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On Unions of Scrolls Along Linear Spaces.

MARGHERITA BARILE (*) - MARCEL MORALES (**)

Introduction.

According to the classification resulting from the successive contri-
butions by Bertini [2], Del Pezzo [4] and Xambé [9], the equidimensional
varieties of minimal degree which are connected in codimension one are
of three types: quadric hypersurfaces, cones over the Veronese surface
in P® and unions of scrolls embedded in linear subspaces. In this paper
we give a complete constructive characterization of the ideals defining
varieties of the latter type, which were presented in [9]. We also show
that for these varieties, equidimensionality and minimal degree imply
connectivity in codimension one, which provides a better understanding
of the results in [9]. Finally we give a complete description of all rulings
of a scroll. Throughout the paper we deal with projective varieties not
contained in any hyperplane.

1. Preliminaries.

Let K be an algebraically closed field, and let T'= {7y, ..., T),} be a
finite set of variables over K. Let R = K[T] be the corresponding polyno-
mial ring. For a subset S of R, by (S) we shall denote the linear subspace
of R generated by S. If A is a matrix with entries in R, we shall use the
notation (A) for the linear subspace generated by the set of all entries of
A. We recall some basic definitions.

(*) Indirizzo dell’A.: Dipartimento di Matematica, Universita degli Studi di
Bari, Via Orabona 4, 70125 Bari, Italy.
(**) Indirizzo dell’A.: Université de Grenoble I, Institut Fourier, Laboratoire
de Mathématiques associé au CNRS, URA 188, B.P.74, 38402 Saint-Martin D’He-
res Cedex, and IUFM de Lyon, 5 rue Anselme, 69317 Lyon Cedex, France.
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A simple scroll matrix will be a matrix of the form

lO ll ce lm -1
Loy . 1, )
where [, ..., l,, are linearly independent linear elements of R.
A scroll matria will be a matrix of the form
(ﬂ1|ﬂ2||ﬁs)7
where for all ¢ =1,..., s, the submatrix §; is a simple scroll matrix

and
B (Z6)=0.

A projective variety defined by the vanishing of the 2-minors of a scroll
matrix will be called a scroll.

Let J be a reduced ideal of R having an irredundant prime
decomposition

DEFINITION 1.1. A reducible variety Xc P" is a scroller if P" con-
tains 1inear subspaces Ly, ..., L, and there are scrolls X;c L; such that

X= _UlXi, and for each k=1, ..., » we have

(%) X,N(XU..UX, )=L,NT,U...UL,_,).

Our first aim is to provide an explicit description of the ideal Jc R of a
scroller X. This extends our previous result in [1]. By definition J can be
written as J = irlei, where J; is the defining ideal of X;, for all
i1=1,..., 7. Then

Ji= (M, Q)
where

— @; is a set of linear forms defining L;, and

— M; is the set of all 2-minors of a scroll matrix B; consisting
of ¢; columns: (M;) is the defining ideal of the scroll X; in its space
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of immersion L;. If ¢;=1, the set M, is empty. In this case the
ideal J; is generated by linear forms.

Note that the entries of B; can be considered as a system of coordi-
nates of L;. In particular

(B))N(Q;)=0.

Up to replacing R with a polynomial ring SCR we may assume that

iDI<Qi> =0.

Of course the entries of B; are defined up to linear combination with the
elements of @;. Any such modification — which of course leaves the ideal
J; untouched — will be called an admissible change.

Condition (x) in Definition 1.1 can be re-formulated as follows:

ko1 k-1
(%) Jr+ iglJi =(Qr) + (in1<Qi>)

for all k=1,..., r—1. In the sequel we shall stick to the notation just
introduced. We are now ready to state our main theorem.

2. The Main Theorem.

THEOREM 2.1. The following two conditions are equivalent:

(D) J s the ideal of a scroller Xc P".
(II) There exist, for all i=1, ..., r, two subsets D;, P; of {(Q;) such
that
(Pi)®(D;) =(Qi),
and the following axioms are satisfied:
(@ Dy2Dy2...2D,. =0, and (Dy)={(Q,); and, up to admissible
changes for By, ..., B,, one has that
(b) M;c(D;_;) forall i=2,...,7r, and
(© M;c(P;) forall i=1...,vr—1and all j=1+1,..., 7.
k-1

(d) r—]l(Ql) c (Pk7 Dk*l) fO?" all k= 27 e T
We prove this Theorem in several steps. The first auxiliary result

generalizes Prop. 5.1 in [6], and is taken from [1]. We refer to that paper
for the proof.
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LEMMA 2.2. Assume that the axioms (a), (b) and (c) of 2.1 are satis-
fied. Then

k
Ji = M17 cery Mk7 iDI(Qi))

II.Dw

=1

forall k=1, ...7r.

Proor oF 2.1 «(II)=(I)». In view of 2.2, for all k=1,...,r—1 we
have

k-1

k-1 k-1 -
Jk+iDIJi: My, ..., My_1, My, iDI(Qi)’ Py, Dk) = (M, Py, Dk)'f'iDl(Qi)

c(Py, Dy, Dy,_1) = (Py, Dy —1)

where the equalities follow easily from (a), (b) and (c), and the inclusion
is a consequence of (d). Since by (a)
k-1 k-1
Dy _C .Ol(Qi,)Q ,OlJm
and P, cJ, the above inclusion can be reversed, so that

k-1

k-1
Ji+ iDIJi = (P, Di—1) = Q) + (D 1) C(Qp) + (igl<Qi>)-

By d) this suffices to conclude that (xx) is fulfilled.
Now we turn to the proof of the other implication.

DEFINITION 2.3. Let D,2D;2...2D, be a chain of sets such that for
allt=1,..., r, the set D, is a basis of ﬂl(Qi). In particular D, = 9. For
=

alli=2,..., rlet 4, be a set completing D; to a basis of (D;_;), and for
all i=1,...,r let P; be a set of linear forms completing D; to a basis of
(Q;). In particular P; = 0.

COROLLARY 24. Forall i=2,...,7, (P;)N{D;_1)=0.
Proor. By Definition 2.3 one has that

Py D@ (@) - Ne@)= o,
but (PN (D) =0. m
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As a consequence of Corollary 2.4, for all ¢ =2,...,r there is a
decomposition

(Qis Di—1) = (D) ®{4;)®(P;),
where D; U 4, is a basis of (D;_;). It follows that

) (Di>=_€bl<Ai> for all i=1,...,r—1.
j=1+ :

Moreover, we can rewrite condition (xx) as follows:

k-1
(%) Ji+ iDIJiz (Qis Di.—1) = (Py, Dy—1) = (Py, Ay, Dy)

REMARK 2.5. Axioms (a) and (d) immediately follow from Definition
2.3 and (=x) respectively.

LEMMA 2.6. Assume condition (sx) is fulfilled. Then there are ad-
missible changes for B, ..., B, such that M;c(4;) forall 1 =2,..., r.
In particular axiom (b) is satisfied.

Proor. Fix an index ie {2, ..., r}. Condition (s+) implies that
@) M;cJ;c(D;, A4;, P;).
Choose a system of variables T such that D; U 4; U P,c T. For all entries
x of B; write ¥ =u + v, where
w= > apT and v= X  oa;T, (arekK).

TeD;UP; TeT\(D;UP;)
Replace x by v. This is an admissible change for B;, because u € (Q;).
After this operation, condition (2) for the modified set M, implies that
M;c (A4;), because no variable of D; U P; appears in the polynomials be-
longing to M;. =

Now the sets D; are completely determined. Next we modify the sets
P; introduced above. To this end we shall again resort to admissible
changes of B, ..., B,. Simultaneously we shall have to modify the sets
A, (and, consequently, the sets D;) in order to preserve the validity of
the claim of Lemma 2.6. These modifications will also be called admissi-
ble changes.

LEMMA 2.7. Assume (I) is true. For all 1=1, ..., r we can choose
P; in such a way that after suitable admissible changes for By, ..., B,
and Ay, ..., A4,, M;c(P;) for all t=1,...,r—=1 and all j=
=14+1,...,7r.
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Proor. We define P; and the subsets A4, for i =2, ..., » by recursion.
We proceed by induction on k=1, ..., » — 1 showing that there are sub-
sets Py, ..., P, and admissible changes for By, ..., B, and 4., ..., 4,
such that the claim is fulfilled for i <k — 1 and 7 <j < k. At the k-th step
we assume that this is true, and choose P} , ; in such a way that the claim
is true for 7=k and j =k + 1. To this end we shall perform admissible
changes on By, ..., Byand 4,, ..., 4, and also suitable modifications on
Py, ..., P, so that the claim will finally be true for 1<k and 1 <j<k+1.

Let P, ., be as required in 2.3. In view of Corollary 2.4, there is a sys-
tem of variables 7' such that P, , UD,cT. Letie {2,...,k} and x e P;.
Write © = u + v, where

u= > apT and v= 2 a,T, (arekK).
TeDy TeT\D;
Replace « by v in P;. Perform this substitution for all x € P; and all en-
tries « of B;, for 1 =1, ..., k. Since D, c D;c (Q;), these substitutions are
admissible changes and respect the definition of P;. By Lemma 2.6, M, c
cD;_)cD;)cd;forallj=1,...,7—1, and this condition is preserved
by the changes, since (D)) ¢ (D;_;). Similarly, it remains true that M;c
c(Pjcd;, for all j=1+1,..., k, so that, in view of (x*):

k
M;c nleQ(PkH, D).
=

But by construction the elements of M, do not contain any variable from
D,.. Hence M, c (P;.;1). Furthermore, by Lemma 2.6, for all1=1, ..., k—1,
it holds that M, c (D, _,) c (D;). Moreover M, c J;.. By virtue of (x#) it fol-
lows that

k
ngjDIJjg(le—l’ Dy),

which implies that M, c (P ), since the elements of M, do not contain
any variable of the subset D,. This proves the claim for ¢ <k and
Jj=k+1. =

Theorem 2.1 is completely proven now: the required subsets D; and
P; are those fulfilling the claim of Lemma 2.7.

Next we prove that every equidimensional scroller of minimal degree
is connected in codimension 1. Recall that, according to the definition
given by Hartshorne [8], J is connected in codimension 1 if — up to rear-
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ranging the indices — for all k=1, ..., » it holds:

k-1

codim (Jk + ﬂlJi) =codim J;, + 1.

LEMMA 2.8. If M is the set of maximal minors of a scroll matrix
with ¢ =2 columns, and L., ..., L, are n linear forms such that M C
cq, ..., L,), then n=c.

Proor. If Mc (L4, ..., L,), then V(L4, ..., L,) c V(M), where V(M)
is the variety defined by M. But codim V(M)=c—-1, and
codim V(L,, ..., L,) = n. It follows that n = ¢ — 1. In fact, since V(M) is
irreducible and V(M) = V(L,, ..., L,), we must have n>c —1, so that
n=c. 0

This lemma also follows from the results we will give in Section 4.
The following result is quoted from Eisenbud-Goto ([5], Th. 4.2 and
4.3):

THEOREM 2.9 (Del Pezzo-Bertini-Xamboé). Let J be a reduced ideal
of R. Suppose it is connected in codimension 1, and it has pure dimen-
ston d. Let X be the variety of P" defined by J. Let deg J denote the de-
gree of J. If degd < codimJ +1, then J is Cohen-Macaulay, and
either:

(1) X is a quadric hypersurface; R/J = K[ T, ..., T,1/(Q), for some
quadratic polynomial Q;

(2) X is a cone over the Veronese surface in P°; R/J is isomorphic to
a polynomial ring over K[Ty, To1, Toe, T11, Th2, To2] modulo the ideal
of 2-minors of the generic symmetric matrix:

TOl Tll TlZ
Ty T Tw)

{Too Ty Toz}

or
(3) P" contains linear subspaces Ly, ..., L, and there are d-dimen-
r

stonal scrolls X;cL; such that X = 'UlXi, and for each k=1, ..., r we
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have
(*) ka(XIU...UXk_l):Lkﬂ(LIU...ULk_l),
which is a linear subspace of dimension d —1.
We refer to the paper of Xambé [9] for a proof.
The next result shows that the hypothesis of connectivity in codimen-

sion 1 in the above characterization is not restrictive for varieties of type
3). In fact we have:

COROLLARY 2.10. A scroller Xc P" of pure dimension and mini-
mal degree is connected in codimension 1.

Proor. Let d be the pure dimension of X, and let J = ﬂ J; be its
defining ideal. Then, for all 1 =1,

3) n—d=cod1mJi=|Pi|+|Di|+ci—l,
and, in particular,
4) n—d=codimJ; = Q| +¢;—1,

for all i=1, ..., ». It is well known that the degree of the cylinder over
a scroll is equal to the number of its columns (see [7]). Hence for all
1=1,..., r one has that

deg J; = c;,
and
5) degJ= 2, degJ;= >, c;.
i=1 i=1
Now, by Lemma 2.6 and Lemma 2.8, |4;| =¢; forallt=2, ..., r. Hence,

by (4), and in view of Definition 2.3,

r

n—d+1=|Q| +c = |A|+cl P

This, together with (5) and mlnlmahty of degree, yields
4| =c¢
for all 1 =2, ..., r. Finally, by (x*), and (3)
k-1

codim (Jk+ ,r_lei)= |Pe| + | Di| + |4k =n—d+1—c+e=n—d+1,

which proves connectivity in codimension 1. =



On unions of scrolls along linear spaces 169

ExampLE 2.11. Let
a b d e h 1 J
Bl = 5 Bz = 5 Bg = . . .
b ¢ e g
Then

Ji=(ac—b%d,e, h,i,j,k)
Jo=(dg—e? b,c,h,i,7,k)
Jy= (hj —i% hk—1j, ik —j%, a,b, d, e)
are linear scrolls associated to B;, B, and B; respectively, where
D,=(d,e, h,i,7,k)
Py = (b, c) Dy=(h,1,7, k)
P;=(a,b,d,e)

It is easy to verify that part (II) of Theorem 2.1 is fulfilled. Hence
ideal

J:Jlszmng
= (be, ce, eh, et, ¢j, ¢k, bd, cd, dh, di, dj, dk, bh, bi, bj, bk, ah, at,

aj, ak, b®—ac, e?—dg, i® — hj, ij — hk, j* — ik)

defines a scroller Xc P'°. Note that J; and J, are of degree 2 and codi-
mension 7, J; is of degree 3 and codimension 6, so that J is of degree 3
and codimension 6.

In the next Section we will show that the ideals of all scrollers are
generated by elements of degree 2.

3. A constructive method.

Our next aim is to give an explicit constructive method for the defin-
ing ideals of scrollers. This will be a generalization of the one described
in our previous paper [1], to which we refer for a proof of the next auxil-
iary result.

Lemma 3.1. Assume (1) is true. For all 1 =1, ..., r, a set P; fulfill-
g Definition 2.3 can be chosen in such a way that after suitable ad-
missible changes for By, ..., B, and A,, ..., A, preserving the state-
ment of Lemma 2.6, the following properties are satisfied.
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G Forall j=2,...,7 let
Pjx4;={pd|peP;, ded;}.
Set Gy =0, and

Gizjl:JleXAj

forall j=2,...,r. Then G;c(P;,1) forall t1=1,...,r—1

(i) Foralli=1,...,r—1thereis an tndex (1 +1),1 <1+ 1) <71,
such that

(Piv1)2{ 1) + (P 1))@ (A yi+1)+1)D ... B(4,),
where I1; .1 is a subset of (Q; 1) for which M. 1)C(I1;1).

We are now ready for the required characterization: we show that,
given scroll matrices By, ..., B,, whenever the sets 4, D;, P; and Q; are
chosen so as to fulfil Definition 2.3, Lemma 2.6 and Lemma 3.1 (ii), then
the resulting ideal J defines a scroller. By virtue of Theorem 2.1 and Re-
mark 2.5, there remains to prove that (d) and (e) are satisfied. But this
can be easily settled by induction on %, as we have done in [1].

The next result, together with Lemma 2.2, yields an explicit descrip-
tion of the generators of ideal J.

ProposITION 3.2. For all k=2, ...r+1 one has that G,,_,C (P).
Moreover it holds
k-1
fD1(Qi) = (Gr-1, Di-1).
As in [1], we conclude that

COROLLARY 3.3. For all i=1,...,r let J;=(M;, Q;). Let J=J;N
N...NdJ,. Then
J = (Mly AR M’w G’V‘)'
In particular the ideal J is generated by elements of degree 2.
Finally we give a constructive method for the defining ideal of any

scroller, which is a generalization of Theorem 3.1 in [1]. We fix the num-
ber r of scroll matrices, with c,, ..., ¢, columns respectively; then we
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construct, for all ¢ =1, ..., », the scroll matrix B; and the set of linear
forms Q; fulfilling the required conditions. As a consequence of Lemma
2.8, for all indices ¢ = 2, the sets 4; and I1; must be chosen in such a way
that |4;| =c; and |II;| = ¢ ;—1), Whenever ¢; = 2 and ¢y;_ 1) = 2 respect-
ively. Otherwise A ; and I1; are subject to no restriction and may even be
empty. In either case, the sets will be called suitable.

THEOREM 3.4. Let R=K[T,, ..., T,] be a polynomial ring over the
field K. Let v, ¢y, ..., c, be positive integers. Let A, A, ..., A, be suit-
able independent sets of linear forms of R. Set

Di:Ai+1U~~~UAT5

foralli=1,...,r—1,and let D,=0. Then set P, =0, and Py = A,. Ap-
ply the following recursive construction.

1. Let i=3, I1,=A4,.

2. Choose an index 1 =1(1), 1 <l<i—1.Ifl=1U(j) and (II;) = {(4,),
for some j <1, then goto 5.

3. Choose a suitable set I1; of independent linear forms such
that

*) ()N (PYD(A,,)®...D(4,) =0.

If (I1;) ={4;) or ¢;=1, then goto 6.

4. Choose a scroll matrixz B, with c¢; colummns such that the set M, of
its 2-minors is contained in (4;) and (I1;), and A, I1;c(B,). Goto 6.

5. Choose a suitable set I1; of ¢, independent linear forms such that
M,c (I1;), and (*) is true.

6. Set

P'i:PlUHiUAl+1U"'UA171'

If 1 <, replace © with 1+ 1 and goto 2.

7. Forall i=1,...,7r,if 1 21(J) for all indices j, choose B; to be a
scroll matria with c; columns such that the set M; of its minors is con-
tained in (4;), A;c(B;), and (B;) N {P;, D;) =0. End.

Then axioms (a), (c), (d), (e), (f) of Theorem 2.1 are satisfied.

REMARK 3.5. Note that the above recursive construction is always
possible. The only step that really has to be justified is 4. But one
easily sees that it is possible to find a scroll matrix B; such that
(4,) and (I1;) (which are supposed to be distinct) are generated
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by the set of entries of the first and the second row of B; respectively.
And in step 5 one can always choose I1;=4;.

The ideal constructed according to Theorem 3.4 is equidimensional
and of minimal degree iff, for all ¢=1,..., v, |4;| = |II;| =c¢;. It fol-
lows that every scroller can be obtained from a minimal variety by
adding linear forms to some of the sets A4, and IT;, with the only restric-
tion that linear independence be preserved, and/or by eliminating linear
forms corresponding to one-column matrices.

ExampPLE 3.6. In Kla,..., q] we consider the ideal
J:Jlﬂ ﬁJ5,
where J; = (M;, Q;), and

- My=M;5=0 and M,, M5, M, are the sets of 2-minors of the scroll
matrices B;, By, By given below;

— for all =1, ..., 5 the set Q; is constructed as follows.
B, B, | B; B, Bs

a c d k m

b d e 5] 1 a+j
@ fn|h 1| m a+jo | l+D
Ay | A4ds Ay As
Q| a+b c+d d+e h 1| m a+jo | l+b
m, A Ay As
Q; | a+b c+d d+e g m a+jo | l+b
P, I, Ay As
Q| ¢ d eptkg+n| fn | h 1 l+b
11, Ay | 4ds As

Qs | a+bd c+d d+e g i | m a+jo

Py I Ay

Eliminating the linear forms in boldface we get a minimal variety.
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Another scroller can be obtained by choosing I7; to be the empty set.

4. More on rulings.

In this section we give a complete characterization of the set of linear
subspaces of a scroll. In [7] it is proven that a d-dimensional scroll X e P”
is a ruled variety: if B is the associated scroll matrix, then X is the union
of all (n — d)-planes (rulings) defined by the annulation of a non trivial
linear combination of the row vectors of B. Our Corollary 4.2 is a
stronger version of this result.

LEMMA 4.1. Let B be a scroll matrix with ¢ > 1 columns. Let M be
the set of its 2-minors. Let Q be a set of independent linear forms such
that M c (Q). Let Ly, Ly be the row vectors of B. Then one of the following
cases 0CCurs:

(1) There is (A, u) e K*\{(0, 0)} such that (AL; + uLy) C(Q),

() B contains an isolated column B such that (B) N (Q) = 0, and for
every other small block 8 of B either

@ (Byc(Q), or

(i) B is an isolated column and (B + ap)c(Q) for some aeK.

Proor. We first prove the claim in the case where B is a simple
seroll matrix, say

Let T be a set of variables such that 72Q. For all ¢ =0, ..., ¢ write
l; =1 +1, where

li’: 2 aTT and li”: 2 aTT (aTeK).
TeQ TeT\Q

Let

”n n ”
N A

V7 T R 1
be the image of B in the polynomial ring B = K[T1/(Q). All 2-minors of B
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are zero in R. First assume that [/ =0. Then
ol
Iy I3
so that 3% = 0. Suppose that Ij #0. Let ie {3, ..., ¢}. One has that
WU
nw oy

so that I/ =0. It follows that L,=(l/, s, ..., 1)), whence (L,)C{Q).
Now suppose that [j = 0. We prove that [’ =0foralli=3,..., ¢ — 1. Fix
such an index ¢ and assume that [/_; = 0. We have that

_ —Jnqn n2 _ jn2
0= =0l -L"=05"

__qmqn nyn  _gnjn
_l(]li _ll i*l_loli7

" "
i—1 lz

_Inm ” n2 __ n2
=Ll = 17 = =1,

" "
li i+1

so that [/ =0. Hence L, = (Ij, l{, ..., I/ 1), so that (L;)c{(Q). Now as-
sume that [ # 0. We prove that for all i =0, ..., ¢ there is a;e K\ {0}
such that I = a;l{'. The claim is obviously fulfilled for 7 =1 with a; =1.
We proceed by induction on ¢ =0, ..., c. First note that

" ”
ly U

lu lzn
1

0= =1y — 12

Since R is a UFD, and the elements I/ are all linear forms, it follows that
ly = aol{ and ly = a,l{ for some a,, a,e K\{0}. Hence the claim is true
for 1=0,1,2. Now let ie {3,..., ¢} and suppose that I/ = a; »lf,
1 =a;_1l{ for some a; 5, a; ;e K\{0}. It holds

n n
_ i—2 i—1 ] ” n2 nin 2 n2
0—‘ " R il = U = oy S — a7
i1l
Hence
2
17 = ai—ll,,
i = 1.
ai_2

This completes the induction.
We have just proven that

”n ”n ”
B = agli  ailf a. 1l

”

aly asly ... ad
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Since all minors of B are zero in R, its rows are proportional: there is 1 e
e K\{0} such that a;=4a;,, for all i=0,..., c—1. Therefore L; —
— ALy =(ly = Al{, ..., I/ —Al}), whose entries all belong to (). This
completes the proof of the claim in the case where B is simple: in this
case (1) holds.

Now suppose that B consists of more than one small block. Let

-

be a small block of B. If f is not an isolated column and M is the set of its
minors, then

McMc @),

so that by the first part of the proof there is (4, it) e K2 \{(0, 0)} for
which

(AL, + L) c(Q).

Let B'=(B4]|...|Bs) be the submatrix of B formed by all small blocks
for which (1) holds. Then B’ = B if B has no isolated column. We show
that the claim is true for B'. For all i =1, ..., s let L{?, L{” be the row
vectors of B;. For all i=1...,s let (A7, u”?)eK2\{(0,0)} be such
that

<l(i)L1(i) +‘u(i)L2(i)>g <Q>

Suppose for a contradiction that (1) is not true for B'. Then one can easi-
ly prove that there are two indices 7, j, 1 <j <14 < s such that there is an
entry x of 2 L{" + " L{" and an entry y of 1Y L{¥ + 4’ L{” such that
x, ¥ & (Q). This implies that

1@ ‘u(i)

) 1 =0.
Y2 #(ﬁ

Therefore there is an invertible row transformation mapping B into the
matrix

= (ﬂ.“)Ll +,u<i>L2)
APLy 4+ uD Ly )

In particular the ideals of the 2-minors of B and B coincide. Consider the
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following minor of B:

x ’ ’
m= =xy—a'y’'.

’

X

Then m e (M) ¢ (Q). Since x' is an entry of AV L{" + u @ L7 it follows
that x' € (@). But then xy e (Q). Since (Q) is a prime ideal and «, y ¢ (Q),
this provides the required contradiction.
Now suppose that there is a small block § such that (1) is not true.
Then it is an isolated column
= |l
¢ (zl) ’

and (B) N (Q) =0. We fix another small block of B:

ﬁ:(l2 L. lml).
[ P

By the first part of the proof, if 5 is not an isolated column, up to invert-
ing the rows of B we may assume that [;+vl;,,e(Q) for all i=
=2,...,m—1,and for someve K\{0}. Foralli=0, ..., mletl/ and [/
have the same meaning as above.

In R it holds

” ”
lO m—1

_qngn nin _
1 1 _lolm_ll m—l_O'
1 m

First we show that [; and [’ cannot be proportional. Suppose that Al +
+ul{ =0 for some (4, u) e K*\{(0, 0)}. Then

Mg+ ply = g +1g) + ul) +17) = Ay + uli (Q),

against our assumption on . Since R is a UFD, it follows that one of the
following cases occurs.

) iy, =1,_1=0. We show that in this case (8)c(Q). We have that
by UL —1€{(Q). If B is an isolated column, there is nothing left to prove.
Otherwise [; + vl;, ;€ (Q) for all 1 =2, ..., m —1. By finite descending
induction one concludes that [;e{(Q) for i=2,..., m —1. Hence case
(2)(1) holds.
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(2) There is ae K\{0} such that I, +alf =0 and [, + al’ =0.
Then

by-1taly=1l, 1+, 1+ally +1)=1,_1+al €(Q),
and, similarly,
by +aly =1, + al{ €e{(Q).

We prove that in this case f is an isolated column. Suppose this were not
the case. Then [, +vl,, € (Q), for some ve K\{0}. But then

Lo+ vl =1g +vl{ +1§ +vl =1 +vl{ —a (1) _,+vi)) e(Q),
against our assumption on ,B In this case (2)(ii) holds. =

Note that the number of isolated columns of B is equal to the number
of linear components of X. Hence the previous result has the following
immediate consequence:

COROLLARY 4.2. If X does not contain any d-plane, then for every
linear subspace V contained in X there is a ruling Wc X containing V.

The next claim describes all (n — d)-planes contained in a scroll X. It
follows easily from 4.1 and 4.2.

COROLLARY 4.3. Let B be a scroll matrix with ¢ > 1 columns. Let M
be the set of its 2-minors. Let Q be a set of linear forms such that M
c(@). If |Q| =c, then either

() (Q) is generated by the entries of a non trivial linear combina-
tion of the row wvectors of B, or

(i) B=(B,|B), where B, is an isolated column, and (B) =(Q), or

(i) B = (B1|B2), where B, and B are isolated columns and (Q) is
generated by the entries of a non trivial linear combination of 1 and f35.

Proor. If B has no isolated columns, by 4.1, case (i) holds. If B con-
sists of two isolated columns, then there is nothing to prove. Suppose
B=(B,|B), where 8, is an isolated column such that (8,)N(Q) =0,
and B is not an isolated column. We show that B contains no isolated col-
umn y such that (y) N (@) = 0: then, by 4.1, case (ii) is fulfilled. Suppose
for a contradiction that v, ..., y, are the isolated columns of B such that
(B1+a;y;)c(Q) for suitable a;e K\{0}, for all i =1, ..., s. It follows
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that (@) contains 2s linearly independent forms; in addition, by 4.1, (@)
contains at least ¢ — s linearly independent entries from the remaining
¢ — s —1 columns, but 2s + ¢ — s > ¢, against our assumption.
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