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Hilbert Functions of Cohen-Macaulay Ideals
with Assigned Generators’ Degrees.

ALFIO RAGUSA (*) - GIUSEPPE ZAPPALÀ (**)

ABSTRACT - We give information on the Hilbert function of a Cohen-Macaulay ide-
al I of the polynomial ring R4k[x0 , x1 , R , xr ] which is minimally generated
by t forms of degrees d1 , R , dt . Mainly we deal with the codimension two
case in which we show that the Dubreil bound tGd111 is a necessary and
sufficient condition to have such an ideal and we give a sharp upper bound and
lower bound for the Hilbert function. In codimension greater than two we give
a characterization for having such an ideal and in codimension 3 we find an
Hilbert function which is maximal for these ideals with d14R4dt4a and
we produce a scheme which realizes such a Hilbert function.

Introduction.

Let R4k[x0 , x1 , R , xr ] be the homogeneous polynomial ring over
an algebraically closed field k and fix t positive integers d1 , R , dt . It is a
very classical question, both of Commutative Algebra and Algebraic Geo-
metry, to try to determinate the Hilbert function of R/I , where I is a ho-
mogeneous ideal of R minimally generated by t forms of degrees
d1 , R , dt . Of course, one needs some further information on the ideal I .
For instance, one point of view can be to ask that the forms defining the
ideal are generically chosen. Even in this strong context very few results
are known. Clearly, in this case if tGr11, we have htI4 t and I is a
complete intersection and then the Hilbert function of R/I is completely
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determined by d1 , R , dt . But when tDr11, we have htI4r11 (so R/I
is an Artinian ring) and very little is still known. By results of Stanley
[St] and Watanabe [W] the Hilbert function is known if t4r12, since a
general Artinian complete intersection has the Strong Lefschetz proper-
ty. Moreover, the case r41 and r42 was solved, respectively, by
Fröberg [F] and by Anick [A]. Other authors studied the case d1 4R4

4dt giving information on some part of the Hilbert function or, with some
further restriction, on the graded Betti numbers (see, for instance [HL],
[Au], [FH], [MM]). In any case, it seems completely unexplored what can
be the Hilbert function, or at least bounds for it, for an ideal of height
r11 generated by any t forms of degrees d1 , R , dt . Now, from the Al-
gebraic Geometry point of view, one is mainly interested with (saturat-
ed) ideals of R of height Gr . So we can refrase the question of finding
the possible Hilbert functions, or bounds for them, for Cohen-Macaulay
homogeneous ideals I of R of fixed height h minimally generated by t
forms of degrees d1 , R , dt . Since, very little is known every result in
this field seems interesting. We will deal essentially with the case r42
and in the case r43 when d1 4R4dt 4a . Precisely, we set H (c)

d1 , R , dt
4

4 ]HR/I (R/I where HR/I is the Hilbert function of any Artinian reduction of
a c-codimensional Cohen-Macaulay ideal I of R minimally generated by t
forms of degrees d1 , R , dt . We equip this set of an ordering, defining
HR/I GHR/J if HR/I (n) GHR/J (n) for all n . In this paper we study first the
case c42, for which, after observing that H (c)

d1 , R , dt
is not empty if and only

if tGd111 (the Dubreil inequality), we prove that as poset it has both a
maximum and a minimum element (Proposition 2.2). Moreover, we produce
a scheme which realizes such a maximum and compute explicitely the mini-
mum in the case d1 , R , dt4a . In the codimension 3 case we show that
H (3)

a ; t (i.e. in case when d1 , R , dt4a) has a maximal element and again we
produce a scheme which realizes such a maximal Hilbert function (Theo-
rem 3.8). We still believe that, indeed, it is also a maximum.

The first section is dedicated to partial intersection schemes which
will be used to produce schemes with the required Hilbert functions.

1. Partial intersections: definitions, properties and facts.

Throughout this paper k will denote an algebraically closed field, P r

the r-dimensional projective space over k , R4k[x0 , x1 , R , xr ] 4

4 5
n�Z

H 0 (OP r (n) ).
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If V%P r is a subscheme, IV will denote its defining ideal and HV (n) 4

4 dimk Rn 2dimk (IV )n its Hilbert function. Moreover, if V%P r is a c-codi-
mensional aCM scheme with minimal free resolution

0 K5R(2j)a cj
RK5R(2j)a 2 j K5R(2j)a 1 j KIV K0

then the integers ]a ij (j will denote the i-th graded Betti numbers.
In this section we recall the construction of the c-codimensional par-

tial intersection schemes made in [RZ] and we collect from there the
main facts that will be used in this paper.

Let (P, G) be a poset. We denote, for every H� P,

SH 4 ]K� P NKEH( , SH 4 ]K� P NKGH(.

DEFINITION 1.1. A subset A of the poset P is said to be a left seg-
ment if for every H� A, SH ’ A. In particular, when P 4Nc with the or-
der induced by the natural order on N , a finite left segment will be men-
tioned as a c-left segment.

Note that every c-left segment A has sets of generators but there is a
unique minimal set of generators consisting of the maximal elements of
A; we will denote it by G(A).

If p i : Nc KN will denote the projection to the i-th component, and A

is a c-left segment, we set v(H) 4 !
i41

c

p i (H) and ai 4 max ]p i (H)NH�

� A(, for 1 G iGc . The c-tuple T4T(A) 4 (a1 , R , ac ) will be called the
size of A.

A c-left segment is said to be degenerate if ai 41 for some i .
If A is a c-left segment, F(A) will denote the set of minimal elements

of Nc 0 A, i.e.

F(A) 4 ]H�Nc 0 A N SH ’ A(.

Note that, if H4 (m1 , R , mc ) �F(A) and mi D1, then Hi 4

4 (m1 , R , mi 21, R , mc ) � A. Moreover, the elements

T1 4 (a1 11, 1 , R , 1 ), R , Tc 4 (1 , 1 , R , ac 11)

always belong to F(A), and we will call them canonical c-tuples.
In the sequel we denote the c-tuple (1 , R , 1 ) by I and, for every sub-

set Z of ST , we denote

CT (Z) 4 ]T1I2HNH�Z(.
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Finally, for every c-left segment A we define

A*4CT (ST 0 A).

Observe that A* is a c-left segment.

PROPOSITION 1.2. If A is a c-left segment, then

1. F(A) 4CT (G(A*) )N ]T1 , R , Tc (,

2. F(A*) 4CT (G(A) )N ]T *1 , R , T *c (.

3. If T *i cTi , for some i , then T *i �CT (G(A) ).

PROOF. See Proposition 1.3 in [RZ]. r

Fix a c-left segment A and consider c families of hyperplanes of P r ,
cGr ,

]A1 j (1 G jGa1
, ]A2 j (1 G jGa2

, R , ]Acj (1 G jGac

sufficiently generic, in the sense that A1 j1
OROAcjc

are »
i41

c

ai pairwise
distinct linear varieties of codimension c .

For every H4 ( j1 , R , jc ) � A, we denote by

LH 4 1
h41

c

Ahjh
.

With this notation we have the following

DEFINITION 1.3. The subscheme of P r

V4 0
H� A

LH

will be called a c-partial intersection with respect to the hyperplanes
]Aij ( and support on the c-left segment A.

THEOREM 1.4. Every c-partial intersection X of P r is a reduced
aCM subscheme consisting of a union of c-codimensional linear
varieties.

PROOF. See Theorem 1.9 in [RZ]. r

Here are the main results on c-codimensional partial intersec-
tions.
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THEOREM 1.5. If V%P r is a partial intersection of codimension c
with support on A, then the (r2c11)-th difference of its Hilbert func-
tion is

D r2c11 HV (n) 4N]H� A Nv(H) 4n1c(N .

PROOF. See Theorem 2.1 in [RZ]. r

Now, if X is a c-codimensional partial intersection with support on A

and with respect to the families of hyperplanes Aij whose defining forms
are fij , to every H4 (m1 , R , mc ) � A we associate the following
form

PH 4 »
i41

c

»
j41

mi21

fij .

THEOREM 1.6. Let V%P r be a partial intersection of codimension c
with support A. Then a minimal set of generators for IV is

]PH NH�F(A)(.

PROOF. See Theorem 3.1 in [RZ]. r

COROLLARY 1.7. Let V be as above then its first graded Betti num-
bers depend only on A and they are the following integers

dH 4v(H)2c ( H�F(A).

And finally

THEOREM 1.8. Let V%P r be a partial intersection of codimension c
with support A. Then the last graded Betti numbers of V are

sH 4v(H) (H�G(A).

PROOF. See Theorem 3.4 in [RZ]. r

We conclude this section by discussing the question we want to deal
with in this paper.

Let d1 GRGdt be t positive integers and cG t ; we denote by

H (c)
d1 , R , dt

4 ]HR/I (R/I

where I varies on the Artinian ideals of the polynomial ring R4
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4k[x1 , R , xc ], which are minimally generated by t forms of degrees
d1 , R , dt , and HR/I means the Hilbert function of R/I .

Note that the same set H (c)
d1 , R , dt

can be obtained by using ideals IX of
c-codimensional arithmetically Cohen Macaulay schemes of X%Pn and
D n112c HR/(IX ) , where D n112c denotes the (n112c)-th difference of
the Hilbert function of IX .

To describe H (c)
d1 , R , dt

is a very hard task in this general setting. Nev-
ertheless, many simpler (but still hard) questions can be posed. For in-
stance, to establish if H (c)

d1 , R , dt
is empty or not or, more generally, to

compute its cardinality in terms of the integers c ; d1 R dt .
Moreover, since H (c)

d1 , R , dt
can be ordered by defining HR/I GHR/J iff

HR/I (n) GHR/J (n) for all n�Z , (we call such an ordering the natural
partial ordering) one can ask if H (c)

d1 , R , dt
has a maximum or a minimum

element and when the answer is negative one can ask which are the max-
imal and the minimal elements.

The previous questions will be studied in few particular cases: first in
the codimension 2 case and for the codimension 3 case when d14R4dt .

2. The codimension two case.

We first deal with the codimension c42 for which most of the previ-
ous questions can be answered.

In this case H 2
d1 , R , dt

is not empty iff tGd1 11 (the Dubreil’s inequal-
ity). Indeed, in this situation, it is easy to see that H (2)

d1 , R , dt
is in 121 cor-

respondence with the set

S(2)
d1 , R , dt

4 m(s2 , R , st )Nsi Gsi11 , si Ddi (i , !
i

di 4!
i

sin

i.e. the (t21)-tuples which satisfy the Gaeta’s conditions. So, if we set
si 4di 1xi , where xi is a positive integer, the Gaeta’s conditions are

equivalent to say !
i42

t

xi 4d1 , from which one gets that S(2)
d1 , R , dt

is not emp-

ty iff d1 F t21.
Of course all these information about 2-codimensional Cohen-

Macaulay ideals can be deduced from the Hilbert-Burch theorem.
From now on a (t21)-tuple (x2 , R , xt ) of positive integers such that

!
i42

t

xi 4d1 , is said a (t21)-partition of d1 . We are interested on the
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(t21)-partitions of d1 which satisfy the condition

(*) xi 2xi11 Gdi11 2di (i42, R t .

Using the correspondence, which associates to s 4 (s2 , R , st ) � S(2)
d1 , R , dt

the element Hs� H (2)
d1 , R , dt

defined by Hs (n) 4 (n11)2 !
diGn

(n112

2di )1 !
siGn

(n112si ), one can induce an ordering on S(2)
d1 , R , dt

; precisely,

s 4 (s2 , R , st ) G s84 (s 82 , R , s 8t ) ` HsGHs8 ` !
siGn

(n112si ) G

G !
s 8i Gn

(n112s 8i )(n .

We need first this simple technical lemma.

LEMMA 2.1. Let (M2 , R , Mt ) be the maximum, by lexicographic
ordering, in the set of (t21)-partitions of d1 satisfying condition (*).
Then, for every (t21)-partition of d1 (x2 , R , xt ), satisfying condition
(*), we have

!
i42

h

Mi F !
i42

h

xi ( h42, R t .

PROOF. If there is some h 843, R t such that !
i42

h 8

Mi E !
i42

h 8

xi then

there exist jGh 8 such that Mj Exj ; say m the biggest one. On the other

hand, since !
i42

t

Mi 4 !
i42

t

xi there is some jDh 8 such that Mj Dxj ; say n

the smallest one. Of course, by construction, mGn . Define, for every
i42, R , t ,

M 8i 4
.
/
´

Mi

Mm 11

Mn 21

(icm , n

i4m

i4n .

We see that (M 82 , R , M 8t ) is a (t21)-partition of d1 satisfying condition
(*). Indeed, we need only to show that dm 1M 8m Gdm11 1M 8m11 and
dn21 1M 8n21 Gdn 1M 8n . Now

dm 1 M 8m 4 dm 1 Mm 1 1 G dm 1 xm G dm11 1 xm11 4 dm11 1

Mm11 4 dm11 1 M 8m11 (if m11 En , the case m11 4n is similar)
dn21 1 M 8n21 4 dn21 1 Mn21 4 dn21 1 xn21 G dn 1 xn G dn 1

Mn 21 4 dn 1 M 8n (if mEn21, the case m4n21 is similar).
Now, since (M 82 , R , M 8t ) is lexicographically bigger than

(M2 , R , Mt ), we get a contradiction. r
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PROPOSITION 2.2. Let d1 GRGdt be t positive integers and
H 2

d1 , R , dt
the set of all Hilbert functions of Artinian ideals of the polyno-

mial ring in two variables which are minimally generated by t forms of
degrees d1 , R , dt . Then H 2

d1 , R , dt
, as a poset, by the natural partial or-

dering, has both a maximum and a minimum element. Precisely, if we
denote by (m2 , R , mt ) and (M2 , R , Mt ), respectively, the minimum
and the maximum of the set of the (t21)-partitions of d1 satisfying the
condition (*), ordered by the lexicographic ordering, then in the poset
S(2)

d1 , R , dt
the element s 8i 4di 1mi , for i42, R t , is the maximum and the

element s 9i 4di 1Mi , for i42, R t , is the minimum. Hence, the ele-

ments Hs 8 (n) 4 (n11)2 !
diGn

(n112di )1 !
s 8i Gn

(n112s 8i ), Hs 9 (n) 4

4 (n11)2 !
diGn

(n112di )1 !
s 9i Gn

(n112s 9i ) are, respectively, the maxi-

mum and the minimum element in H 2
d1 , R , dt

.

PROOF. Take any element (s2 , R , st ) in S(2)
d1 , R , dt

and denote si 4di 1

1xi , for i42, R , t . Of course, (x2 , R , xt ) is a (t21)-partition of d1 satis-
fying the condition (*). For every n�N we get two integers i , jG t , de-
fined by s 9i Gn11 Es 9i11 and sj Gn11 Esj11 . For the minimum case,

we need to prove that !
h42

i

(n112dh 2Mh ) G !
h42

j

(n112dh 2xh ). Now,

if iG j , applying Lemma 2.1 we have

!
h42

i

(n112dh 2Mh ) G !
h42

i

(n112dh 2xh )

hence

!
h42

i

(n112dh 2Mh ) G !
h42

i

(n112dh 2xh )1 !
h4 i11

j

(n112dh 2xh ) 4

4 !
h42

j

(n112dh 2xh ).

If iD j again by Lemma 2.1 we have

!
h42

i

(n112dh 2Mh ) G !
h42

i

(n112dh 2xh )

hence

!
h42

i

(n112dh 2Mh ) G !
h42

j

(n112dh 2xh )1 !
h4 j11

i

(n112dh 2xh ) ;
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now, since(n112dh 2xh ) E0 for hD j , we get

!
h42

i

(n112dh 2Mh ) G !
h42

j

(n112dh 2xh ) .

Finally, note that the minimum element in the set of the (t21)-parti-
tions of d1 satisfying the condition (*), ordered by the lexicographic or-
dering, is given by mi 41, for i42, R , t21, and mt 4d1 2 t12. This
implies that for every (t21)-partitions of d1 satisfying the condition (*),
(y2 , R , yt ), one has

!
i42

h

mi G !
i42

h

yi ( h42, R t ,

i.e. we are in the same situation as in Lemma 2.1 (just reversing the or-
der). Thus, repeating the same argument as in the minimum case, we get
for every integer n

!
h42

i

(n112dh 2mh ) F !
h42

j

(n112dh 2yh )

where i and j are defined as before. r

COROLLARY 2.3. The 2-partial intersection Xmax whose support is

the 2-left segment generated by the t21 elements gdi 2 !
h4 i11

t

mh , !
h4 i

t

mhh
for i42, R , t , has the maximum Hilbert function in H 2

d1 , R , dt
; the 2-

partial intersection Xmin whose support is the 2-left segment generated

by the t21 elements gdi 2 !
h4 i11

t

Mh , !
h4 i

t

Mhh for i42, R , t , has the

minimum Hilbert function in H 2
d1 , R , dt

.

PROOF. The conclusion is a direct consequence of the previous theo-
rem, Corollary 1.7 and Theorem 1.8. r

REMARK 2.4. We can get also the ideals of the partial intersections
in the previous Corollary by lifting suitable Artinian monomial ideals.
More precisely every sequence d1 , R , dt , s2 , R , st , satisfying the Gaeta
conditions, is realized by the ideal of the maximal minors of the following
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matrix

.
`
`
`
´

x s22d1

0

Q Q Q

0

0

y s22d2

x s32d2

Q Q Q

Q Q Q

Q Q Q

y s32d3

x st212dt22

0

0

0

y st212dt21

x st2dt21

0

0

0

y st2dt

ˆ
`
`
`
˜

.

COROLLARY 2.5. If d1 4R4dt 4a the maximum and the mini-
mum Hilbert function in H 2

a ; t are given by, respectively,

Hmax (n) 4
.
/
´

n11

2a112 t2n

0

if nEa

if aGnE2a122 t

if nD2a122 t

Hmin (n) 4
.
/
´

n11

2a112 t2n

0

if nEa

if aGnEa1q

if nFa1q

where a4 (t21) q1r , rE t21.

PROOF. To get the conclusion it is enough to observe that in this case
we have mi 41 for i42, R t21, mt 4a2 t12 and Mi 4q for
i42, R , t2r and Mj 4q11 for i4 t2r11, R , t . r

3. The codimension greater than two: ideals generated in one
degree.

In this section we approach the problem for codimension c greater
than two. A first question is when the set H (c)

d1 , R , dt
is empty. Let us sup-

pose that the integers d1 Gd2 GR dt are assigned. In this case we denote
p1 Ep2 EREps the distinct elements among the di’s and we set a i »4

»4N]dj 4pi N1 G jG t(N . Of course !
i41

s

a i 4 t . Moreover we set

b 1 »4 gp1 1c21

c21
h , b i »4 (b i21 2a i21 )api21 bapi2111 bRapi21 b for 2 G iGs ,
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where the symbol a . b denotes the exponential of Macaulay (see the
paper of Stanley [St1]).

PROPOSITION 3.1. Let d1 Gd2 GRGdt t positive integers, with tF

Fc . Then

H (c)
d1 , R , dt

c¯ ` a i Gb i for 1 G iGs .

PROOF. Throughout this proof we set R»4k[x1 , R , xc ].
Let I� H (c)

d1 , R , dt
; we call J(i) the ideal generated by the homogeneous

pieces of I of degree less or equal to pi , W i the Hilbert function of the k-
algebra R/J(i) and H the Hilbert function of R/I . Of course, we have
W i (pi ) 4W i21 (pi )2a i . Now we prove that W i21 (pi ) Gb i for 2 G iGs .
For i42, W 1 (p1 ) 4b 1 2a 1 , and using Macaulay Theorem on the maxi-
mal growth (see [St1]),

W 1 (p1 11) G (b 1 2a 1 ) ap1 b, W 1 (p1 12) GW 1 (p1 11)ap111 bG

G (b 1 2a 1 )ap1 bap111 b , R , W 1 (p2 ) G (b 1 2a 1 )ap1 bap111 bRap221 b4b 2 .

Now suppose that W i21 (pi ) Gb i ; then W i (pi ) 4W i21 (pi )2a i Gb i 2a i

therefore by repeating the previous arguments we obtain that

W i (pi11 ) G (b i 2a i )api bapi11 bRapi1121 b4b i11 .

Now it is clear that a 1 Gb 1 since b 1 4 dimk Rp1
; moreover for 2 G iG

Gs ,

a i4dimk Rpi
2dimk R1 Ipi212H(pi )4W i21 (pi )2H(pi )Gb i2H(pi )Gb i .

Vice versa let us suppose that d1 , R , dt are integers such that a i Gb i

for 1 G iGs and t4 !
i41

s

a i Fc (using the same notation). By [St1] there

exists a lex-segment ideal L%R having a i minimal generators in degree
pi , for 1 G iGs . Let M be the set of the monomials minimally generating
L . Then M4Mp NMm where Mp is the subset of the elements of M
which are powers of some xi and Mm is the subset of the mixed monomi-
als. We set k»4NMpN and u»4NMmN ; NMN4 t4k1uFc , by hypothe-
sis, so uFc2k ; let M 8m 4 ]mk11 , mk12 , R , mc ( be the subset of Mm

of the last c2k monomials in the lexicographic order; we set
P4 ]xi

deg mi Nk11 G iGc(. Now let us consider the set of monomials
M 8 »4 (M0M 8m )NP . We claim that the monomial ideal I , generated by
M 8 , belongs to H (c)

d1 , R , dt
. First observe that height I4c since, by con-
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struction, there is a power of xi belonging to I for 1 G iGc . So, to con-
clude the proof, we need to show that M 8 is a set of minimal generators
for I . Using again the lexicographic order, we set m»4 max ]m�M 8 Nm
is not a power(; then M 84M 81 NM 82 where M 81 4 ]m�M 8 NmGm( and
M 82 4M 8 0M 81 ; since M 81 %M and M was a minimal set of generators,
every element in M 81 cannot be in the shadow of the previous ones; on the
other hand M 82 contains only powers, so, again, every element in M 8 can-
not belong to the shadow of the previous ones. r

REMARK 3.2. When H (c)
d1 , R , dt

c¯ it is natural to guess that the mini-
mal value for the Hilbert function is achieved by the ideal generated by t
generic forms of degrees d1 , R , dt . For istance the guess is true in the

particular case d1 4R4dt 4a with ntF g a1n

a11
h, since a result by

Hochster and Laksov (see [HL]) says that HR/I (a11) 40.

In this section we will use the notation about partial intersections in-
troduced in section 1.

Let A4k[x , y , z] and let n , a�N . We denote by Ia , n the set of the
homogeneous Artinian ideals I%A (i.e. A/I is Artinian) where I is mini-
mally generated by n forms of degree a .

We simply denote

Ha , n 4 ]HA/I NI� Ia , n ( .

Fixed two integers aF1 and 3 GnG ga12

2
h, in this section we would like

to determine a maximal element in Ha , n .

Let n»4 ga12

2
h2n . We set b22 »40, b21 »4a21, bi »4a2 i for

0 G iGa22 and ba21 »41. Note that, since

ga12

2
h23 4 !

i422

a22

bi ,

there exist two integers k and h , 22 GkGa22, 0 GhGbk11 21, such
that

n4 !
i422

k

bi 1h .
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We set s»4a222k ; then 0 GsGa . Moreover observe that

n4 ga12

2
h2n4 !

i41

a11

i2 !
i421

a22

bi 2h4 !
i41

a11

i2 !
i4a2k

a

i2 (a21)2h4

4 !
i41

a2k21

i1 (a11)2 (a21)2h4 ga2k

2
h122h4 gs12

2
h122h .

We set also s»4a2s . Now let us consider the 3-left segment La , n gen-
erated by the following elements:

(s , a , a), (s11, h , a) ;

](s11, y , s112y)Nh11 GyGs( ;

](x , y , a122x2y)Ns12 GxGa , 1 GyGa112x( .

Let X%P r , rF3, a partial intersection with support on La , n . We would
like to show that D r22 HX is the desired maximal element.

First of all we compute D r22 HX . If A is a c-left segment and sG t are
two positive integers we set Aj »4 ](H� A Np 1 (H) 4 j(, A(s , t) »4

»4 0
j4s

t

Aj , and denoted by s : Zc KZc the transformation

s(x1 , x2 , R , xc ) 4 (x1 2s11, x2 , R , xc ) we set also A(s , t) »4

»4s(A(s , t) ). Of course A(s , t) is a c-left segment. If X is a partial inter-
section with support on A, let X(s , t) be the subscheme of X with support
on A(s , t). X(s , t) is obviously a partial intersection with support on
A(s , t).

LEMMA 3.3. Let X%P r a c-partial intersection with support on A.
Let t be the maximum of the first components of the elements of A, and
let 1 GsG t , so X4X1 NX2 where X1 »4X(1 , s) and X2 »4X(s11, t).
Then D r2c11 HX (i) 4D r2c11 HX1

(i)1D r2c11 HX2
(i2s).

PROOF. By Theorem 1.5,

D r2c11 HX (i) 4N]H� A Nv(H) 4 i1c(N4

4N]H� A(1 , s)Nv(H)4i1c(N1N]H� A(s11, t)Nv(H)4i1c(N4

4N]H� A(1 , s)Nv(H)4i1c(N1N]H� A(s11, t)Nv(H)4i2s1c(N4

4D r2c11 HX1
(i)1D r2c11 HX2

(i2s). r
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Proposition. 3.4. Let aF1 and 3 GnG ga12

2
h ; let X%P r a partial in-

tersection supported on La , n . Then, with above notation,

D r21 HX (i) 4

.
`
`
/
`
`
´

i11

a112n

s22(i2a11)

2s21

2s

i22a2s11

0

for 0 G iGa21

for i4a

for a11 G iGa1s21

for a1sG iGa1s1h21

for a1s1hG iG2a21

for 2aG iG2a1s22

for iF2a1s21 .

PROOF. We denote pj 4 ](x , y , z) �N3 Nx4 j(. We can decompose X
in an union of three disjoint partial intersections X1 , X2 , X3 . X1 is sup-
ported on a(s , a , a)b; X2 on La , n Ops11 ; X3 supported on La , n O

Og 0
j4s12

a

pjh .

X1 is a complete intersection of type (s , a , a). So we have

D r21 HX1
(i) 4

.
`
/
`
´

i11

s

2a1s2222 i

2s

i22a2s11

0

for 0 G iGs21

for sG iGa21

for aG iGs1a21

for s1aG iG2a21

for 2aG iG2a1s22

for iF2a1s21 .

X2 is a plane partial intersection such that

D r21 HX2
(i) 4

.
`
/
`
´

1

h2s

0

21

0

for 0 G iGs21

for i4s

for s11 G iGa21

for aG iGa1h21

for iFa1h .
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X3 is a partial intersection such that

D r21 HX3
(i) 4

.
/
´

i11

2gs
2
h

0

for 0 G iGs22

for i4s21

for iFs .

By Lemma 3.3, D r21 HX (i) 4D r21 HX1
(i)1D r21 HX2

(i2s)1

1D r21 HX3
(i2 A s21), so we are done. r

Now we compute the graded Betti numbers of a partial intersection
with support on La , n .

PROPOSITION 3.5. Let aF1 and 3 GnG ga12

2
h; let X%P r a partial

intersection with support on La , n , and let R»4H 0
*(OP r ). Then a graded

minimal free resolution for IX , the saturated homogeneous ideal of X , is
of the type:

0 KR(2(a12) )n2s23 5R(2(2a2s1h11) )5R(2(3a2s) ) K

KR(2(a11) )2n2s26 5R(2(2a2s) )5R(2(2a2s11) )5

5R(2(2a2s1h) )5R(22a) KR(2a)n KIX K0

PROOF. By [RZ], Proposition 3.4, we can compute the last graded
Betti numbers of IX directly from the generators of La , n . To compute the
first graded Betti numbers, we have to find, using notation in section 1,
the set F(La , n ). An easy verification shows that the elements in F(La , n )
are

(a11, 1 , 1 ), (1 , a11, 1 ), (1 , 1 , a11);

](s11, y , s122y)Nh11 GyGs11( ;

](x , y , a132x2y)Ns12 GxGa , 1 GyGa122x( .

Finally we can compute the second graded Betti numbers, as it is well
known, through the first and last ones and the Hilbert func-
tion. r
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If A is a 3-left segment, we set

mi (A) »4 max ]p i (H)NH� A(; for 1 G iG3,

and I»4 (1 , 1 , 1 ). Of course mi (La , n ) 4a , for 1 G iG3. Now we consid-
er La , n* ; then m1 (La , n* ) 4a2s4s and mi (La , n* ) 4a for i42, 3 . So if we
set T»4 (a , a , a) and U»4 (s , a , a) we have

La , n** 4CU(SU 0CT (ST 0 La , n )) .

Now let s : Z3 KZ3 be the transformation s(x , y , z) 4 (x2s , y , z).

LEMMA 3.6. With the previous notation

La , n** 4s(La , n )ON3 .

PROOF. H� La , n** ` U1I2H� A SU 0CT (ST 0 La , n ) ` U1I2HG

GU and U1I2H�CT (ST 0 La , n ) ` HFI and T1I2 (U1I2H) �
�ST 0 La , n ` H�N3 and H1T2U�ST 0 La , n ` H�N3 and H1

1 (s , 0 , 0 ) � La , n ` H�s(La , n )ON3 . r

LEMMA 3.7. Let X%P r a scheme with support on La , n . Then X is
CI-linked in two steps to a scheme Y whose (r22)2 th difference of the
Hilbert function is

D r22 HY (i) 4

.
/
´

gi11

2
h

h

a1h212 i

for 0 G iGs21

for sG iGa21

for aG iGa1h22

through complete intersections of type (a , a , a) in the first step, and of
type (s , a , a) in the second step.

PROOF. We link at first X in a partial intersection complete intersec-
tion of type (a , a , a) to a scheme Y 8 , and then we link Y 8 in a partial in-
tersection complete intersection of type (s , a , a) to a scheme Y . Then Y
is a partial intersection with support on La , n** . So we can compute the (r2

22)-th difference of the Hilbert function of Y , as in the proof of Proposi-
tion 3.4, by considering Y4Y1 NY2 , Y1 with support on La , n** Op1 and Y2

with support on La , n** Og 0
j42

s

pjh; then, using Lemma 3.3, D r22 HY (i) 4
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4D r22 HY1
(i)1D r22 HY2

(i21). So we have

i 0 1 2 Q Q Q s21 s Q Q Q a21 a a11 Q Q Q a1h22 a1h21

D r22 HY1(i) 1 2 3 Q Q Q s h Q Q Q h h21 h22 Q Q Q 1 0

D r22 HY2 (i21) 1 3 Q Q Q gs
2
h 0 Q Q Q 0 0 0 Q Q Q 0 0

D r22 HY (i) 1 3 6 Q Q Q gs11
2

h h Q Q Q h h21 h22 Q Q Q 1 0

r

Now we prove the main theorem of this section.

THEOREM 3.8. Let aF1 and 3 GnG ga12

2
h. Let X%P r a partial in-

tersection with support on La , n . Then D r22 HX is a maximal element in
Ha , n .

PROOF. We set m»4D r22 HX . By contradiction let W� Ha , n , WDm .
Let k»4 min ]i�N0NW(i) Dm(i)(. Since W� Ha , n , W(i)4m(i) for 0GiGa;
moreover m(i) 40 for iF2a1s22, so a11 GkG2a1s22. Let Y%
%P r a scheme such that D r22 HY 4W and IY � Ia , n . We can link Y in a com-
plete intersection Z of type (a , a , a) to a scheme Y 8 . Then
D r22 HY 8 (i) 4D r22 HZ (i)2W(3a232 i). Therefore D r22 HY 8 (s) 4

4D r22 HZ (s)2W(2a1s23), and since W(2a1s23)Fm(2a1s23)D0 we

have that D r22 HY 8 (s) E gs11

2
h, i.e. there is an hypersurface of degree s

containing Y 8 , so we can link Y 8 in a complete intersection W of type
(s , a , a) to another scheme Y 9 . By Lemma 3.7, X is CI-linked in two
steps to a partial intersection X 9 with support on La , n** through complete
intersections of type (a , a , a) and (s , a , a) too. We set m 9 »4D r22 HX 9

and W 9 »4D r22 HY 9 .
Then

W 9 (i) 4D r22 HW (i)2D r22 HY 8 (2a1s232 i) 4

4D r22 HW (i)2 (D r22 HZ (3a232 (2a1s232 i) )2

4D r22 HY (3a232 (2a1s232 i) ) ) 4

4D r22 HW (i)2D r22 HZ (a2s1 i)1W(a2s1 i);



Alfio Ragusa - Giuseppe Zappalà116

so we have

W 9(s1k212a)4D r22HW (s1k212a)2D r22HZ (k21)1W(k21)4

4D r22HW (s1k212a)2D r22HZ (k21)1m(k21)4m(s1k212a)

and

W(s1k2a) 4D r22 HW (s1k2a)2D r22 HZ (k)1W(k) D

DD r22 HW (s1k2a)2D r22 HZ (k)1m(k) 4m(s1k2a).

Note that s1k212aFs . So if sGs1k212aGa22 then W 9 (s1

1k212a) 4m 9 (s1k212a) 4h and W 9 (s1k2a) Dm 9 (s1k2a) 4

4h4W 9 (s1k212a)as1k212ab , (sinces1k212aFsFh) a contradic-
tion, since W 9 is an O-sequence.

If a21 Gs1k212aGa1h22 then

W 9 (s1k212a)as1k212ab4

4W 9(s1k212a)4m 9(s1k212a)4m 9(s1k2a)11GW 9(s1k2a) ,

and since W 9 is an O sequence, we get that W 9 (s1k212a)as1k212ab4

4W 9 (s1k2a) i.e. W 9 has a maximal growth in s1k2a ; but this is again
a contradiction, because it means, by [BGM], that the hypersurfaces of
degree less or equal to s1k2aFa , containing Y 9 , have a fixed compo-
nent of dimension 1 , while Y 9 is contained in a complete intersection of
type (s , a , a). r

EXAMPLE 3.9. Let a48, n420; so n425 and 25 401718171

13 so k41, h43, s45, s43. L8, 20 is generated by the following
3-tuples:

(3 , 8 , 8 )

(5 , 1 , 4 )

(6 , 1 , 3 )

(7 , 1 , 2 )

(4 , 3 , 8 )

(5 , 2 , 3 )

(6 , 2 , 2 )

(7 , 2 , 1 )

(4 , 4 , 2 )

(5 , 3 , 2 )

(6 , 3 , 1 )

(8 , 1 , 1 )

(4 , 5 , 1 )

(5 , 4 , 1 )
.

If X%P r , rF3, is a partial intersection with support on L8, 20 , D r22 HX

is

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 R

1 3 6 10 15 21 28 36 25 24 21 17 13 9 6 3 1 0 K
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The minimal graded resolution of IX is

0 KR(219)5R(215)5R(210)12 KR(216)5R(214)5R(212)5

5R(211)5R(29)29 KR(28)20 KIX K0 .

We finish with the following

QUESTION 3.10. Is D r22 HX , where X%P r is a partial intersection
with support on La , n , the maximum element in Ha , n ?
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