a + 2}.

Since U, = V3(U, N Qu) we also have [U,, Vy] < YR < Yu[Vy,Qu-1]
by Lemma 10.7. Also, by the minimality of b, U,.2 < Q,_1 and hence
[Usr2, Vol < [Qu-1,V]. Since Vy £ Qp by Lemma 10.2 (ii), we see that
(Wg, Vo] < [Qu-1,Vu1Yy. In view of Lemma 10.4 (ii), (iii) we have

10.8.1) |[Wy/V;, Vil < 2.

Because V' £ Qg there exists an involution « € V; which interchanges
a and 4. Hence, |[U,U;/Vj,x]| < 2by (10.8.1). Since V < U, N U, we then
infer that [U, : U, N U,] < 2 and so, as Gy is 2-transitive on A(f}), we have

(10.8.2) For Yy € O(Sg) with A(y) = {11,/12,),3}, [U;,, : Ug, N U,li] < 2 for
i#7, 1,7 €4{1,2,3}.

From the minimality of b, [Z,,Us _3]=1 and hence [Z,, U, 3N
NUy1l=1. So [Uy-1:Cy, (ZHI<2 by (10.82). Therefore,
[Vo : Cy,(Z,)] <2 and so n(Gy,Vy) <1, contradicting Lemma 10.4 (i).
This completes the proof of Lemma 10.8. O

PRrROOF OF THE MAIN THEOREM. If b > 5, then combining Lemmas 10.7
and 10.8 gives U, £ Gy_14 and Y, = Y, 5 for all (a,da’) € C. Thus for
(a,d') € C, Uy, £ Qu_2, thence (a —2,d’ —2) € C for some a —2 € AR ().
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AndthenY, 4 =Y,_» = Y,. Continuing in this fashion we obtain Y3 = Y,
which is against Lemma 10.6 (iv). Thus we have shown that b € {1,3}.
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