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On Unions of Scrolls Along Linear Spaces.

MARGHERITA BARILE (*) - MARCEL MORALES (**)

Introduction.

According to the classification resulting from the successive contri-
butions by Bertini [2], Del Pezzo [4] and Xambó [9], the equidimensional
varieties of minimal degree which are connected in codimension one are
of three types: quadric hypersurfaces, cones over the Veronese surface
in P 5 and unions of scrolls embedded in linear subspaces. In this paper
we give a complete constructive characterization of the ideals defining
varieties of the latter type, which were presented in [9]. We also show
that for these varieties, equidimensionality and minimal degree imply
connectivity in codimension one, which provides a better understanding
of the results in [9]. Finally we give a complete description of all rulings
of a scroll. Throughout the paper we deal with projective varieties not
contained in any hyperplane.

1. Preliminaries.

Let K be an algebraically closed field, and let T 4 ]T0 , R , Tn ( be a
finite set of variables over K . Let R4K[T] be the corresponding polyno-
mial ring. For a subset S of R , by aSb we shall denote the linear subspace
of R generated by S . If A is a matrix with entries in R , we shall use the
notation aAb for the linear subspace generated by the set of all entries of
A . We recall some basic definitions.

(*) Indirizzo dell’A.: Dipartimento di Matematica, Università degli Studi di
Bari, Via Orabona 4, 70125 Bari, Italy.

(**) Indirizzo dell’A.: Université de Grenoble I, Institut Fourier, Laboratoire
de Mathématiques associé au CNRS, URA 188, B.P.74, 38402 Saint-Martin D’Hè-
res Cedex, and IUFM de Lyon, 5 rue Anselme, 69317 Lyon Cedex, France.
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A simple scroll matrix will be a matrix of the form

gl0

l1

l1

l2

R

R

lm21

lm
h ,

where l0 , R , lm are linearly independent linear elements of R .
A scroll matrix will be a matrix of the form

(b 1Nb 2NRNb s ) ,

where for all i41, R , s , the submatrix b i is a simple scroll matrix
and

ab i bOg!
jc i

ab j bh40 .

A projective variety defined by the vanishing of the 2-minors of a scroll
matrix will be called a scroll.

Let J be a reduced ideal of R having an irredundant prime
decomposition

J4 1
i41

r

Ji .

DEFINITION 1.1. A reducible variety X%Pn is a scroller if Pn con-
tains linear subspaces L1 , R , Lr and there are scrolls Xi ’Li such that

X4 0
i41

r

Xi , and for each k41, R , r we have

Xk O (X1 NRNXk21 ) 4Lk O (L1 NRNLk21) .(*)

Our first aim is to provide an explicit description of the ideal J%R of a
scroller X . This extends our previous result in [1]. By definition J can be

written as J4 1
i41

r

Ji , where Ji is the defining ideal of Xi , for all

i41, R , r . Then

Ji 4 (Mi , Qi ) ,

where

– Qi is a set of linear forms defining Li , and

– Mi is the set of all 2-minors of a scroll matrix Bi consisting
of ci columns: (Mi ) is the defining ideal of the scroll Xi in its space
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of immersion Li . If ci 41, the set Mi is empty. In this case the
ideal Ji is generated by linear forms.

Note that the entries of Bi can be considered as a system of coordi-
nates of Li . In particular

aBi bO aQi b 40 .

Up to replacing R with a polynomial ring S’R we may assume that

1
i41

r

aQi b 40 .

Of course the entries of Bi are defined up to linear combination with the
elements of Qi . Any such modification – which of course leaves the ideal
Ji untouched – will be called an admissible change.

Condition (*) in Definition 1.1 can be re-formulated as follows:

Jk 1 1
i41

k21

Ji 4 (Qk )1 g 1
i41

k21

aQi bh(**)

for all k41, R , r21. In the sequel we shall stick to the notation just
introduced. We are now ready to state our main theorem.

2. The Main Theorem.

THEOREM 2.1. The following two conditions are equivalent:

(I) J is the ideal of a scroller X%Pn .
(II) There exist, for all i41, R , r , two subsets Di , Pi of aQi b such

that

aPi b5 aDi b 4 aQi b ,

and the following axioms are satisfied:

(a) D1 *D2 *R*Dr 4¯ , and aD1 b 4 aQ1 b; and, up to admissible
changes for B1 , R , Br , one has that

(b) Mi ’ (Di21 ) for all i42, R , r , and
(c) Mi ’ (Pj ) for all i41 R , r21 and all j4 i11, R , r .

(d) 1
i41

k21

(Qi ) ’ (Pk , Dk21 ) for all k42, R , r .

We prove this Theorem in several steps. The first auxiliary result
generalizes Prop. 5.1 in [6], and is taken from [1]. We refer to that paper
for the proof.
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LEMMA 2.2. Assume that the axioms (a), (b) and (c) of 2.1 are satis-
fied. Then

1
i41

k

Ji 4 gM1 , R , Mk , 1
i41

k

(Qi )h
for all k41, R r .

PROOF OF 2.1 «(II) ¨ (I)». In view of 2.2, for all k41, R , r21 we
have

Jk1 1
i41

k21

Ji4gM1 , R , Mk21 , Mk , 1
i41

k21

(Qi ), Pk , Dk
h4(Mk , Pk , Dk )1 1

i41

k21

(Qi )

’ (Pk , Dk , Dk21 ) 4 (Pk , Dk21 )

where the equalities follow easily from (a), (b) and (c), and the inclusion
is a consequence of (d). Since by (a)

Dk21 ’ 1
i41

k21

(Qi ) ’ 1
i41

k21

Ji ,

and Pk ’Jk , the above inclusion can be reversed, so that

Jk 1 1
i41

k21

Ji 4 (Pk , Dk21 ) 4 (Qk )1 (Dk21 ) ’ (Qk )1 g 1
i41

k21

aQi bh .

By d) this suffices to conclude that (**) is fulfilled.
Now we turn to the proof of the other implication.

DEFINITION 2.3. Let D1 *D2 *R*Dr be a chain of sets such that for

all i41, R , r , the set Di is a basis of 1
j41

i

aQi b. In particular Dr 4¯ . For

all i42, R , r let D i be a set completing Di to a basis of aDi21 b, and for
all i41, R , r let Pi be a set of linear forms completing Di to a basis of
aQi b. In particular P1 4¯ .

COROLLARY 2.4. For all i42, R , r , aPi bO aDi21 b 40.

PROOF. By Definition 2.3 one has that

aPi bO aDi21 b ’ aQi bOg 1
j41

i21

aQj bh4 1
j41

i

aQj b 4 aDi b ,

but aPi bO aDi b 40. r



On unions of scrolls along linear spaces 165

As a consequence of Corollary 2.4, for all i42, R , r there is a
decomposition

aQi , Di21 b 4 aDi b5 aD i b5 aPi b ,

where Di ND i is a basis of aDi21 b. It follows that

aDi b 4 5
j4 i11

r
aD j b for all i41, R , r21.(1)

Moreover, we can rewrite condition (**) as follows:

Jk 1 1
i41

k21

Ji 4 (Qk , Dk21 ) 4 (Pk , Dk21 ) 4 (Pk , D k , Dk )(**)

REMARK 2.5. Axioms (a) and (d) immediately follow from Definition
2.3 and (**) respectively.

LEMMA 2.6. Assume condition (**) is fulfilled. Then there are ad-
missible changes for B1 , R , Br such that Mi ’ (D i ) for all i42, R , r .
In particular axiom (b) is satisfied.

PROOF. Fix an index i� ]2, R , r(. Condition (**) implies that

Mi ’Ji ’ (Di , D i , Pi ) .(2)

Choose a system of variables T such that Di ND i NPi ’ T. For all entries
x of Bi write x4u1v , where

u4 !
T�DiNPi

a T T and v4 !
T� T 0 (DiNPi )

a T T , (a T �K) .

Replace x by v . This is an admissible change for Bi , because u� aQi b.
After this operation, condition (2) for the modified set Mi implies that
Mi ’ (D i ), because no variable of Di NPi appears in the polynomials be-
longing to Mi . r

Now the sets Di are completely determined. Next we modify the sets
Pi introduced above. To this end we shall again resort to admissible
changes of B1 , R , Br . Simultaneously we shall have to modify the sets
D i (and, consequently, the sets Di) in order to preserve the validity of
the claim of Lemma 2.6. These modifications will also be called admissi-
ble changes.

LEMMA 2.7. Assume (I) is true. For all i41, R , r we can choose
Pi in such a way that after suitable admissible changes for B1 , R , Br

and D 2 , R , D r , Mi ’ (Pj ) for all i41, R , r21 and all j4

4 i11, R , r .
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PROOF. We define Pi and the subsets D i for i42, R , r by recursion.
We proceed by induction on k41, R , r21 showing that there are sub-
sets P1 , R , Pk and admissible changes for B1 , R , Bk and D 2 , R , D k

such that the claim is fulfilled for iGk21 and iE jGk . At the k-th step
we assume that this is true, and choose Pk11 in such a way that the claim
is true for i4k and j4k11. To this end we shall perform admissible
changes on B1 , R , Bk and D 2 , R , D k , and also suitable modifications on
P1 , R , Pk , so that the claim will finally be true for iGk and iEjGk11.

Let Pk11 be as required in 2.3. In view of Corollary 2.4, there is a sys-
tem of variables T such that Pk11 NDk ’ T. Let i� ]2, R , k( and x�Pi .
Write x4u1v , where

u4 !
T�Dk

a T T and v4 !
T� T 0 Dk

a T T , (a T �K).

Replace x by v in Pi . Perform this substitution for all x�Pi and all en-
tries x of Bi , for i41, R , k . Since Dk ’Di ’ (Qi ), these substitutions are
admissible changes and respect the definition of Pi . By Lemma 2.6, Mi ’
’ (Di21 ) ’ (Dj ) ’Jj for all j41, R , i21, and this condition is preserved
by the changes, since (Dk ) ’ (Di21 ). Similarly, it remains true that Mi ’
’ (Pj ) ’Jj , for all j4 i11, R , k , so that, in view of (**):

Mi ’ 1
j41

k

Jj ’ (Pk11 , Dk ) .

But by construction the elements of Mi do not contain any variable from
Dk . Hence Mi’(Pk11 ). Furthermore, by Lemma 2.6, for all i41, R , k21,
it holds that Mk ’ (Dk21 ) ’ (Di ). Moreover Mk ’Jk . By virtue of (**) it fol-
lows that

Mk ’ 1
j41

k

Jj ’ (Pk11 , Dk ) ,

which implies that Mk ’ (Pk11 ), since the elements of Mk do not contain
any variable of the subset Dk . This proves the claim for iGk and
j4k11. r

Theorem 2.1 is completely proven now: the required subsets Di and
Pi are those fulfilling the claim of Lemma 2.7.

Next we prove that every equidimensional scroller of minimal degree
is connected in codimension 1. Recall that, according to the definition
given by Hartshorne [8], J is connected in codimension 1 if – up to rear-
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ranging the indices – for all k41, R , r it holds:

codim gJk 1 1
i41

k21

Ji
h4 codim Jk 11 .

LEMMA 2.8. If M is the set of maximal minors of a scroll matrix
with cF2 columns, and L1 , R , Ln are n linear forms such that M’
’ (L1 , R , Ln ), then nFc .

PROOF. If M% (L1 , R , Ln ), then V(L1 , R , Ln ) %V(M), where V(M)
is the variety defined by M . But codim V(M) 4c21, and
codim V(L1 , R , Ln ) 4n . It follows that nFc21. In fact, since V(M) is
irreducible and V(M) cV(L1 , R , Ln ), we must have nDc21, so that
nFc . r

This lemma also follows from the results we will give in Section 4.
The following result is quoted from Eisenbud-Goto ([5], Th. 4.2 and

4.3):

THEOREM 2.9 (Del Pezzo-Bertini-Xambó). Let J be a reduced ideal
of R . Suppose it is connected in codimension 1, and it has pure dimen-
sion d . Let X be the variety of Pn defined by J . Let deg J denote the de-
gree of J . If deg JG codim J11, then J is Cohen-Macaulay, and
either:

(1) X is a quadric hypersurface; R/J4K[T0 , R , Tn ] /(Q), for some
quadratic polynomial Q;

(2) X is a cone over the Veronese surface in P 5 ; R/J is isomorphic to
a polynomial ring over K[T00 , T01 , T02 , T11 , T12 , T22 ] modulo the ideal
of 2-minors of the generic symmetric matrix:

.
`
´

T00

T01

T02

T01

T11

T12

T02

T12

T22

ˆ
`
˜

,

or

(3) Pn contains linear subspaces L1 , R , Lr and there are d-dimen-

sional scrolls Xi ’Li such that X4 0
i41

r

Xi , and for each k41, R , r we
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have

Xk O (X1 NRNXk21 ) 4Lk O (L1 NRNLk21) ,(*)

which is a linear subspace of dimension d21.

We refer to the paper of Xambó [9] for a proof.
The next result shows that the hypothesis of connectivity in codimen-

sion 1 in the above characterization is not restrictive for varieties of type
(3). In fact we have:

COROLLARY 2.10. A scroller X%Pn of pure dimension and mini-
mal degree is connected in codimension 1.

PROOF. Let d be the pure dimension of X , and let J4 1
i41

r

Ji be its
defining ideal. Then, for all i41, R r ,

n2d4 codim Ji 4NPiN1NDiN1ci 21 ,(3)

and, in particular,

n2d4 codim J1 4NQ1N1c1 21 ,(4)

for all i41, R , r . It is well known that the degree of the cylinder over
a scroll is equal to the number of its columns (see [7]). Hence for all
i41, R , r one has that

deg Ji 4ci ,

and

deg J4 !
i41

r

deg Ji 4 !
i41

r

ci .(5)

Now, by Lemma 2.6 and Lemma 2.8, ND iNFci for all i42, R , r . Hence,
by (4), and in view of Definition 2.3,

n2d11 4NQ1N1c1 4 !
i42

r

ND iN1c1 F !
i41

r

ci .

This, together with (5) and minimality of degree, yields

ND iN4ci

for all i42, R , r . Finally, by (**), and (3)

codim gJk1 1
i41

k21

Ji
h4NPkN1NDkN1ND kN4n2d112ck1ck4n2d11 ,

which proves connectivity in codimension 1. r
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EXAMPLE 2.11. Let

B1 4 ga

b

b

c
h , B2 4 gd

e

e

g
h , B3 4 gh

i

i

j

j

k
h .

Then

J1 4 (ac2b 2 , d , e , h , i , j , k)

J2 4 (dg2e 2 , b , c , h , i , j , k)

J3 4 (hj2 i 2 , hk2 ij , ik2 j 2 , a , b , d , e)

are linear scrolls associated to B1 , B2 and B3 respectively, where

P2 4 (b , c)

P3 4 (a , b , d , e)

D1 4 (d , e , h , i , j , k)

D2 4 (h , i , j , k)

It is easy to verify that part (II) of Theorem 2.1 is fulfilled. Hence
ideal

J4J1 OJ2 OJ3 4

4 (be , ce , eh , ei , ej , ek , bd , cd , dh , di , dj , dk , bh , bi , bj , bk , ah , ai ,

aj , ak , b 2 2ac , e 2 2dg , i 2 2hj , ij2hk , j 2 2 ik)

defines a scroller X%P 10 . Note that J1 and J2 are of degree 2 and codi-
mension 7, J3 is of degree 3 and codimension 6, so that J is of degree 3
and codimension 6.

In the next Section we will show that the ideals of all scrollers are
generated by elements of degree 2.

3. A constructive method.

Our next aim is to give an explicit constructive method for the defin-
ing ideals of scrollers. This will be a generalization of the one described
in our previous paper [1], to which we refer for a proof of the next auxil-
iary result.

LEMMA 3.1. Assume (I) is true. For all i41, R , r , a set Pi fulfill-
ing Definition 2.3 can be chosen in such a way that after suitable ad-
missible changes for B1 , R , Br and D 2 , R , D r preserving the state-
ment of Lemma 2.6, the following properties are satisfied.
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(i) For all j42, R , r let

Pj 3D j 4 ]pdNp�Pj , d�D j (.

Set G1 4¯ , and

Gi 4 0
j41

i

Pj 3D j

for all j42, R , r . Then Gi ’ (Pi11 ) for all i41, R , r21

(ii) For all i41, R , r21 there is an index l(i11), 1 G l(i11) G i ,
such that

aPi11 b * aP i11 b1 aPl(i11) b5 aD l(i11)11 b5R5 aD i b,

where P i11 is a subset of aQi11 b for which Ml(i11) ’ (P i11 ).

We are now ready for the required characterization: we show that,
given scroll matrices B1 , R , Br , whenever the sets D i , Di , Pi and Qi are
chosen so as to fulfil Definition 2.3, Lemma 2.6 and Lemma 3.1 (ii), then
the resulting ideal J defines a scroller. By virtue of Theorem 2.1 and Re-
mark 2.5, there remains to prove that (d) and (e) are satisfied. But this
can be easily settled by induction on i , as we have done in [1].

The next result, together with Lemma 2.2, yields an explicit descrip-
tion of the generators of ideal J .

PROPOSITION 3.2. For all k42, Rr11 one has that Gk21 ’ (Pk ).
Moreover it holds

1
i41

k21

(Qi ) 4 (Gk21 , Dk21 ).

As in [1], we conclude that

COROLLARY 3.3. For all i41, R , r let Ji 4 (Mi , Qi ). Let J4J1 O
OROJr . Then

J4 (M1 , R , Mr , Gr ).

In particular the ideal J is generated by elements of degree 2.

Finally we give a constructive method for the defining ideal of any
scroller, which is a generalization of Theorem 3.1 in [1]. We fix the num-
ber r of scroll matrices, with c1 , R , cr columns respectively; then we
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construct, for all i41, R , r , the scroll matrix Bi and the set of linear
forms Qi fulfilling the required conditions. As a consequence of Lemma
2.8, for all indices iF2, the sets D i and P i must be chosen in such a way
that ND iNFci and NP iNFcl(i21) , whenever ci F2 and cl(i21) F2 respect-
ively. Otherwise D i and P i are subject to no restriction and may even be
empty. In either case, the sets will be called suitable.

THEOREM 3.4. Let R4K[T0 , R , Tn ] be a polynomial ring over the
field K . Let r , c1 , R , cr be positive integers. Let D 1 , D 2 , R , D r be suit-
able independent sets of linear forms of R . Set

Di 4D i11 NRND r ,

for all i41, R , r21, and let Dr 4¯ . Then set P1 4¯ , and P2 4D 1 . Ap-
ply the following recursive construction.

1. Let i43, P 1 4D 1 .
2. Choose an index l4 l(i), 1 G lG i21. If l4 l( j) and aP j b c aD l b,

for some jE i , then goto 5.
3. Choose a suitable set P i of independent linear forms such

that

aP i bO (aPl b5 aD l11 b5R5 aD r b) 40.(x)

If aP i b 4 aD l b or cl 41, then goto 6.
4. Choose a scroll matrix Bl with cl columns such that the set Ml of

its 2-minors is contained in (D l ) and (P i ), and D l , P i ’ aBl b. Goto 6.
5. Choose a suitable set P i of cl independent linear forms such that

Ml ’ (P i ), and (x) is true.
6. Set

Pi 4Pl NP i ND l11 NRND i21 .

If iEr , replace i with i11 and goto 2.
7. For all i41, R , r , if ic l( j) for all indices j , choose Bi to be a

scroll matrix with ci columns such that the set Mi of its minors is con-
tained in (D i ), D i ’ aBi b, and aBi bO aPi , Di b 40. End.

Then axioms (a), (c), (d), (e), (f) of Theorem 2.1 are satisfied.

REMARK 3.5. Note that the above recursive construction is always
possible. The only step that really has to be justified is 4. But one
easily sees that it is possible to find a scroll matrix Bl such that
aD l b and aP l b (which are supposed to be distinct) are generated
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by the set of entries of the first and the second row of Bl respectively.
And in step 5 one can always choose P i 4D l .

The ideal constructed according to Theorem 3.4 is equidimensional
and of minimal degree iff, for all i41, R , r , ND iN4NP iN4ci . It fol-
lows that every scroller can be obtained from a minimal variety by
adding linear forms to some of the sets D i and P i , with the only restric-
tion that linear independence be preserved, and/or by eliminating linear
forms corresponding to one-column matrices.

EXAMPLE 3.6. In K[a , R , q] we consider the ideal

J4J1 OROJ5 ,

where Ji 4 (Mi , Qi ), and

– M2 4M5 4¯ and M1 , M3 , M4 are the sets of 2-minors of the scroll
matrices B1 , B3 , B4 given below;

– for all i41, R , 5 the set Qi is constructed as follows.

B1 B2 B3 B4 B5

a
b

c d
d e

h i
i j

k
l

m
a1j

Q1 f n h i m a1j o l1b

D 2 D 3 D 4 D 5

Q2 a1b c1d d1e h i m a1j o l1b

P 2 D 3 D 4 D 5

Q3 a1b c1d d1e g m a1j o l1b

P2 P 3 D 4 D 5

Q4 c d e p1kq1n f n h i l1b

P 4 D 2 D 3 D 5

Q5 a1b c1d d1e g i j m a1j o

P3 P 5 D 4

Eliminating the linear forms in boldface we get a minimal variety.
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Another scroller can be obtained by choosing P 3 to be the empty set.

4. More on rulings.

In this section we give a complete characterization of the set of linear
subspaces of a scroll. In [7] it is proven that a d-dimensional scroll X�Pn

is a ruled variety: if B is the associated scroll matrix, then X is the union
of all (n2d)-planes (rulings) defined by the annulation of a non trivial
linear combination of the row vectors of B . Our Corollary 4.2 is a
stronger version of this result.

LEMMA 4.1. Let B be a scroll matrix with cD1 columns. Let M be
the set of its 2-minors. Let Q be a set of independent linear forms such
that M’ (Q). Let L1 , L2 be the row vectors of B . Then one of the following
cases occurs:

(1) There is (l , m) �K 2 0](0 , 0 )( such that alL1 1mL2 b ’ aQb,

(2) B contains an isolated column b× such that ab×bO aQb 40, and for
every other small block b of B either

(i) abb ’ aQb, or

(ii) b is an isolated column and ab1ab×b ’ aQb for some a�K .

PROOF. We first prove the claim in the case where B is a simple
scroll matrix, say

B4 gl0

l1

l1

l2

R

R

lc21

lc
h .

Let T be a set of variables such that T *Q . For all i40, R , c write
li 4 li81 li9 , where

li84 !
T�Q

a T T and li94 !
T� T 0 Q

a T T (a T �K).

Let

B 4 gl09

l 91

l 91

l 92

R

R

l 9c21

lc9
h

be the image of B in the polynomial ring R 4K[T] /(Q). All 2-minors of B
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are zero in R. First assume that l1940. Then

0 4
N
N
N

l19

l29

l29

l39

N
N
N

4 l19 l392 l29
2 4 l29

2 ,

so that l29
2 40. Suppose that l09c0. Let i� ]3, R , c(. One has that

0 4
N
N
N

l09

l 91

li219

l19

N
N
N

4 l09 li92 l19 li219 4 l09 li9 ,

so that li940. It follows that L2 4 (l18 , l28 , R , lc8 ), whence aL2 b ’ aQb.
Now suppose that l0940. We prove that li940 for all i43, R , c21. Fix
such an index i and assume that li219 40. We have that

0 4
N
N
N

li219

li9

li9

li119

N
N
N

4 li219 li119 2 li9
2 42li9

2 ,

so that li940. Hence L1 4 (l08 , l18 , R , lc218 ), so that aL1 b ’ aQb. Now as-
sume that l19c0. We prove that for all i40, R , c there is a i �K0]0(

such that li94a i l19 . The claim is obviously fulfilled for i41 with a 1 41.
We proceed by induction on i40, R , c . First note that

0 4
N
N
N

l09

l19

l19

l29

N
N
N

4 l09 l292 l19
2 .

Since R is a UFD, and the elements li9 are all linear forms, it follows that
l094a 0 l19 and l294a 2 l19 for some a 0 , a 2 �K0]0(. Hence the claim is true
for i40, 1 , 2 . Now let i� ]3, R , c( and suppose that li229 4a i22 l19 ,
li219 4a i21 l19 for some a i22 , a i21 �K0]0(. It holds

0 4
N
N
N

li229

li219

li219

li9

N
N
N

4 li229 li92 li2192 4a i22 l19 li92a i21
2 l19

2 .

Hence

li94
a i21

2

a i22

l19 .

This completes the induction.
We have just proven that

B 4 ga 0 l 91

a 1 l19

a 1 l 91

a 2 l19

R

R

a c21 l19

a c l19
h .
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Since all minors of B are zero in R, its rows are proportional: there is l�
�K0]0( such that a i 4la i11 for all i40, R , c21. Therefore L1 2

2lL2 4 (l082ll18 , R , lc218 2llc8 ), whose entries all belong to aQb. This
completes the proof of the claim in the case where B is simple: in this
case (1) holds.

Now suppose that B consists of more than one small block. Let

b
A

4 uLA1

LA2

v
be a small block of B . If b

A is not an isolated column and MA is the set of its
minors, then

MA ’M’ (Q) ,

so that by the first part of the proof there is (lA, mA) �K 2 0](0 , 0 )( for
which

al
A LA1 1mA LA2 b ’ aQb.

Let B 84 (b 1 NRNb s ) be the submatrix of B formed by all small blocks
for which (1) holds. Then B 84B if B has no isolated column. We show
that the claim is true for B 8 . For all i41, R , s let L1

(i) , L2
(i) be the row

vectors of b i . For all i41R , s let (l (i) , m (i) ) �K 2 0](0 , 0 )( be such
that

al (i) L1
(i) 1m (i) L2

(i) b ’ aQb.

Suppose for a contradiction that (1) is not true for B 8 . Then one can easi-
ly prove that there are two indices i , j , 1 G jE iGs such that there is an
entry x of l (i) L1

( j) 1m (i) L2
( j) and an entry y of l ( j) L1

(i) 1m ( j) L2
(i) such that

x , y� aQb. This implies that

N
N
N

l (i)

l ( j)

m (i)

m ( j)

N
N
N

c0 .

Therefore there is an invertible row transformation mapping B into the
matrix

BA 4 gl (i) L1 1m (i) L2

l ( j) L1 1m ( j) L2

h .

In particular the ideals of the 2-minors of B and BA coincide. Consider the
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following minor of BA:

m4
N
N
N

x

x 8

y 8

y

N
N
N

4xy2x 8 y 8 .

Then m� (M) ’ (Q). Since x 8 is an entry of l ( j) L1
( j) 1m ( j) L2

( j) , it follows
that x 8� aQb. But then xy� (Q). Since (Q) is a prime ideal and x , y� (Q),
this provides the required contradiction.

Now suppose that there is a small block b× such that (1) is not true.
Then it is an isolated column

b× 4 gl0

l1
h ,

and ab×bO aQb 40. We fix another small block of B:

b4 gl2

l3

l3

l4

R

R

lm21

lm
h .

By the first part of the proof, if b is not an isolated column, up to invert-
ing the rows of B we may assume that li 1nli11 � aQb for all i4

42, R , m21, and for some n�K0]0(. For all i40, R , m let li8 and li9

have the same meaning as above.
In R it holds

N
N
N

l09

l19

lm219

lm9

N
N
N

4 l09 lm9 2 l19 lm219 40 .

First we show that l09 and l19 cannot be proportional. Suppose that ll091

1ml1940 for some (l , m) �K 2 0](0 , 0 )(. Then

ll0 1ml1 4l(l081 l09 )1m(l181 l19 ) 4ll081ml18� aQb ,

against our assumption on b×. Since R is a UFD, it follows that one of the
following cases occurs.

(1) lm9 4 lm219 40. We show that in this case abb ’ aQb. We have that
lm , lm21 � aQb. If b is an isolated column, there is nothing left to prove.
Otherwise li 1nli11 � aQb for all i42, R , m21. By finite descending
induction one concludes that li � aQb for i42, R , m21. Hence case
(2)(i) holds.
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(2) There is a�K0]0( such that lm219 1al0940 and lm9 1al1940.
Then

lm21 1al0 4 lm218 1 lm219 1a(l081 l09 ) 4 lm218 1al08� aQb,

and, similarly,

lm 1al1 4 lm8 1al18� aQb.

We prove that in this case b is an isolated column. Suppose this were not
the case. Then lm21 1nlm � aQb, for some n�K0]0(. But then

l0 1nl1 4 l081nl181 l091nl194 l081nl182a21 (lm219 1nlm9 ) � aQb,

against our assumption on b×. In this case (2)(ii) holds. r

Note that the number of isolated columns of B is equal to the number
of linear components of X . Hence the previous result has the following
immediate consequence:

COROLLARY 4.2. If X does not contain any d-plane, then for every
linear subspace V contained in X there is a ruling W’X containing V .

The next claim describes all (n2d)-planes contained in a scroll X . It
follows easily from 4.1 and 4.2.

COROLLARY 4.3. Let B be a scroll matrix with cD1 columns. Let M
be the set of its 2-minors. Let Q be a set of linear forms such that M’
’ (Q). If NQN4c , then either

(i) aQb is generated by the entries of a non trivial linear combina-
tion of the row vectors of B , or

(ii) B4 (b 1 NB), where b 1 is an isolated column, and aBb 4 aQb, or

(iii) B4 (b 1 Nb 2 ), where b 1 and b 2 are isolated columns and aQb is
generated by the entries of a non trivial linear combination of b 1 and b 2 .

PROOF. If B has no isolated columns, by 4.1, case (i) holds. If B con-
sists of two isolated columns, then there is nothing to prove. Suppose
B4 (b 1 NB), where b 1 is an isolated column such that ab 1 bO aQb 40,
and B is not an isolated column. We show that B contains no isolated col-
umn g such that agbO aQb 40: then, by 4.1, case (ii) is fulfilled. Suppose
for a contradiction that g 2 , R , g s are the isolated columns of B such that
ab 1 1a i g i b ’ aQb for suitable a i �K0]0(, for all i41, R , s . It follows
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that aQb contains 2s linearly independent forms; in addition, by 4.1, aQb
contains at least c2s linearly independent entries from the remaining
c2s21 columns, but 2s1c2sDc , against our assumption.
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