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AE-rings.

MANFRED DUGAS (*) - SHALOM FEIGELSTOCK (**)

ABSTRACT - E-rings are a well known notion in the theory of abelian groups. They
are those rings R such that End (R 1 ), the ring of endomorphisms of the addi-
tive group of R , is as small as possible, i.e. End (R 1 ) 4Rl , where Rl 4
4 ]xOax : a�R(. We generalize the notion of E-rings by calling a ring R an al-
most-E-ring, or AE-ring for short, if End (R 1 ) is a radical extension of Rl ,
i.e. for each W� End (R 1 ) there is some natural number n such that Wn�Rl .
We will show that this notion does not lead to a new class of rings. It turns out
that all AE-rings are actually E-rings. Our proof utilizes Herstein’s Hyper-
center Theorem.

0. Introduction.

The notion of an E-ring was introduced by P. Schultz [13] some 30
years ago and has attracted a lot of attention ever since. We refer to the
survey article [14] for a guide to the literature and a discussion of gener-
alizations of E-rings as proposed by several authors. A question raised in
[1] was only recently answered in [6]: There exist generalized E-rings R ,
i.e. R is not an E-ring, but RBEnd (R 1 ) as rings. The existence of arbi-
trarily large E-rings, c.f. [4], is also of interest in category theory as dis-
cussed in [1], see also [11]. In [14], several new generalizations of the no-
tion of E-rings were proposed. For example, a ring R is called a two-sid-
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ed E-ring, if End (R 1 ) is generated as a ring by Rl NRr , where Rl 4

4 ]x O ax : a�R( is the set of all left multiplications by elements of R ,
and Rr 4 ]x O xa : a�R( is the set of all right multiplications. In [5] tor-
sion-free two-sided E-rings were studied and large two-sided E-rings
that are not E-rings were constructed. Another generalization intro-
duced in [3] is obtained by restricting attention to the automorphisms of
R 1 . A ring R is called an A-ring, if Aut (R 1 ), the group of automor-
phisms of R 1 , is contained in Rl , i.e. Aut (R 1 ) 4U(Rl ) the group of
units of Rl . Large A-rings R were constructed in [3] that are not E-
rings, indeed End (R 1 ) is a commutative polynomial ring in a single
variable over Rl . Moreover, A-rings whose additive groups are torsion-
free of finite rank (tffr) were investigated, but the obvious question
about the existence of tffr A-rings that are not E-rings was left open.
This question was answered in the negative in [2]: All tffr A-rings are in-
deed E-rings. The main tool in the proof was yet another generalization
of E-rings, one that is preserved under quasi-isomorphism. A unital ring
R is called an AA-ring if R is «almost an A-ring» in the sense that
for each a� Aut (R 1 ) there is some natural number n such that
a n �U(Rl ).

In the present paper we define a ring R to be an AE-ring, if
End (R 1 ) is radical over Rl , i.e. for each W� End (R 1 ) there is some
natural number n such that the n-th power of W belongs to Rl , i.e. W n �
�Rl . While all generalizations of E-rings described so far have led to new
classes of rings, it is a little surprising that this one does not. We will
proof the following:

MAIN THEOREM. All AE-rings are E-rings.

We will use some classical commutativity results from ring theory.
Jacobson [9, p. 218] calls a ring R a K-ring if R is radical over Z(R), the
center of R . Kaplansky [10] proved that each semi-simple K-ring is, in-
deed, commutative. In [9, p. 219] it is shown that each K-ring R has a nil
ideal N such that R/N is commutative. Herstein [7] proved that the com-
mutator ideal of any K-ring is a nil ideal. This result was extended by Li-
htman [12] who showed that if the ring R is radical over a commutative
subring A , then Nil (R) 4 ]a�R : a nilpotent( is an ideal of R and
R/Nil (R) is commutative. Given a ring R , Herstein [8] defines the hyper-
center T(R) of R to be the set T(R) 4 ]a�R : ((x�R)()n4n(a , x) �
�N)(ax n 4x n a)(, i.e. the hypercenter consists of all those elements of
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the ring that commute with some power of each element of R . Theorem 2
in [8] states that if R is a ring with no nil ideals, then Z(R) 4T(R), i.e.
center and hypercenter coincide.

1. Proof of the Main Theorem.

1.1 PROPOSITION. Let R be an AE-ring. Then 1 �R .

PROOF. There is an element e�R such that idR 4el , i.e. x4ex for all
x�R and thus e is an idempotent element of R . Now there is some ele-
ment a�R and an integer n such that al 4 (er )n 4 (e n )r 4er and we have
xe4ax for all x�R . This implies e4ee4ae4a 2 and we obtain xe4

4 (xe) e4 (ax) e4a(xe) 4a(ax) 4a 2 x4ex4x for all x�R . This implies
1 4e�R . r

After having established that AE-rings have an identity we will con-
sider AE-rings with decomposable additive groups.

1.2 LEMMA. Let R be an AE-ring such that R 14H5K . Then the
following hold:

(1) R4H5K is a ring direct sum.
(2) H and K are both AE-rings.
(3) Hom (H , K) 40 4Hom (K , H).

PROOF. Let p H be the natural projection of R 1 onto H . Since p H is
an idempotent endomorphism, there is an element eH �R such that p H 4

4 (eH )l and it follows that p H (1) 4eH �H and thus eH 4p H (eH ) 4 (eH )2 is
idempotent. This shows that (eH )r is idempotent and (eH )r 4al for some
a�R . We conclude xeH 4ax for all x�R and eH 4a is in the center of R .
This shows that H4eH R is a subring of R . Define the element eK �K in
the same fashion for K . Then K4eK R and 0 4p H (eK ) 4eH eK and it fol-
lows that HK4 ]0( 4KH . This shows (1).

Let W : HKH be an endomorphism of H . Then W i p H is an endomor-
phism of R with (W i p H )n 4W n

i p H for all n�N . Now there is some a�
�R and n�N such that W n

i p H 4al Since a4al (1) we have a�H and
W n 4 (al )N3H . This shows that H is an AE-ring.

Let W�Hom (H , K) and define c� End (R 1 ) by c4W i p H 1p K .
Then c 2 4 (W i p H ) i (W i p H )1 (W i p H ) i p K 1p K i (W i p H )1 (p K )2 4

40101W i p H 1p K4c is idempotent and thus c4al for some a�R
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and a4c(1) �K . Since, for all h�H we have that ah4c(h) 4W(h) �
�KH4 ]0(. Thus W40. r

1.3 COROLLARY. Let R be an AE-ring and Rp the p-primary torsion
part of R 1 . Moreover, let P4 ]p : Rp c0( and t(R) 45p�P Rp . Then
Rp 4Z(p ep ) for all p�P , ep F1 and R/t(R) is P-divisible, i.e. p-divisible
for all p�P .

PROOF. Rp has to be reduced because of Lemma 1.2 (2). Thus Rp

splits off cyclic summands and Lemma 1.2 (3) implies that Rp is cyclic
and R4Rp 5H (p) with H (p) a p-divisible subgroup because of 1.2 (3).
This implies R/t(R) is P-divisible. r

If R is torsion, then RB5p�P Rp with 1 �R . This shows that P is fi-
nite and we obtain:

1.4 COROLLARY. If R is a torsion AE-ring, then RBZ/nZ for some
n�N , i.e. R is an E-ring.

We will now prove that non-torsion AE-rings are E-rings.
Let R be a ring. Recall that Nil (R) 4 ]a�R : a nilpotent( is the set

of nilpotent elements of the ring R . We let Z(R) denote the center of the
ring R and if R is a subring of a ring E , we define Z(R)*E 4 ]r�E :
()n�N)(nr�Z(R)(. Then Z(R)*E is a pure subring of E . Recall that
T(R) 4 ]x�R : ((a�R)()n�N)(xa n 4a n x)( is the hypercenter of R .

From now on, let R be an AE-ring and P4 ]p�P : Rp c ]0((, where
P is the set of natural primes and Rp is the p-torsion part of R 1 . Let
t(R) 45p�P Rp be the torsion part of R . For shorter notation, let
E4 End (R 1 ). Note that R has a fully invariant ideal H , namely H4

4Op�P (On�N p n R) and R/H is isomorphic to a subring of P p�P Rp , the
Z-adic completion of t(R). Note that R/H is an E-ring, c.f. [13]. Recall
that there is an example in [1, Example 3.24] of a mixed E-ring R such
that H is not a summand of R . We will proceed by steps.

(1.5) The ring E is radical over Z(R)l 4Z(Rl ). Moreover, R is radi-
cal over Z(R).

Let W�E . Then W n 4al �Rl for some natural number n since R is an
AE-ring and ar �E . This implies that there is a natural number m such
that (ar )m 4bl �Rl . This implies xa m 4bx for all x�R , which implies
a m 4b�Z(R). We infer W nm �Z(Rl ).
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(1.6) Nil (E) ’Z(Rl )*E :

Let W�Nil (E). Then there is a least kF1 such that W j�Z(Rl )*E for
all jFk , because W is nilpotent. By (1.5), there is a natural number n

such that (idR 1W k21 )n 4 !
j40

n gn

j
h W (k21) j �Z(Rl ) ’Z(Rl )*E . Assuming

kF2, we have (k21) jFk for jF2 and we infer nW k21 �Z(Rl )*E . Thus
there is some natural number m such that mnW k21 �Z(R)l and W k21 �
�Z(Rl )*E , a contradiction to the choice of k . Thus k41.

(1.7) Let W�E such that W(R) ’ t(R). Then W� (t(R) )l .

We have W : RK t(R) and H is P-divisible and t(R) is P-reduced.
Thus W(H) 4 ]0( and W induces an endomorphism WN3R/H 4 (t1H)l of
the E-ring R/H where t� t(R). Note that W(x)1H4WN3R/H (x1H) 4

4tx1H and therefore W(x)2 tx�HO t(R) 4 ]0(. We conclude W(x) 4 tx
for all x�R and W4 tl � (t(R) )l .

(1.8) Z(Rl )*E ’Rl .

Let c�Z(Rl )*E . Then there is some natural number n such that
nc4rl �Z(Rl ). For s4c(1) �Z(R) we have r4ns and it follows
n(c2sl ) 40, i.e. c2sl : RK t(R). By (1.7), we have c2sl � (t(R) )l

and it follows that c�Rl .

(1.9) t(R) ’Z(R).

This follows from the fact that R/H is commutative and H Q t(R) 4

4 ]0( 4 t(R) QH .

(1.10) Nil (E) is an ideal of E . Moreover, Nil (E) 4 ( Nil (R) )l .

Let W�E and h�Nil (E). By (1.6) we have h�Z(Rl )*E and h�Rl by
(1.8). There is some natural number m such that (Wh)m �Z(Rl ) since E is
radical over Z(Rl ) by (1.5). We claim that for all kF1 we have
(Wh)mk 4 [ (Wh)m21 W]k h k :

If k41, there is nothing to show. Consider (Wh)m(k11)4(Wh)mk (Wh)m4

4 ( [ (Wh)m21 W]k h k )(Wh)m = [(Wh)m21 W]k (Wh)m h k = [(Wh)m21 W]k Q
Q [ (Wh)m21 W] hh k = [(Wh)m21 W]k11 h k11 . Here we used that h�Rl and
(Wh)m �Z(Rl ). We infer Wh�Nil (E) and by symmetry, also hW�Nil (E).
This shows that Nil (E) is an ideal of E .
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(1.11) E/(Nil (R) )l is commutative.

Since E is radical over Z(Rl ), we have that Rl ’T(E). Let N4

4 (Nil (R) )l . Then Rl /N’ (T(E)1N) /N’T(E/N) and 0 is the only nilpo-
tent element of E/N . By [8, Theorem 2] we have T(E/N) 4Z(E/N) *
*Rl /N . Since E is radical over Rl , we have that E/N is radical over
Z(E/N). By [9, Theorem 2 on page 219] we have that E/N is commuta-
tive.

We can now finish our proof for mixed AE-rings: By Corollary 1.4 we
may assume that R is not torsion. Let P be defined as above and assume
PcQ . Let N4 (Nil (R) )l . Then N is an ideal of E4 End (R 1 ) by (1.10)
and E/N is commuatative by (1.11.) Let a�R , W�E . Then War 2ar W4

4bl �N and b4W(a)2W(1)a� Nil (R). This shows that W2 (W(1) )l : RK

K Nil (R). Define K4 ]W�E : W(R) ’N(. We have just seen that E4Rl 1

1K . Let h�K2N . Then h is not nilpotent. On the other hand, there is a
natural number m and b�R such that h m 4bl : RK Nil (R). This shows
that b� Nil (R) and b is nilpotent. Thus h m is nilpotent and so is h , a con-
tradiction. This implies E4Rl and R is an E-ring.

If R is torsion-free, things simplify a little. Now we can work with
Z(R) in place of Z(R)*E (4Z(R) ) and t(R) 4 ]0( 4H . Again, we can run
through the steps (1.5) - (1.11) and it follows that R is an E-ring.

2. Constructing large AA-rings that are not A-rings.

We want to present a brief hint about a construction of large torsion-
free AA-rings that are not A-rings. First, we need a tool to construct
rings with only a few, but non-trivial automorphisms.

2.1 PROPOSITION. Let S be an integral domain such that U(S) 4

4 ]1, 21(. Let g4
C
`
D

0
1

1
0

E
`
F

and define S[g] 4 mC
`
D

a
b

b
a

E
`
F
: a , b�Sn. Then

U(S[g] ) 4 ]1, 21, g , 2g( is a group of order 4.

PROOF. Let QS be the field of quotients of the integral domain S and

m4
C
`
D

a
b

b
a

E
`
F
�S[g]. Then m has an inverse m21over QS if and only if a 2 2

2b 2
c0. Note that m21 4

1

a 2 2b 2

C
`
D

a
2b

2b
a

E
`
F

and m21 �S[g] if and only if
a

a 2 2b 2
, b

a 2 2b 2
�S . Assume m21 �S[g]. Then a

a 2 2b 2
6

b

a 2 2b 2
�S . Using

the factorization a 2 2b 2 4 (a2b)(a1b) we derive 1

a2b
, 1

a1b
�S ,
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which means a2b , a1b�U(S) 4 ]1, 21(. Considering the four possi-
ble cases it turns out that one of the parameters a , b has to be 0 while the
other is equal to 1 or 21. This shows that m� ]1, 21, g , 2g(. r

Let m be a cardinal such that m]0 4m and l4m1 is the successor car-
dinal of m . Let P4Z[xa , e : aEl , e� ]0, 1(] be a commutative polyno-
mial ring with variables xa , e . Define g� Aut (P) be g(xa , e ) 4xa , d such
that ]e , d( 4 ]0, 1(, aEl . Now one can run through the Black Box
construction in section 3 of [3], or the proof in [4], without any significant
changes, and obtain an integral domain S sandwiched between P and its
p-adic completion P×, where p is some fixed prime number, such that
End (S 1 ) 4Sl [g] BS[g] and U(S) 4 ]1, 21(. Therefore Aut (S 1 ) B

BU(S[g] ) has order 4 by Proposition 2.1. Thus S is an AA-ring, but not
an A-ring since g�Sl . Therefore we have the following:

2.2 THEOREM. There exist arbitrarily large torsion-free integral do-
mains of infinite rank that are AA-rings but not A-rings.

In conclusion, we summarise:
Our Main Theorem shows that ]AE-rings( 4 ]E-rings(. Moreover,

]E-rings( %
c

]A-rings( %
c

]AA-rings(. It was shown in [3] that the first in-
clusion is proper and our Theorem 2.2 shows that the second inclusion is
proper. Restricting attention to torsion-free rings of finite rank (tffr) it
was shown in [2] that ]tffr E-rings( 4 ]tffr A-rings( %

c

]tffr AA-rings(.
To demonstrate that the last inclusion is proper, just pick any tffr group
N such that End (N) 4Z and Hom (N , Z) 4 ]0(. Define NN4 ]0( and
use this to introduce the natural ring structure on R4Z5N . It is easy
to verify that R is an AA-ring but not an A-ring.
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