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Hilbert Functions of Cohen-Macaulay Ideals
with Assigned Generators’ Degrees.

ALFI0 RAGUSA (*) - GIUSEPPE ZAPPALA (¥%)

ABSTRACT - We give information on the Hilbert function of a Cohen-Macaulay ide-
al I of the polynomial ring R = k[x,, @1, ..., «,] which is minimally generated
by t forms of degrees dy, ..., d;,. Mainly we deal with the codimension two
case in which we show that the Dubreil bound ¢ < d; + 1 is a necessary and
sufficient condition to have such an ideal and we give a sharp upper bound and
lower bound for the Hilbert function. In codimension greater than two we give
a characterization for having such an ideal and in codimension 3 we find an
Hilbert function which is maximal for these ideals with d; = ... =d, =a and
we produce a scheme which realizes such a Hilbert function.

Introduction.
Let R = k[xy, x1, ..., ] be the homogeneous polynomial ring over
an algebraically closed field k and fix ¢ positive integers dy, ..., d;. Itis a

very classical question, both of Commutative Algebra and Algebraic Geo-
metry, to try to determinate the Hilbert function of R/I, where I is a ho-
mogeneous ideal of R minimally generated by ¢ forms of degrees
di, ..., d;. Of course, one needs some further information on the ideal 1.
For instance, one point of view can be to ask that the forms defining the
ideal are generically chosen. Even in this strong context very few results
are known. Clearly, in this case if t<r+ 1, we have ht/ =t and [ is a
complete intersection and then the Hilbert function of R/I is completely
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determined by d;, ..., d;. But when t > » + 1, we have htl = r+ 1 (so R/l
is an Artinian ring) and very little is still known. By results of Stanley
[St] and Watanabe [W] the Hilbert function is known if ¢ = » + 2, since a
general Artinian complete intersection has the Strong Lefschetz proper-
ty. Moreover, the case r=1 and r=2 was solved, respectively, by
Froberg [F] and by Anick [A]. Other authors studied the case d; = ... =
= d,; giving information on some part of the Hilbert function or, with some
further restriction, on the graded Betti numbers (see, for instance [HL],
[Au], [FH], [MM]). In any case, it seems completely unexplored what can
be the Hilbert function, or at least bounds for it, for an ideal of height
r+ 1 generated by any ¢ forms of degrees d;, ..., d;. Now, from the Al-
gebraic Geometry point of view, one is mainly interested with (saturat-
ed) ideals of R of height <. So we can refrase the question of finding
the possible Hilbert functions, or bounds for them, for Cohen-Macaulay
homogeneous ideals I of R of fixed height # minimally generated by ¢
forms of degrees d, ..., d;. Since, very little is known every result in
this field seems interesting. We will deal essentially with the case »=2
and in the case r =3 when d, = ... = d, = a. Precisely, we set ) ;=
= {Hp; } gy Wwhere Hp; is the Hilbert function of any Artinian reduction of
a c-codimensional Cohen-Macaulay ideal I of R minimally generated by ¢
forms of degrees d;, ..., d;. We equip this set of an ordering, defining
Hpp < Hyy if Hp(n) < Hyy(n) for all n. In this paper we study first the
case ¢ = 2, for which, after observing that D{ffl) ., 4, 1s not empty if and only
if t<d; +1 (the Dubreil inequality), we prove that as poset it has both a
maximum and a minimum element (Proposition 2.2). Moreover, we produce
a scheme which realizes such a maximum and compute explicitely the mini-
mum in the case di, ..., d,=a. In the codimension 3 case we show that
ICP, (ie. in case when dj, ..., d; = a) has a maximal element and again we
produce a scheme which realizes such a maximal Hilbert function (Theo-
rem 3.8). We still believe that, indeed, it is also a maximum.

The first section is dedicated to partial intersection schemes which
will be used to produce schemes with the required Hilbert functions.

1. Partial intersections: definitions, properties and facts.

Throughout this paper k will denote an algebraically closed field, P"
the r-dimensional projective space over k, R =klxy, x,...,x,]=
= ZHO(OW(%))-

ne
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If Vc P is a subscheme, Iy, will denote its defining ideal and Hy(n) =
= dim;, R,, — dim; (1), its Hilbert function. Moreover, if Vc P" is a c-codi-
mensional aCM scheme with minimal free resolution

0= R(—j)"5... = BR(— )" — BR(— )= I—0

then the integers {a;}; will denote the i-th graded Betti numbers.

In this section we recall the construction of the c-codimensional par-
tial intersection schemes made in [RZ] and we collect from there the
main facts that will be used in this paper.

Let (&, <) be a poset. We denote, for every H e &,

Syu={KeP|K<H}, Sy={Ke?|K<H}.

DEFINITION 1.1. A subset @ of the poset & is said to be a left seg-
ment if for every H € A, Sy A. In particular, when & = N with the or-
der induced by the natural order on IN, a finite left segment will be men-
tioned as a c-left segment.

Note that every c-left segment @ has sets of generators but there is a
unique minimal set of generators consisting of the maximal elements of
@; we will denote it by G(A).

If 7;: N*— N will denote the projection to the ¢-th component, and @

C
is a c-left segment, we set v(H) = >, w;(H) and a; = max {7;(H) |H e
i=1

e A}, for 1 <i<c. The c-tuple 7= T(Q) = (a,, ..., a.) will be called the
size of @.

A c-left segment is said to be degenerate if a; =1 for some 7.

If A is a c-left segment, F(A) will denote the set of minimal elements
of N°\ @, ie.

F(@) = {HeN\a|Sycal.

Note that, if H=(my,...,m,)eF(@A) and m;>1, then H,;=
=(my, ..., m;—1, ..., m,) € Q. Moreover, the elements

Ty=(a,+1,1,...,1),..., T.=(1,1,...,a,+1)

always belong to F(A), and we will call them canonical c-tuples.
In the sequel we denote the c-tuple (1, ..., 1) by I and, for every sub-
set Z of Sy, we denote

Cr(Z)={T+I-H|HeZ)}.
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Finally, for every c-left segment @ we define
(5[* = CT(ST\a)

Observe that @* is a c-left segment.

ProposiTION 1.2. If A is a c-left segment, then
1. F(Q) = Cr(GQ@a*)u{T,...,T.},
2. F(A*) = Cp(GQ) U AT, ..., TF}.
3. If T =T;, for some i, then T;* e Cr(G(Q)).

ProOF. See Proposition 1.3 in [RZ]. =

Fix a c-left segment @ and consider ¢ families of hyperplanes of P",
cs7,

{Alj}lstap {AZj}1$j$a27~~-9 {ch}lsjsag

C
sufficiently generic, in the sense that A;; N ... N A, are _l_[ a; pairwise
distinet linear varieties of codimension c. =1
For every H = (ji, ..., j.) € 4, we denote by

Ly= N Ay,
With this notation we have the following
DerFiNiTION 1.3. The subscheme of P”
V= b

will be called a c-partial intersection with respect to the hyperplanes
{A;;} and support on the c-left segment .

THEOREM 1.4. Ewvery c-partial intersection X of P" is a reduced
aCM subscheme consisting of a wunion of c-codimensional linear
varieties.

ProoF. See Theorem 19 in [RZ]. =

Here are the main results on c-codimensional partial intersec-
tions.
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THEOREM 1.5. If VcP" is a partial intersection of codimension c
with support on A, then the (r — ¢ + 1)-th difference of its Hilbert func-
tion 1s

A" Hy(n) = |[{He Q|vH) =n+c}|.
ProoF. See Theorem 2.1 in [RZ]. =

Now, if X is a c-codimensional partial intersection with support on @
and with respect to the families of hyperplanes A; whose defining forms
are f;, to every H=(m,,..., m)e@ we associate the following
form

Py=11 11 £,

i=1 j=1
THEOREM 1.6. Let VcP" be a partial intersection of codimension c
with support A. Then a minimal set of generators for Iy is

{Py |H e F(Q)}.

Proor. See Theorem 3.1 in [RZ]. =

COROLLARY 1.7. Let V be as above then its first graded Betti num-
bers depend only on A and they are the following integers

dgy=v(H)—c VHeF().
And finally

THEOREM 1.8. Let VcP" be a partial intersection of codimension ¢
with support A. Then the last graded Betti numbers of V are

sy=v(H) VHeG).

Proor. See Theorem 3.4 in [RZ]. =

We conclude this section by discussing the question we want to deal
with in this paper.
Let d; < ... <d; be t positive integers and ¢ <t; we denote by

AW 0= {Hgrtra

where I varies on the Artinian ideals of the polynomial ring R =
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=k[x, ..., x,], which are minimally generated by ¢ forms of degrees
dy, ..., d;, and Hg; means the Hilbert function of R/I.

Note that the same set I f{f ., 4, can be obtained by using ideals Iy of
c-codimensional arithmetically Cohen Macaulay schemes of XcP" and
A" 1 Hpup, where A"+17¢ denotes the (n + 1 — ¢)-th difference of
the Hilbert function of Ix.

To describe IC 4 is a very hard task in this general setting. Nev-
ertheless, many simpler (but still hard) questions can be posed. For in-
stance, to establish if fofl),‘_',dt is empty or not or, more generally, to
compute its cardinality in terms of the integers c; d; ... d;.

Moreover, since 3, can be ordered by defining Hy; < Hg; iff
Hp(n) < Hpgjy(n) for all ne”Z, (we call such an ordering the natural
partial ordering) one can ask if J{E;I) ., 4, has a maximum or a minimum
element and when the answer is negative one can ask which are the max-
imal and the minimal elements.

The previous questions will be studied in few particular cases: first in
the codimension 2 case and for the codimension 3 case when d; =...=d,.

2. The codimension two case.

We first deal with the codimension ¢ = 2 for which most of the previ-
ous questions can be answered.

In this case f){fll, ., 4, 1s not empty iff { < d; + 1 (the Dubreil’s inequal-
ity). Indeed, in this situation, it is easy to see that (¥’ ; isin1—1 cor-
respondence with the set

2 _ . _
SP 4= {(32, e S8 8540, 8> AV, 2 = Zsi}
1 1

ie. the (¢t — 1)-tuples which satisfy the Gaeta’s conditions. So, if we set
s;=d; + x;, Wheret x; is a positive integer, the Gaeta’s conditions are
equivalent to say 22 x; = d;, from which one gets that 8&23 ., d, 1s not emp-

1=

ty iff d; =t —1.
Of course all these information about 2-codimensional Cohen-
Macaulay ideals can be deduced from the Hilbert-Burch theorem.
From now on a (¢ — 1)-tuple (x,, ..., «;) of positive integers such that

t
> x;=dy, is said a (¢t — 1)-partition of d;. We are interested on the
i=2
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(t — 1)-partitions of d; which satisfy the condition
(*) xi_%i+1sdi+1_di Vl=2,t.

Using the correspondence, which associates to s = (sg, ..., ;) € Sfi? d
the element H,e ) , defined by H,(n)=(m+1)— X (n+1—
= - dis<n

—d;))+ 2 (n+1-s;), one can induce an ordering on S, ; precisely,

Sisn

=(S2,...,8) <8 =(s3,...,8/) © H<H, & Z(n+1—s)

Sisn

< > m+1-s)Vn.
si<n

We need first this simple technical lemma.

LEMMA 2.1. Let (M, ..., M;) be the maximum, by lexicographic
ordering, in the set of (t — 1)-partitions of d, satisfying condition (x).
Then, for every (t — 1)-partition of dy (s, ..., &;), satisfying condition
(), we have

PrOOF. If there is some h' =3, ...t such that Z M; < Z x; then
there exist j < < h' such that M; < x;; say m the blggest one On the other
hand, since E M; = E x; there is some j > k' such that M; > x;; say n

the smallest one Of course by construction, m < n. Define, for every
1=2,...,1t,

M; Yizm, n
M{=3M,+1 i=m
M,—1 i1=n.

We see that (M5, ..., M) is a (t — 1)-partition of d, satisfying condition
(*). Indeed, we need only to show that d,,+ M, <d, ., + M, ., and
d,_1+M,_,<d,+M,. Now

dpy + M, =d,+ M, +1<d, +x, <d,,1+ Cps1=0d,+1 +
M,,. =d,.1 + M, ., Gf m+1<mn, the case m +1 =n is similar)

dy1+M,_1=d,_1+M,_1=d,_1 +x,-:=d, +x,<d, +
M,—1=4d, + M, (if m<n—1, the case m =n — 1 is similar).

Now, since (Msy,..., M) 1is lexicographically bigger than
(M,, ..., M), we get a contradiction. m



106 Alfio Ragusa - Giuseppe Zappala

ProPOSITION 2.2. Let d;<...<d;, be t positive integers and
f)(‘fll, .., a, the set of all Hilbert functions of Artinian ideals of the polyno-
maal ring i two variables which are minimally generated by t forms of
degrees dy, ..., d;. Then 95, 4, as a poset, by the natural partial or-
dering, has both a maximum and a minimum element. Precisely, if we
denote by (my, ..., my) and (M, ..., M;), respectively, the minimum
and the maximum of the set of the (t — 1)-partitions of d, satisfying the
condition (x), ordered by the lexicographic ordering, then in the poset
SE 4 the element s{ = d; + my, for i =2, ...t, is the maximuwm and the
element s/ =d; + M,;, for i1 =2, ...t, is the minimum. Hence, the ele-
ments Hy(n) = (n+1)— > (n+1—d)+ E (n+1-s/), Hy(n)=

sisn

i<
=n+1)— 2 (n+1-d;)+ 2 n+1- s”)are respectively, the maxi-
di<n si'<sn

mum and the minimum element in f)fdl ;e

Proor. Take any element (s, ..., s;) in S, and denote s; = d; +
+ux;,fori=2, ..., t.Of course, (x5, ..., x;)isa (t — 1)-partition of d, satis-
fying the condition (x). For every = eN we get two integers i, j <t, de-
fined by s{/<sn+1<s/,;and s;sn+1< Sje1; For the minimum case,

2 P
we need to prove that >, (m+1—d, — M,) < > (n+1—d, — ;). Now,
n=2

h=2
if 1<, applying Lemma 2.1 we have

S+l-d,-M)< Dm+1—d,—aw,)
h=2 h=2

hence

i(’ﬂ'{‘l_dh Mh)\ z(ﬂ‘f'l_dh_ﬂ(;h)"‘ z (n+1_dh xh,):

h=2 h=1+1
J
= 2(7L+1—dh_96h).
n=2
If + > again by Lemma 2.1 we have

Sn+1l—d,—M)< X(n+1-d,—w,)
h=2 h=2
hence

i J
hZ(n+1—dh—Mh)s]2(n+1—dh %) + 2 m+1—d,—x,);
=2 h =2

h=j+1
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now, since(n +1 —d;, —x;,) <0 for & >j, we get
i J
E(?’L+1—dh—Mh)$ 2(n+1—dh—xh).
K=2 K=2

Finally, note that the minimum element in the set of the (¢ — 1)-parti-
tions of d; satisfying the condition (x), ordered by the lexicographic or-
dering, is given by m; =1, for i =2,...,t—1, and m; = d; — ¢t + 2. This
implies that for every (¢ — 1)-partitions of d, satisfying the condition (x),
(Y2, .., Y1), one has

h h
Sm< 2y Yh=2,...t,
i=2 =2

i.e. we are in the same situation as in Lemma 2.1 (just reversing the or-
der). Thus, repeating the same argument as in the minimum case, we get
for every integer n

i J
Sn+l—d,—my)= X n+1—d,—y,)
h=2 K=2

where ¢ and j are defined as before. =

COROLLARY 2.3. The 2-partial intersection X whtose supptort 18

the 2-left segment generated by the t — 1 elements (di - > my, E_mh)

h=1+1 h=1

fori=2,...,t, has the maximum Hilbert function in 3{'2 . d,; the 2-

partial mte’rsectzon Xmin Whose support 18 the 2-left segment genemted

by the t —1 elements (d - Z M, EM;L) for i=2,...,t, has the
=i+ 1

minimum Hilbert function m %dl,...,df

Proor. The conclusion is a direct consequence of the previous theo-
rem, Corollary 1.7 and Theorem 1.8. =

REMARK 2.4. We can get also the ideals of the partial intersections
in the previous Corollary by lifting suitable Artinian monomial ideals.
More precisely every sequence d,, ..., d;, S, ..., S;, satisfying the Gaeta
conditions, is realized by the ideal of the maximal minors of the following
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matrix
'xSZ*dl yé‘z*dz 0 0 )
0 x&%*dz ySS*dg
pst-1~ -z ySt—1*dt—1 0
L 0 0 xst—dt—l yst_dtJ
COROLLARY 25. If dy=...=d;=a the maximum and the mini-

mum Hilbert function in f)(a;t are given by, respectively,

n+1 ifn<a
Ho . n)=492a+1—-t—-mn ifasn<2a+2-t
0 ifn>2a+2—1t
n+1 ifn<a
Hpypw(n)=322a+1-t—-n ifasn<a+gq
0 ifn=a+q

where a =(t—1)q+7r, r<t—1.

Proor. To get the conclusion it is enough to observe that in this case
we have m;=1 for 1=2,...t—1, my=a—-t+2 and M;=q for
1=2,...,t—rand M;=q+1for i=t—r+1,...,¢t. =

3. The codimension greater than two: ideals generated in one
degree.

In this section we approach the problem for codimension ¢ greater
than two. A first question is when the set 9’ ; is empty. Let us sup-
pose that the integers d;, < d, < ...d, are ass1gned In this case we denote
P <ps <...<p, the distinct elements among the d;s and we set a; :=

= |{d;=p;|1 <j<t}|. Of course Z a;=t. Moreover we set

B, = (p1+c ) Bii= By —a, )Pt for 2 <iss,
1
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where the symbol (.) denotes the exponential of Macaulay (see the
paper of Stanley [St1]).

ProposITION 3.1. Let di<dy, <...<d, t positive integers, with t =
=c. Then

NP 4,70 < a;<B; for 1Si<s.

Proor. Throughout this proof we set R :=k[xy, ..., x.].

LetIe ‘}Cfff ., 4,3 we call J;, the ideal generated by the homogeneous
pieces of I of degree less or equal to p;, ¢; the Hilbert function of the k-
algebra R/J; and H the Hilbert function of R/I. Of course, we have
@ip))=¢;_1(p;) —a;. Now we prove that ¢, _,(p;) <p, for 2<i<s.
Fori=2, ¢ ,(p;) =1 — a;, and using Macaulay Theorem on the maxi-
mal growth (see [St1]),

@1(pr+ 1D < (Br—a)(pr), 91 (1 +2) S @i(py + DU
S (B —a)PXnt i (pe) S (B — ap )PPl = g

Now suppose that ¢; 1(p;) <fB;; then @;(p) =@; 1(p) —a; <f;—a;
therefore by repeating the previous arguments we obtain that

Qi) < (B —a)Prrit )=l =g

Now it is clear that a,<p, since §; = dim, R, ; moreover for 2 <i<
<s,

a;= dimkRpi_dimlelpi—l_H(pi) =q¢,_1(p)—H(p;) <p;,—H(p;) <p,;.
Vice versa let us suppose that d, ..., d; are integers such that a; < g,
forl<i<sandit= E a; = ¢ (using the same notation). By [St1] there
i=1

exists a lex-segment ideal L c R having a; minimal generators in degree
p;, for 1 <1 <s. Let M be the set of the monomials minimally generating
L. Then M =M,U M,, where M, is the subset of the elements of M
which are powers of some x; and M, is the subset of the mixed monomi-
als. We set k:= |M,| and w:= |M,,|; |M| =t=Fk+u = c, by hypothe-
sis, so u=c¢—k; let M,, = {my 1, My 13, ..., m.} be the subset of M,,
of the last ¢—k& monomials in the lexicographic order; we set
P = {x8™m |k+1<i<c}. Now let us consider the set of monomials
M' = (M\M,,)U P. We claim that the monomial ideal I, generated by
M, belongs to IC§ ;. First observe that height I = ¢ since, by con-
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struction, there is a power of a; belonging to I for 1 <7 <¢. So, to con-
clude the proof, we need to show that M’ is a set of minimal generators
for 1. Using again the lexicographic order, we set u:= max{meM' |m
is not a power}; then M' = My U My where M| = {meM' |m <u} and
My =M'\M/; since M{cM and M was a minimal set of generators,
every element in M/ cannot be in the shadow of the previous ones; on the
other hand M; contains only powers, so, again, every element in M ' can-
not belong to the shadow of the previous ones. =

REMARK 3.2. When (i, # 0 it is natural to guess that the mini-

mal value for the Hilbert function is achieved by the ideal generated by ¢

generic forms of degrees dy, ..., d;. For istance the guess is true in the
particular case d;=...=d;=a with nt= ((Z:_”l), since a result by

Hochster and Laksov (see [HL]) says that Hp,;(a+1) =0.

In this section we will use the notation about partial intersections in-
troduced in section 1.

Let A =kl[x, y, 2] and let n, a e IN. We denote by J, ,, the set of the
homogeneous Artinian ideals 7c A (i.e. A/I is Artinian) where I is mini-
mally generated by n forms of degree a.

We simply denote

:)Ca,n = {HA/I |IE Ja,n} .

Fixed two integers a=1and 3 <n < (a ; 2), in this section we would like
to determine a maximal element in I(, ,,.
Let 71:= (*F 2)
et n ( 9
0<i7<a-—2and b,_; :=1. Note that, since

+2 a2
(- 5

2

—n. We set b_,:=0, b_y:=a—-1, b;:=a—1 for

there exist two integers k and b, —2<k<a—-2,0<h<b,,.;—1, such
that

k

n= E bj+h/.

i=—2
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We set s:=a—2—Fk; then 0 <s <a. Moreover observe that

+1 a—2
1

+2 a a+1
n=(“ )—%:Z ~ Y b-h=Xi-
2 i=1 i=-1 i=1

i

;a: t—(a—1)—h=

k

a-k-1 a—k s+2
= > i+(a+1)—(a—1)—h=( ) )+2—h=( ) +2—h.
i=1

We set also 5:=a — s. Now let us consider the 3-left segment €, ,, gen-
erated by the following elements:

G,a,a),3+1,h,a);
{G+1L,y,s+1-y)|h+1syss};
{w,y,a+2-x—y|s+2<x<a,l<ys<a+l-x}.

Let XcP", » =3, a partial intersection with support on £, ,,. We would
like to show that A" 2Hy is the desired maximal element.

First of all we compute A"~ %Hy. If @ is a c-left segment and s <t are
two tpositive integers we set Q;:={(Hed|n(H) =7}, A(s,1t):=

= Ua_j, and denoted by o:Z°—Z° the transformation

oy, €gy ooy ) = (3 —S+1, a,..., %) we set also dA(s,1t):=
= 0(A(s, t)). Of course a(s, t) is a c-left segment. If X is a partial inter-
section with support on @, let X(s, t) be the subscheme of X with support
on A(s, t). X(s,t) is obviously a partial intersection with support on
Als, t).

LEMMA 3.3. Let XCP" a c-partial intersection with support on Q.
Let t be the maximum of the first components of the elements of A, and
let 1<s<t, so X=X, UX, where X; :=X(1, s) and X, :=X(s+1, t).
Then A" “*'Hy(i) =A™ " Hy (i) + A" "' Hy (i — s).

Proor. By Theorem 1.5,
AT Hy (i) = [{He A|vH) =i+c} | =
=[{HeaQ,s) |[vH)=i+c}| + [{HeAs+1,t) |[o(H)=i+c}| =
=|{Hea(,s) |vH)=i+c} |+ |[{HeA(s+1,t) |[v(H)=i—s+c}|=

— AT Hy () + AT Hy (i —5). ®
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a;Z); let XcP" a partial in-

tersection supported on £, ,. Then, with above notation,

Proposition. 3.4. Let a=1and 3<n< (

r1+1 for 0<si<a-—-1
a+1-—mn for i=a
s—2(i—a+1) fora+l<i<a+s-—-1
A"_IHX(i)zj -5-1 fora+s<i<a+s+h-1
-5 fora+s+h<i<2a-1
t—2a—5+1 for 2a<i1<2a+5—-2
LO for i=2a+5—1.

Proor. We denote p; = {(x, y, 2) e N? |x = j}. We can decompose X
in an union of three disjoint partial intersections X;, X,, X;. X; is sup-
ported on ((5,a,a)); X, on £, ,Nps;.1; Xz supported on £, ,N

a
n (j :EJ+ zp J )
X; is a complete intersection of type (5, a, a). So we have

(1+1 for 0si<s5-1
s fors<i<a-—1
A" VH () = 20 +5—-2-27 fora<is<s+a-—1
o T -3 for s+a<i<2a-1
1—2a—5+1 for 2a<i<2a+s5—2
L 0 for i=2a+5-1

X, is a plane partial intersection such that

1 for 0<si<s—1
h—s fori=s

A" 'Hy,(i))=10 for s+1<i<a-1
-1 foras<i<sa+h-1

0 for iza+h.
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X; is a partial intersection such that
1+1 for0<si<s-—2
A7V Hy (i) =J ‘(Z) for i=s—1
l 0 for 1 =s.
By Lemma 33, A" 'Hy(i)=A4""'Hx(i)+A4" "Hy(i—73)+

+A4" 'Hy,(i— A5 —1), so we are done. =

Now we compute the graded Betti numbers of a partial intersection
with support on £, ,,.

a+2

2
intersection with support on £, ,, and let R := HJ(Opr). Then a graded
manimal free resolution for Iy, the saturated homogeneous ideal of X, is
of the type:

PropoSITION 3.5. Let a=1and 3<n< ( ); let XcP" a partial

0—=R(—(a+2)" * *PR(-(2a—s+h+1)BR(—(3a—s))—
—SR(—(a+ 1" OR(-(20-5)PR(—(2a—-s+1)P

OR(—(2a—s+h)DR(—2a)>R(—a)'—Iy—0

Proor. By [RZ], Proposition 3.4, we can compute the last graded
Betti numbers of Iy directly from the generators of £, ,,. To compute the
first graded Betti numbers, we have to find, using notation in section 1,
the set F'(£, ,). An easy verification shows that the elements in F(£, ,)
are

(@a+1,1,1),(1,a+1,1),(1,1,a+1);
{G+1,y,s+2-y|h+1<y<s+1};
{w,y,a+3-x—y|s+2<wr<a,l<ys<a+2-x}.

Finally we can compute the second graded Betti numbers, as it is well
known, through the first and last ones and the Hilbert funec-
tion. m
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If @ is a 3-left segment, we set
m;(Q) := max{m;(H)|He A}; for 1<i<3,

and /:= (1, 1, 1). Of course m;(£,, ,) =a, for 1 <7< 3. Now we consid-
er £ ,; then my (£ ) =a —5=sand m;(L; ,) =afort=2, 3. So if we
set T:=(a, a,a) and U:= (s, a, a) we have

L%, = Cy(Sy\Cr(Sr\ L4, 1))
Now let o: 7Z?— 73 be the transformation o(x, ¥, 2) = (x — 5, v, 2).

LEMMA 3.6. With the previous notation

ve;j,*n = a(v@a, n) N NS-

Proor. He L% < U+1—-He ASy\Cr(Sp\ L, ) < U+I-H<
< U and U+I—H¢CT(§T\£Q,,L)© Hzland T+I-(U+I—-H)¢
¢Sp\Ly, & HeN? and H+T—-U¢Syp\£L,,, < HeN? and H +
+(G,0,0eL,, & Heo(L,, ,) AN, m

LemMmA 3.7. Let XcP" a scheme with support on £, ,. Then X is
CI-linked in two steps to a scheme Y whose (r — 2) — th difference of the
Hilbert function 1s

1+1 .
( 5 ) for 0<iss—1

A" 2Hy (i) = ,
for ssi<a-1

a+h—-—1—1 fora<i<a+h-—2

through complete intersections of type (a, a, a) in the first step, and of
type (s, a, a) in the second step.

Proor. We link at first X in a partial intersection complete intersec-
tion of type (a, a, a) to a scheme Y', and then we link Y’ in a partial in-
tersection complete intersection of type (s, a, a) to a scheme Y. Then Y
is a partial intersection with support on £;%,. So we can compute the (v —
— 2)-th difference of the Hilbert function of Y, as in the proof of Proposi-
tion 3.4, by considering ¥ = Y; U Y;, Y; with support on £F%, N p; and Y,

8

with support on £5f*% N (AUzp]—); then, using Lemma 3.3, A" 2Hy(i) =
=
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=A""2Hy (i)+ A" ?Hy,(i—1). So we have

7 o112 s=1 |s||a—1 a a+l|-la+h—-2|a+h-1
A2 ey [1]2]3) s |nl| b |h-1]h-2|| 1 0
A Hy G-1)| |1]3]- (;) of o | o] o[ o 0
A2HLG) [1]3]6]- (SZI) wlee|l n | h=1|n-2]-| 1 0
| |

Now we prove the main theorem of this section.

THEOREM 3.8. Leta=1land3 <n < (a;2). Let XcP" a partial in-

tersection with support on £, ,. Then A"~ 2Hy is a maximal element in
X, n-

Proor. We set u:=A4""2Hy. By contradiction let ¢ € IC, ,, ¢ > u.
Let k := min {i e Ny|@(7) > u(?)}. Since ¢ € I, ,, (i) =u(i) for 0<i<a;
moreover u(i) =0 for 1 =2a+5—-2,s0 a+1<k<2a+5—2. Let Yc
c P"ascheme such that A" " ?Hy = @ and Iy € J,,,,. We can link Yin a com-
plete intersection Z of type (a,a,a) to a scheme Y’'. Then
A" 2 Hy (1) =A""2H,(1) — @(83a —3 —1). Therefore A" 2Hy.(s)=
=A""2H,(s)—¢(2a+5—3),andsince p(2a+5—3) =u(2a+5—3) >0we

2
containing Y', so we can link Y’ in a complete intersection W of type
(s, a, a) to another scheme Y”. By Lemma 3.7, X is Cl-linked in two
steps to a partial intersection X" with support on £;%, through complete
intersections of type (a, a, a) and (s, a, a) too. We set u” :=A4""2Hy.
and ¢" :=A""2Hy..
Then

have that A" 2Hy.(s) < (S * 1), i.e. there is an hypersurface of degree s

@" (1) =A""2Hy()— A" Hy (2a+s—3—1) =
ZA’“ZHW(Z') - (AT*ZHZ(SOL— 3—(2a+s—3-1))—
=A""2Hy(8a—-3—-(2a+s—3—-1))) =

=A"" Hy()— A" *Hy(a—s+1)+ ¢@la—s+1);
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so we have
@"(s+k—1—a)=A"2Hy(s+k—1—a)— A" 2H,;(k—1)+ gk —1)=
=A" 2 Hy(s+k—1—a)—A"?H,k—1)+ulk—D=u(s +k—1-a)
and
es+k—a)=A"" Hy(s+k—a)— A" 2H,(k) + ¢(k) >
>A" 2 Hy(s+k—a)— A" 2Hy(k) + uk) = u(s + k — a).

Note that s+ k—-—1—-a=s. Soif s<s+k—-—1—-a<a—2 then ¢"(s+
+k—1-a)=u"(s+k—1—-a)=hande"(s+k—a)>u"(s+k—a)=
:h:(p”(s+k—1—a)<“k’1’“>,(sinces+k—1—a282h)acontradic—
tion, since ¢” is an O-sequence.

Ifa-1<s+k—-1—-a<a+h—2 then

(,0"(8 +k—1-— a)(erkflfa) —
=¢"(s+k-1-a)=u"s+k-1-a)=u"(s+k—a)+1<@"(s+k—a),
and since ¢" is an O sequence, we get that ¢"(s +k—1—qa)¢ k- 1-2 =
=@"(s + k —a)ie. ¢" has amaximal growth in s + k — a; but this is again
a contradiction, because it means, by [BGM], that the hypersurfaces of
degree less or equal to s + k — a@ = a, containing Y”, have a fixed compo-

nent of dimension 1, while Y” is contained in a complete intersection of
type (s, a,a). W

ExamMpPLE 3.9. Leta=8,7n=20;s0n=25and25=0+7+8+ 7+
+3 s0o k=1, h=3, s=5, s=3. L5 9 is generated by the following
3-tuples:

(3,8,8) (4,3,8) (4,4,2) (4,5,1)
(5,1,4) (5,2,3) (5,3,2) (5,4,1)
(6,1,3) (6,2,2) (6,3,1) '
(7,1,2) (7,2,1) (8,1,1)
If Xc P, r=3, is a partial intersection with support on £5 5, 4" 2Hy

18

0123 45 6 7 8 9 10111213 14 15 16 17 ...
13610152128362524211718 9 6 3 1 0 —
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The minimal graded resolution of Iy is

0—>R(—19)PR(-15)PR(-10)*>R(—16)DR(—14) DR(—12)®

BR(-11)BR(-9* > R(—8)*—=Ix—0.

We finish with the following

QUESTION 3.10. Is A" 2Hy, where XcP" is a partial intersection
with support on £, ,, the maximum element in I¢, ,?

[A]
[Au]

[BGM]

[F]
[FH]
[(H]
[HL]
[HU]

[KMMNP]

[MM]

[MN]

[RZ]

[St]
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