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Multiple Solutions of a Nonlinear Elliptic
Equation Involving Neumann Conditions
and a Critical Sobolev Exponent.

J. CHABROWSKI (¥) - JIANFU YANG (¥%)

ABSTRACT - In this paper we prove the existence of two solutions of the nonhomo-
geneous Neumann problem (1.1) involving a critical Sobolev exponent. It is
assumed that the coefficient @ is positive and smooth on £ and 1 > 0 is a par-
ameter which does not belong to the spectrum of —A. We examine the com-
mon effect of the mean curvature of the boundary 92 and the shape of the
graph of the coefficient @ on the existence of a second solution.

1. Introduction.

In this paper, we study the existence of multiple solutions of
the superlinear problem

—Au  =lu+Q@)u? '+flx) in

(1.1 3
—u(x)=0 on 09,
ov

where 2*=%, N =3 is the critical Sobolev exponent, 1 =0 is

a parameter and QcRY is a bounded domain with a smooth boundary
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0Q2. We assume that the coefficient @ is smooth and positive on

Q and fe L"(R) with »> N. We use the notation %, = max (u, 0).
This problem belongs to a class of problems referred to as the Ambro-

setti-Prodi type. More precisely, in the case of the Dirichlet problem

{ —Au=gu)+f(x) in Q,

u =0 on 9Q
the limits
s s
g_ = lim & and g, = lim &
§—> — 0 s s§s— o s

play an important role. We can basically distinguish three types of pro-
blems using the location of g and g, with respect to the spectrum of the
operator —A with the Dirichlet boundary conditions. Denoting by {1}
the sequence of the eigenvalues of —A with the Dirichlet boundary con-
ditions, the following types of problems have been considered:

D) —o<g <ij<g, <+,

(II) g_ and g, are both finite and the interval (¢_, g, ) contains
an eigenvalue. In this case the problem is asymptotically linear,

(III) g_ lies between two consecutive eigenvalues and g, = + oo.

We refer to the paper [12] where the extensive bibliography concer-
ning these problems can be found. We point out here that conditions (I)
and (IIT) cover the cases of subecritical, critical and supercritical growth
for g. In the case of the Neumann problem the literature is rather scar-
ce. In this paper we consider the nonlinear Neumann problem of type
(ITT) with the nonlinearity of one-sided critical growth. We follow some
ideas from [12], which considered a similar problem with the Dirichlet
boundary conditions. First we consider the case 4> 0. The case A1 =0
will be treated separately.

Problem (1.1) may have constant solutions in contrast to the Dirichlet
problem. We now discuss a number of conditions guaranteeing that a po-
sitive solution of (1.1) is not constant. If for some A >0 and a constant
¢ >0, the functions @ and f satisfy the equation

() e+ Q) e 1+ flw) =0

for every x e Q, then u = c is a solution of (1.1). If fand Q are differentia-
ble on some open subset of 2 then the following condition

(a) Vf(x) is not parallel to VQ(x) for some * € Q
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ensures that a positive solution of (1.1) is not constant. If f and @ are not
differentiable we can proceed as follows. Integrating the equation ()
we get

(+ #) Je| Q| +¢* 7 [Q@) da + [ fw) da =0,
Q Q

where || denotes the Lebesgue measure of . From (=) and (* *)
we derive the equation

c2*-1(Q(x) 12| - jQ(x) dx) + (f(x) Q| - jf(x) dx) =0.
o Q

We immediately obtain a contradiction if

(b) either Q(x) =const and f(x) # const, or Q(x) # const and
f(x) = const.

If both functions Q(x) and f(x) are not constant we define a set
1
Qo= lw; —JQ(%) de = Qx) !,
2] ;

which is nonempty. Then a positive solution cannot be constant if
(c) either f(x)= ﬁ [fx)de for all xeQ—Q, or flx)=
Q
= f?'ff(x) dx for some xe Q,.
Q

Finally, if (¢) does not hold we require
(d) the ratio

f@)| 2| —fo(x) dx
QfQ(ac) de — Q(x) | 2|

is either not constant on Q — Q, or it is constant and nonpositive on
Q2 -9Q,.

Therefore one of these conditions will be assumed throughout this
work.

We assume that f(x) =t + h(x), where ¢ is a constant and ke L"(£)
with » > N. We start by finding a negative solution of (1.1). We denote by
A1=0<A1,<... the sequence of eigenvalues for —A4 with the Neumann
boundary conditions. The first eigenvalue is simple and has constant
eigenfunctions.
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Let A=A, for every k. Then there exists a unique solution u,e
eH'(Q)NL~*(Q) of the problem

—Au =Au+ h(x) in Q,

)
0 on sQ.
v
The function u, = —% +uy, With ¢ >4 sup |ug(x) | is negative and sati-
Q

sfies (1.1). We look for a second solution of the form % = v + u,, where v
satisfies

—Av =+ Q) v+u)x ' in Q,

1.2) o
i =0 on 0Q.
v

Problem (1.2) will be solved through the min-max based on a topological
linking. To this end, we define a variational functional

J(v) = %J (|V0]% - v?) da — %Qj Q(x)(w + uy)% dw

for ve H'(2). In the next section we examine Palais-Smale sequences
for J. In particular, we find the energy level of the functional J below
which the Palais-Smale condition holds. In Section 3 we verify that the
functional J has the geometry of a topological linking. Conditions gua-
ranteeing the existence of critical points of J will be given in Sections 4
and 5. The existence results of this section depend on a relation between
Q= max Q(x) and Q) = maxQ(x) Section 6 is devoted to the case 1 = 0.

The emstence of a crltlcal p01nt in this case is obtained through the im-
plicit function theorem. The distinction of two cases involving the quanti-
ties @y and @,, envisaged in Section 4 disappears in the case 1 =0.

2. The Palais-Smale condition.

We need two quantities:

Qn=max Q(x) and @y = max Q(x).
redR re
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We set
SN/2 SN/2

S. = min
® N-2)2" N-2)2 |’
NQZ& ) 2NQ7(,L )

where S denotes the best Sobolev constant, that is,

AY
nf R

S = i .
ueD 2R {0} ([ |ula) |* da)??”
RY

Here D'2(RY) denotes a Sobolev space obtained as the completion of
Cy° (RY) with respect to the norm

ol zvy = [ V|2 dv.
RY

In what follows, ||| denotes the norm in H'(R), which is given by

[l = J(|Vu|2 +u?) de.
Q
In this paper we frequently use the Sobolev inequality:

2/2*
( J|u|2*dx) SCSJ(|V’LL|2+1/L2) du
Q

Q
for all we H'(R), where C, >0 is a constant.
PRrROPOSITION 2.1. Let 1, <A<A,4q. If
Ju,)—>c<8S,. and J'(u,)—0 in H YRQ)

then {w,} is relatively compact in H LQ).

ProoF. We commence by showing that {u,,} is bounded in H'(Q).
We write

Up =, +u,, U, €€~ and u, eE™,
where

E ~ =span of all eigenfunctions corresponding to A, ..., 1y,
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and £+ = (E )*. If e HY(Q), then

@.1) j Vu, Vo da — ) j Uy, P it = f Q) (u, + u)% ' dx + e, [l
Q Q Q

with ¢, —0. Taking ¢ =u,", we get

[1v0 12 = 2 [ = [ @, +w)Z ~ s de + e |
Q Q Q

Let 6 >0 be such that A + 0 <A,.;. Then

A+0
2.2) (1— ) J|Vu,f |20lach(SJ(un+ 2dx <
Ak ] ; E

< Q@)+ w1 do e .
Q
We now use (2.1) with ¢ =u,, andlet 6; >0 be such that 1 — 6, > 1,.
Then

A—0,
A

2.3) ( —1) f|v%,;|2dx+alf(u,;)2dxs
Q Q

<- f Q) + )y e+ e |
Q

On the other hand for n = n,, we can write

1
C +€/’7/||u7[/|| + 1 ZJ(uﬂz) - E(J’(un)’ u'ﬂ/>
1 2% _ 1 1 2%
-2 J A f Q) + u,)2 dac
Q (o]
1 % 1 % _
-~ f Qo)+ ) o= j Q) at, + eV, dit
Q Q

1 "
> ng Q) + )2 d.

Applying the Young inequality, we deduce from (2.2) and the above
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estimate that for » >0 we have

A+9

k+1

2.4) (1 - ) J'|Vun+ |2dac+5j(un*)2dac$
Q Q

< fQ(ac)(un +u)’ S de+ e llu, | <
Q

2(2% —1)/2*

2/2%
o dx) +C, UQ(%)(uﬁut)T dW) da+ e, |, |

<7 (J Q) |u,’

< .08 ol I+ fon -t

(N +2)/N
) venlr |

< C, Qi nllw, P + Culluw, [I[¥ 2 + Co || + C

for some constants C; >0, C, >0 and C;>0. In a similar way, we
obtain

A =0,

k

(2.5) ( —1) J|Vu7{|2dx+6lj(un’)2de
o

< C, Qi nllw [P+ Cyllla, |22 + [ + 1)

for some constant C; > 0. Estimates (2.4) and (2.5) imply that {u,} is
bounded in H1(£). We may therefore assume that u, —u in H'(R). By
the concentration-compactness principle there exist sequences of points
{x;} cRY, sequences of numbers {v;} and {u;} such that

a5l + S0,
and
(Vo ||V + S 0,
J

in the sense of measures, where

SVJZ/Z* < lLt] if ./,UJ e
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and

2/2+
Sv;

Fix ;. Let {¢,} be a family of smooth and positive functions concen-
trating at x; as 6 —0. Then using the Brézis-Lieb Lemma, we ob-
tain

f|Vun|2¢adac+ JVunuanbadachifu,?qbadx
Qo o

Q
= [ Q) + )% L, s dar+ o(1)
Q

= [Q@)(u, +u) ¢ o de = [ Q) + ) Mty pydar+ 0(1)
Q Q

< | Q@) |, +uy | s dow— fQ(ac)(u,,,l + )% "y sdac+o(1)
Q o

= [Q@) |, |* ¢ s~ [Q@)|u|* ¢ odr + [ Q) -+ 2y ¥ o
Q Q Q

- fQ(%)(un + )% "ty o doe + o(1).
Q

Letting n— % and then 6 —0 we deduce that in both cases x; € 92 and
vje L2,

If u;> 0 for some wx;, then

S N/2 SN/Z

J

- N-2)/2
Q(Wj)
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We now write
J 1 J’
(un) - E( (un)’ un>
1 2 2 1 2
= ﬁ f(lvu7z| _/lun) dw — ? fQ(x)(un + ut)+ da
Q Q
1 2% —1
+ ? jQ(x)(un +u)% U, +0(1)
Q
1 2 2 1 2% — 1
= [V = 20 do = o [ Qo+ w Hadiz + o1)
Q Q
1 2 2
> f(|Vun| — qu2) da + o(1).
N
Q
Since % is a solution of (1.1) we also have
f(|Vu|2 —u?) de = fQ(ac)(u +u,)% tude =
Q o
= JQ(%)(u +u)% lu,de=0.
Q

We aim to show that u; = 0 for every j. If not, the concentration-com-
pactness principle implies that

1 1 1
cZ—J Vu|? — Au?) de + — = .
NQ(I | ) N]Zu; N;#]

If u;>0 for some j with x;e 9%, then

1 s 1 s
=

¢c= oN Q)N D2 T 2N QIN-2E”

This is obviously impossible. Similarly if ;>0 for some j with x;e Q.
Thus

[ Q@) + ) dw— [ Qo) + ) da
Q Q
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and also

[ 1Vu, |2 de— [ |Vu|*de
Q Q

and the result follows. =

3. Topological linking.
We assume that e (4, 4,.). Let
E~ =spaney, ..., ¢},

where ¢, ..., ¢ are eigenfunctions corresponding to 14, ..., 4,. We set
E*t=(FE")*. Let

S,=0B,NE"* and D=[0,Re]®(B,NE"), eck”,

where B, denotes the ball of radius » with centre at 0. To apply a topolo-
gical linking we need to verify that

J|392a>0, o0<R,

Jlsp<a and magJ(u)<Sm.

LeEmMA 3.1. There exist 04> 0 and a:(0, 0ol — (0, ) such that

J(u) = ap) for every wveS,.

Proor. We choose 7 >0 so that 1, <A1 +#n<A1,,;. Then

j |Vu|2d9c>lk+1fu2doc
Q Q

for every we E " . Since u, <0 on £, we have
Yy t

A+n

2%/2
Ju)= J(l— ) |Vu|2dm+nfu2dx—08_2*/2QM(ﬂf(|Vu|2+u2) dac)
o o

k+1

>ﬂf(|m|2+u2) dx—C;Z*/zQMU(WuFmZ) dx)m,
Q
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where

ﬂ=min(1— l+77,77).

k1
Letting o = |ju|| we obtain the following estimate
J(u) = fo* - C; ¥ 7 Qy 0"
To complete the proof we set
ale) = po* = C; ¥ Quo”,
with 0> 0 such that 0% — C,22Qy0%3 >0. =

From now on, we use the instanton

CNS(N_ 2)/2

U() = ———=—5>
(€2+ |%‘|2)N 2/2

in the definition of the set D, where cy >0 is a constant and we set
e, =P " U,. It is well-known that U = U, satisfies the equation

—AU=U*"1 in RN
and moreover
[ IVUPde= [ U* do =5V,
RV RN

With the choice of e = e, we verify the remaining conditions of the to-
pological linking. Without loss of generality we may assume in Lemma
3.2 below that 0 € Q.

LEMMA 3.2. There exist vy>0, Ry>0 and &,>0 such that for
r=ry, R=Ryand 0 <e<e, we have

J(u) <a for every uedD.

Proor. We set

8D=F1UF2UF3,
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where
F1=§TQE7,
F2={veH1(9); v=w+se, wek, |lw|=r, 0<s<R}
I's={veH(Q); v=w+ Re,, weE~ NB,}.
For ve E~ we have
[1Vo|2de< iy [v?de
Q Q
and
1 A 9 1 o
Jo<=[1- 2% f|w| dx——jQ(x)(v+ut) de < 0.
2 Ak 2%
Q Q
We now consider I',. Let veI's and define

d%= sup f|Ves|2dac.

<
0<e lg

Let 72 = ||[Vuw|? and choose 7, >0 so that A, <A —#;. Then for v=w +

+ se, we have

1 A
J(v) < > J|Vv|2dx— Ejvzdx

- J|Vw| dx——szdx+—j|Ve |2 da

2
) J|V %Juﬁdm—l— %J|V68|2dﬁﬁ.
Q Q

, —%) < 0. We then have

2
J) Snyr?+ %I|V68|2dac.
Q

We set sg = \/i—a . Then J(v) < a for 0 < s <s,. We now consider the
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case s >s,. Put

w+u,

Cso<s<R, [l =r, WEE‘}.

K= sup{H
S

[

We now estimate P~ U,. Let
P-U.= 3 aje, ;= [U.eiw) de.
J= o

Since the first eigenfunction corresponding to A =0 is constant, we see
that P~ U,#0. Hence

l l 2
||P7 lje”2 = 2 a]Z_ = z ( nge]dac)
j=1 j=1 Py

l
< 3 ol IU. k<o
J=

Therefore

P*U.(0)=U(0)-P " UA(0)
>Ce o P U, = e
By the continuity of P * U, there exists a d = 6(K) such that
Bs(0)c{xeQ; P U.(x) > K}.

We also need the following inequality: if wc Q2 and v +v>0 on w,
then

“(u+v)”dw—[ |ul?de— [ o] de| <C[(ju]?~ o] + [u] [o]") da,

where C = C(p). We apply this estimate with w = Q,, where

Q.={xeQ; P"U.(x)>K}.
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Letting Q. = mig Q(x) we get

w+ U z w+ uy \2
JQ(m)( t+e£) deQ*J(eg+ t) da
s + ° S +
W Uy |
(J|e|2dac+J‘ —L | ¥dw
peo1| WU w1,

—CJ( T e,
(j|e |2dx+H W

ixz*ill(gf) + ”es ”Ll(Qg)) .

e

21.(
dac)

N-2 N_z
IP*UIF> i <Ce™®  and |PTU|<Ce 2

we deduce from the previous estimate that

_Cl(”es

Since

52 s R
J(U) s’?ﬂ”z + ?SN/Z _ ?Q*SNQ"' CSZ E(N 2)/2
=012+ D (5).
It is easy to check that

1/ SN2 12
D (s) < 5(—Q*SN/2 ) +0(e ™V -27)
Increasing 7, if necessary, we get
Jw) <0 for vels.

If ve s, then

1. 2 R?
J(w) = —(1— —) J’|Vw|2dx+ —f|Ve£|2dx
2\ Il 2

Rz* + o
- f(ef T ) de.
2% g ‘ R/,

Let K>0 be such that [w+ u;|,~ <K. Then there exists an 4> 0
(small enough) such that P *¢,(0) > 2K for every 0 < ¢ < ¢,. Then for
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every 0 <e<g, we can find Ry= Ry(e) and n =#(e) >0 such that

w+ e,

{xe.Q; e+ >1H217

for R=R,. Hence J(v) <0 for vel; for e<ecyand R=R,. =

2/(N —2)

4, Case Q) <2 Q.-

Let H(y) denote the mean curvature of the boundary o€ at y € 992.
Throughout this section we assume that:

(A) the coefficient @ satisfies the following conditions:

QM < 22/(N -2 Qm’

and |Q(x) — Q(y) | = o(|x — y|) for some y € Q2 with Q(y) = Q,,, H(y) >
>0 and « close to ¥.

N/2
Obviously in this case we have S, = W
ProprosITION 4.1. Let N =5 and suppose that (A) holds. Then
SN/2
(4.1) 131635( J(’U) < W .

Proor. Without loss of generality we may assume that y =0. Let
veD. Then v=w + se, and

1 2
J(w + se,) = 3 J(|Vw|2—lw2) dx + SE J(|Veg|2—lef) dx
o Q

1 £
T JQ(%‘)(w + se, + u, )% d.
Q

For 0 <s < s, with s, sufficiently small, we have

N/2

2
$ 2
J(w+S€£)S?J'|Ve€|deW
o m

If s = sy, then repeating the estimates from Lemma 3.2 we get

2 2%
T(w + se,) < % f(|V68|2—lef) o — 82— J’Q(x) 02 di + Cs W -2
Q Q
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for some constant C > 0. Hence

1 J(Ve,|* = 2e?) da)™®
J(w + se,) < — £

O(E(N72)/2).
N (!_!Q(x) |es |2* dx)(N—Z)/Z

Since
[1P* U ¥ du= [UZ do+ 0"
Q Q
and
[1VP* U2 de = [ |VU.|*dw + OV,
Q Q
we obtain

1 JUVU |2 =AU?) dae)™*
Jw + se,) < — £

+0(eN-22),
N ([Q@) UZ da)™ 2"
Q

We need the following asymptotic formulas (see [17])

K
J|VU£|2dx= 5 1)+ o),
Q

K
JUS dar = ?2 — () + o(e),

where K, = [ |VU|*dx, K= [ U dx, S=K /K" ?", I(e) = O(e) and
RN R’\/
II(¢) = O(e). Moreover, we have (see (3.17) in [17])
I N-2 K
4.2) im ﬁ >0 =72
=0 [1(¢) N K

By assumption (A) we have

— Qm KZ

fQ(ac) U dx +o(e).
o
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Thus

(% —Ie) + 0(6))N/2

4.3) J(w + se,) < +0(eWN-212y

1
N (QTK ) Q, + o(e))ww

According to (4.2) we can find an £,>0 and a ¢ >0 such that

N —

4.4) I(e) > 2 %H(s) +o

2
for 0 <e<eg,. It then folllows from (4.3) and (4.4) that

J(w+se )< ((ﬁ)N/Z_ E(ﬁ)(N—Z)/Z

5 5 I(e) + o(e))

—(N-2)/2 — —N/2
X((%KZQYH) + N2 ZQmH(E)(%KZQm) +0(8))

S N/2
< -
2NQ7(nN —-2)/2

for some constant C > 0 and the result follows. =

_CQ

We are now in a position to formulate the following result

THEOREM 4.2. Suppose that the assumptions of Proposition 4.1
hold. Then problem (4.1) has at least two solutions.

5. Case @, =2¥V-2Q),..

N2
If Q,=2M-2Q then S, = # We assume that
(5.1) 1Q@) — Q)| = o(|@ —y|?)

for some y e Q with Q(y) = Q) and x close to y.
Assuming that y =0, we have

j |VU, |2de = K; + O(eN~2),

Q

[ Q@) UZ de = K, Qu + o(e?)
Q



18 J. Chabrowski - Jianfu Yang

and

fodﬂc =, e?
Q

for some constant ¢; > 0 independent of ¢. As in the proof of Proposition
4.1 we have

(f( |VUS|2 —J.USZ) da)N?
J(w + se,) < 2 + O(e N —272)
N([Q(x) UE da) N~ 27
Q

< (Kl + O(EN_Z) - Clgz)N/z
TN Qy + o(e?) N DR
If N="7, taking ¢ > 0 sufficiently small, we can check that

mal%( J(,U)SN/Z/QJEIN72)/2.

+ O(g(N—Z)/z).

THEOREM 5.1. Let N =17. Suppose that Q) =2*N-2Q,, and that
(5.1) holds. Then problem (1.1) has two solutions.

6. Existence of solutions in the case A =0.

In this case problem (1.1) takes the form

—Au  =Q@)u¥ '+f(x) in Q
6.1
6.1 iu(ac)=0 on 09,
ov

Obviously a necessary condition for the existence of a solution of pro-
blem (6.1) is the condition

6.2) j fa) dee < 0.
Q

Since the eigenfunctions corresponding to A = 0 are constant, we decom-
pose H'(RQ) as H'(Q) =span{1}®E *, where

E+ = [veHl(Q); J"udx=0].
Qo

Thus for every function w e H(2) we have u =t + v, where teR and
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Jvdx=0. The variational functional J for (6.1) is given by
Q

J(u) = %J |Vo|®de — %Qf Qx)(t +v)* d —ij(x)(t + ) de.

It is easy to show that the function {—J(f + v) is bounded above. Let
veE ' and set

g(t) = J(t +v).

It is clear that for every ve E* there exists ¢(v) > 0 such that
9(t(v)) = max 9(t),

that is, J(t +v) < J(t(v) + v) for every te R. Thus by the implicit fun-
ction theorem we can define a continuously differentiable mapping

veE't = t(w)eR,
such that J(t + v) < J(t(v) + v) for every t # t(v). Since

0=g'(tw) = — [Q@)t(w) + v)* ~'de — [ fda,
Q Q
we see that
(6.3) [ @@)tw) + 0% 1 da + [ fw) dw =0
Q Q

for every ve E *. In particular, if v =0, then

[ Q@) ®0)x 1 de = ~ [f@) da.

Q Q
This combined with (6.2) yields #(0) > 0 and we have

(6.4) #(0)> 1 j Q(x) dx = — j f(x) da.
o Q

We now claim that the functional
F) =Jw + t(v))

attains its minimum on some ball B,(0). We set

A:—jf(x)dx and szQ(x)dx.
Q Q
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By easy computations using (6.4), we verify that

N+2 AZN/(N+2)

F(0) = 2N B(N—Z)/(N+2)'

We now estimate F'(v) from below:

1 .
Fv) = J(v) = Efwm%lx— EJ’QvE dx—ffvdx
Q Q Q

1 1 "
> = [ 1volpdo— — [ Q¥ do=[7lelol.
Q Q

We now observe that

J |Vv|2dx>lzfv2dx
Q Q

for every ve E *. Since [vdx =0, we can use the Sobolev inequality to
obtain Q

1 2% /2
Fo) = 5 f Vo) 2de - %S_N/(N_Z)(J |Vv|2doc)

Q

1/2
—||f||zzzl(7j |w|2dx) .

Letting o =||V4|l, we derive from the above estimate

Qu

2

0
Fv)= — —
(v) 2 P

50 — a5 0
_ Q Qu ~N/N-2  2¢—1 12\ _ -
sorly ?S o 1 =flAz ) = ejlo).

Since j(o) achieves its maximum at

00= ( N )(N_Z)/4SN/4
(N +2)Qu
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we see that

1 N-2

(6.6) F(,U)ZQO(QO(E_z(N—-f‘Z)

) - ||f||212w)

209 -
_ i,
oo 2% Ik

We now assume that

61 e e M
N+2\(N+2)Qy

and

68) - f fw) do <
Q

1/2%

( oON )(N+2)/2N
=

~ 3 N—(N+2)/2NQM(N2—4)/4Ns(N+2)/4 (J Q(x) dac)

As an immediate consequence of (6.5), (6.6), (6.7) and (6.8) we can sta-
te the following lemma:

LemMmA 6.1. Suppose that (6.7) and (6.8) hold. Then F(v) > F(0) for
all veE " such that |v|| =0, and moreover

S N/2

FO) < Zommm

We can now formulate the existence result in the case 1 =0.

THEOREM 6.2. Suppose that (6.7) and (6.8) hold. Then problem (6.1)
has a solution.

Proor. It follows from Lemma 6.1 that

N2
(6.9) m= veg:fw)F(v) < W .

Let {v,} be a minimizing sequence for (6.9). Since {v,} is bounded in
H'(R), we may assume that v,—1v, in H'(R) and v,—7v, in L(Q) for
every 2 < q<2*. By the low semicontinuity of norm with respect to
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weak convergence we have
Joo | < Tim infllv, | < 0,

Estimate (6.6) shows that F' is bounded away from 0 near the boundary
of B,,(0) for f small enough. On the other hand m < F(0) and F(0) is clo-
se to 0 for small f. Therefore we can always assume that the minimizing
sequence {v, } is contained in the interior of the ball B, (0), say {v,}c
CB,,2(0). It then follows from the Ekeland variational principle that

Fw,)»m and F'(v,)—0.

Since F''(v,,) =0 means that J'(v, + t(v,,)) =0 we obtain
1 2 1 2=l<
> j [ Vv, | dx—; fQ(ac)(vn—kt(vn)Ldac—ff(vn+t(vn))dac=m+0(1)
Q Q Q

and also by (6.3) we have
[ 190,12 de — [ Q) @, + 1(w,))5 10, da — [ fo,due = o(1).
Q Q Q

Since v, is a weak solution of (6.1) we have

(6.10) [ (1002 = Q) (wo + 100)E = vy = fry) dar = 0
Q
and
(6.11) [QG@) @, + twe)3 =1 + ) dw= 0.
Q

We need to show that v, —wv, in H'(). As in [12] we show that
nh_r)rle t(v,) =t(vy). We set w, =v, —v,. By the Brézis-Lieb Lemma, we

have
6.12) F(n) + %J | Vo, [2de — %Qf Q) )% dw = m + o(1)

and

[ 19w, [2de — [Q)aw, )% de — [ Q) vy + twe) ¥ da
Q Q Q

+ [ Vo |2de = [ vy + t(0y)) dar = (D).
Q Q



Multiple solutions of a nonlinear elliptic etc. 23
It then follows from (6.10) and (6.11) that

[ 1Vw, [2dz — [ Qw2 da = o(1).
Q

Q

Hence by (6.12) we get
1 2
F(vy) + N f | Vw, |“de =m + o(1).
Q

Since F(v,) = m, this implies that [ | Vo, |2dac =0(1) and consequently
v, in HY(2). = Q
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