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AE-rings.

MANFRED DUGAS (*) - SHALOM FEIGELSTOCK (¥*)

ABSTRACT - E-rings are a well known notion in the theory of abelian groups. They
are those rings R such that End (R *), the ring of endomorphisms of the addi-
tive group of R, is as small as possible, i.e. End(R*) = R;, where R, =
= {&—ax: a € R}. We generalize the notion of E-rings by calling a ring R an al-
most-E-ring, or AE-ring for short, if End (R *) is a radical extension of R;,
i.e. for each ¢ € End (R ") there is some natural number 7 such that ¢p" e R, .
We will show that this notion does not lead to a new class of rings. It turns out
that all AE-rings are actually E-rings. Our proof utilizes Herstein’s Hyper-
center Theorem.

0. Introduction.

The notion of an E-ring was introduced by P. Schultz [13] some 30
years ago and has attracted a lot of attention ever since. We refer to the
survey article [14] for a guide to the literature and a discussion of gener-
alizations of E-rings as proposed by several authors. A question raised in
[1] was only recently answered in [6]: There exist generalized E-rings R,
i.e. R is not an E-ring, but R = End (R ) as rings. The existence of arbi-
trarily large E-rings, c.f. [4], is also of interest in category theory as dis-
cussed in [1], see also [11]. In [14], several new generalizations of the no-
tion of E-rings were proposed. For example, a ring R is called a two-sid-
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ed E-ring, if End (R *) is generated as a ring by R; UR,, where R, =
= {x+—>ax: aeR} is the set of all left multiplications by elements of R,
and R, = {x+—xa : ae R} is the set of all right multiplications. In [5] tor-
sion-free two-sided E-rings were studied and large two-sided E-rings
that are not E-rings were constructed. Another generalization intro-
duced in [3] is obtained by restricting attention to the automorphisms of
R*. A ring R is called an A-ring, if Aut(R *), the group of automor-
phisms of R *, is contained in R, i.e. Aut(R*) = U(R,) the group of
units of R,. Large A-rings R were constructed in [3] that are not E-
rings, indeed End(R *) is a commutative polynomial ring in a single
variable over R,. Moreover, A-rings whose additive groups are torsion-
free of finite rank (tffr) were investigated, but the obvious question
about the existence of tffr A-rings that are not E-rings was left open.
This question was answered in the negative in [2]: All tffr A-rings are in-
deed E-rings. The main tool in the proof was yet another generalization
of E-rings, one that is preserved under quasi-isomorphism. A unital ring
R is called an AA-ring if R is «almost an A-ring» in the sense that
for each ae Aut(R*) there is some natural number # such that
a"e UR,).

In the present paper we define a ring R to be an AE-ring, if
End (R *) is radical over R, i.e. for each ¢ € End(R *) there is some
natural number # such that the n-th power of ¢ belongs to R, , i.e. ¢" €
€ R, . While all generalizations of E-rings described so far have led to new
classes of rings, it is a little surprising that this one does not. We will
proof the following:

MaiN THEOREM. All AE-rings are E-rings.

We will use some classical commutativity results from ring theory.
Jacobson [9, p. 218] calls a ring R a K-ring if R is radical over Z(R), the
center of R. Kaplansky [10] proved that each semi-simple K-ring is, in-
deed, commutative. In [9, p. 219] it is shown that each K-ring R has a nil
ideal N such that R/N is commutative. Herstein [7] proved that the com-
mutator ideal of any K-ring is a nil ideal. This result was extended by Li-
htman [12] who showed that if the ring R is radical over a commutative
subring A, then Nil(R) = {eeR : a nilpotent} is an ideal of R and
R/Nil (R) is commutative. Given a ring R, Herstein [8] defines the hyper-
center T(R) of R to be the set T(R) = {aeR: (VxeR)(3n=n(a, x) €
eN)ax"=2x"a)}, ie. the hypercenter consists of all those elements of
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the ring that commute with some power of each element of R. Theorem 2
in [8] states that if R is a ring with no nil ideals, then Z(R) = T(R), i.e.
center and hypercenter coincide.

1. Proof of the Main Theorem.
1.1 PROPOSITION. Let R be an AE-ring. Then 1 eR.

ProoF. There is an element ¢ € R such that idgz = ¢, , i.e. & = ex for all
x € R and thus e is an idempotent element of . Now there is some ele-
ment a € R and an integer » such that a, = (e,)" = (¢"), = ¢, and we have
we = ax for all xe R. This implies ¢ = ee = ae = a* and we obtain xe =
= (xe) e = (ax) e = a(xe) = a(ax) = a®x = ex = xforallx e R. Thisimplies
l=¢eeR. =

After having established that AE-rings have an identity we will con-
sider AE-rings with decomposable additive groups.

1.2 LEMMA. Let R be an AE-ving such that R* = H® K. Then the
Sollowing hold:

1) R=H®K 1is a ring direct sum.
(2) H and K are both AE-rings.
8) Hom(H, K) =0 =Hom (K, H).

ProoF. Let 7y be the natural projection of R * onto H. Since 7y is
an idempotent endomorphism, there is an element ey € R such that 75 =
= (ey); and it follows that 7 (1) = ey € H and thus ey = 7 5 (eg) = (ey)?is
idempotent. This shows that (ey), is idempotent and (ey), = a, for some
a e R. We conclude xey = ax for all x e R and ey = a is in the center of R.
This shows that H = ez R is a subring of R. Define the element ez e K in
the same fashion for K. Then K = ex R and 0 = w4 (ex) = ey ex and it fol-
lows that HK = {0} = KH. This shows (1).

Let ¢ : H— H be an endomorphism of H. Then ¢ o 7 5 is an endomor-
phism of R with (¢ omy)" = @" oy for all n e N. Now there is some a e
e R and n e N such that ¢" oty = a, Since a = a, (1) we have a € H and
@" = (ar) |;. This shows that H is an AE-ring.

Let ¢ e Hom (H, K) and define e End(R*) by vy =@omy+ mg.
Then *= (gpomy)o(@omy)+ (gomy)omg+ago(pony)+ (wg) =
=0+0+q@omy+ =1 is idempotent and thus y = a, for some ae R
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and a = y(1) € K. Since, for all h e H we have that ah = y(h) = ¢(h) €
eKH={0}. Thus ¢=0. =

1.3 COROLLARY. Let R be an AE-ring and R, the p-primary torsion
part of R . Moveover, let P={p: R,#0} and t(R) = @,.pR,. Then
R,=7Z(p®) for all pe P, e, = 1 and R/I(R) is P-divisible, i.e. p-divisible
for all peP.

PrOOF. R, has to be reduced because of Lemma 1.2 (2). Thus R,
splits off cyclic summands and Lemma 1.2 (3) implies that R, is cyclic
and R=R,®H® with H"” a p-divisible subgroup because of 1.2 (3).
This implies R/t(R) is P-divisible. =

If R is torsion, then R = &, .p R, with 1 € R. This shows that P is fi-
nite and we obtain:

1.4 CoroLLARY. If R is a torsion AE-ring, then R =7Z/n7 for some
nelN, ie. R is an E-ring.

We will now prove that non-torsion AE-rings are E-rings.

Let R be a ring. Recall that Nil(R) = {a e R : @ nilpotent} is the set
of nilpotent elements of the ring B. We let Z(R) denote the center of the
ring R and if R is a subring of a ring £, we define Z(R),z = {rek:
(AneN)(nreZ(R)}. Then Z(R),g is a pure subring of E. Recall that
T(R)={xeR: VaeR)3neN)(wa"=a"x)} is the hypercenter of R.

From now on, let R be an AE-ring and P = {peP: R, = {0}}, where
IP is the set of natural primes and R, is the p-torsion part of R ™. Let
t(R)=®,.pR, be the torsion part of R. For shorter notation, let
E =End(R*). Note that R has a fully invariant ideal H, namely H =
= Npep(Nyenp”R) and R/H is isomorphic to a subring of I7,.p R, the
Z-adic completion of {(R). Note that R/H is an E-ring, c.f. [13]. Recall
that there is an example in [1, Example 3.24] of a mixed E-ring R such
that H is not a summand of R. We will proceed by steps.

(1.5) The ring E is radical over Z(R), = Z(R, ). Moreover, R is radi-
cal over Z(R).

Let ¢ € E. Then ¢" = a, € R, for some natural number » since R is an
AE-ring and a, e E. This implies that there is a natural number m such
that (a,)” = b, € R,. This implies xa™ = bx for all x € R, which implies
a™=beZ(R). We infer ¢"" e Z(R,).
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(1.6) Nil(&) cZ(R¢ )yt

Let ¢ € Nil (E). Then there is a least k =1 such that ¢/e Z(R, ),z for
all j =k, because ¢ is nilpotent. By (1.5), there is a natural number n»

such that (idg + k1) = 2(;) @ Vie Z(R,) C AR, )yp. Assuming

Jj=0
k=2, wehave (k—1)j =k forj = 2 and we infer ng"* e Z(R, ),5. Thus
there is some natural number m such that mng”* e Z(R), and ¢* " 1e

€ Z(R; )yp, a contradiction to the choice of k. Thus k=1.
(1.7) Let ¢ e E such that g(R) ct(R). Then ¢ e (¢(R)),.

We have ¢ : R—1t(R) and H is P-divisible and ¢(R) is P-reduced.
Thus ¢(H) = {0} and ¢ induces an endomorphism ¢ |y = (¢t + H), of
the E-ring R/H where tet(R). Note that ¢(x) + H =@y +H) =
= te + H and therefore ¢(x) —tx e H N t(R) = {0}. We conclude ¢(x) = tx
for all xeR and ¢ =t € ({(R)),.

(1.8) Z(Ry)wpCR,.

Let y e Z(R;)4g. Then there is some natural number n such that
wy =1, e Z(R;). For s=1(1)eZ(R) we have r=mns and it follows
n(y—s)=0, ie. Yy —s;: R—tR). By (1.7), we have v —s; € (H(R)),
and it follows that y e R, .

(1.9) «(R)CZ(R).

This follows from the fact that R/H is commutative and H -t{(R) =
={0} =HtR)-H.

(1.10) Nil(&) is an ideal of E. Moreover, Nil (£) = (Nil(R)), .

Let ¢ e E and 5 e Nil (). By (1.6) we have n e Z(R, ), and n € R, by
(1.8). There is some natural number m such that (¢n)" € Z(R, ) since E is
radical over Z(R,) by (1.5). We claim that for all k=1 we have
(o)™ = [gm™ ' ol n":

If k=1, there is nothing to show. Consider (¢7 ()™ (gn)™ =
= (em)" T 0" Yem™ = o)™ el (@™ n* = (ep)" '@l"
o)™ Lol yn* = [(@n)" Lol 1y**1. Here we used that € R, and
()" e Z(R; ). We infer ¢n € Nil (£) and by symmetry, also ¢ e Nil ().
This shows that Nil (£) is an ideal of E.

)m(k +1) —
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(1.11) E/(Nil(R)), is commutative.

Since E is radical over Z(R,), we have that R, cT(¥). Let N=
= (Nil(R));. Then R, /N c (T(E) + N)/N c T(E/N) and 0 is the only nilpo-
tent element of E/N. By [8, Theorem 2] we have T(E/N) =Z(E/N)2
DR, /N. Since E is radical over R;,, we have that E/N is radical over
Z(E/N). By [9, Theorem 2 on page 219] we have that E/N is commuta-
tive.

We can now finish our proof for mixed AE-rings: By Corollary 1.4 we
may assume that R is not torsion. Let P be defined as above and assume
P# . Let N=(Nil(R)),. Then N is an ideal of £ = End (R *) by (1.10)
and E/N is commuatative by (1.11.) Let ae R, ¢ € E. Then ¢a, — a,¢ =
=b,eNandb = ¢(a) — ¢(1)a e Nil (R). Thisshowsthat ¢ — (¢(1)),: R—
— Nil(R).Define K = {¢p e E : p(R) c N}.Wehave justseenthat &' = R, +
+ K. Let e K — N. Then # is not nilpotent. On the other hand, there is a
natural number m and b € R such that ™ = b, : R— Nil (R). This shows
that b e Nil (R) and b is nilpotent. Thus #™ is nilpotent and so is #, a con-
tradiction. This implies £ = R, and R is an E-ring.

If R is torsion-free, things simplify a little. Now we can work with
Z(R) in place of Z(R),z(= Z(R)) and t(R) = {0} = H. Again, we can run
through the steps (1.5) - (1.11) and it follows that R is an E-ring.

2. Constructing large AA-rings that are not A-rings.

We want to present a brief hint about a construction of large torsion-
free AA-rings that are not A-rings. First, we need a tool to construct
rings with only a few, but non-trivial automorphisms.

2.1 PROPOSITION. Let S be an integral domain such that U(S) =
={1, —1}. Let y= (1) (1)} and define S[y]={Z Z}:a,beS}. Then
US[yD =41, =1, y, —y} is a group of order 4.

Proor. Let @S be the field of quotients of the integral domain S and

u= {Z Z} €S[y]. Then u has an inverse u lover QS if and only if a? —

—b%#=0. Note that ™" = z;bz{ ab Tﬂ and u e S[y] if and only if
P

—, L eS. Assume u 'eS[y]. Then — < _ + _ b es. Using

a?-0b%" a®-10b> a?—b? a2— b2 )

the factorization a?—b%= (a —b)a +0b) we derive —,
a—>b a+b

’
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which means ¢ — b, a + be U(S) = {1, —1}. Considering the four possi-
ble cases it turns out that one of the parameters a, b has to be 0 while the
other is equal to 1 or —1. This shows that ue {1, —1,y, —y}. =
Let u be a cardinal such that 4™ =y and A = u * is the successor car-
dinal of u. Let P =Z[x, .: a <A, e {0, 1}] be a commutative polyno-
mial ring with variables x, .. Define y € Aut(P) be y(x,, .) =, o such
that {e, 0} = {0, 1}, a <A1. Now one can run through the Black Box
construction in section 3 of [3], or the proof in [4], without any significant
changes, and obtain an integral domain S sandwiched between P and its
p-adic completion P, where p is some fixed prime number, such that
End(S*) =S8, [yl1=S[y]l and U(S) = {1, —1}. Therefore Aut(S™*)=
= U(S[y]) has order 4 by Proposition 2.1. Thus S is an AA-ring, but not
an A-ring since y ¢ S,. Therefore we have the following:

2.2 THEOREM. There exist arbitrarily large torsion-free integral do-
mains of infinite rank that are AA-rings but not A-rings.

In conclusion, we summarise:

Our Main Theorem shows that {AE-rings} = {E-rings}. Moreover,
{E-rings} S{A-rings} S{AA-rings}. It was shown in [3] that the first in-
clusion is proper and our Theorem 2.2 shows that the second inclusion is
proper. Restricting attention to torsion-free rings of finite rank (tffr) it
was shown in [2] that {tffr E-rings} = {tffr A-rings} C{tffr AA-rings}.
To demonstrate that the last inclusion is proper, just pick any tffr group
N such that End (N) = Z and Hom (N, Z) = {0}. Define NN = {0} and
use this to introduce the natural ring structure on R =Z @ N. It is easy
to verify that R is an AA-ring but not an A-ring.
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