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The Finite Free Extension of Artinian K-Algebras
with the Strong Lefschetz Property.

TADAHITO HARIMA (*) - JUNZO WATANABE (**)

1. Introduction.

The main result of this paper is Theorem 28 in Section 5. This may be
regarded as a generalization of the theorem which states that the Strong
Lefschetz property (SLP) is preserved by tensor product. The definition
of the strong Lefschetz property is the same as what the second author
called the strong Stanley property in his paper [7], where it was proved
that such property is preserved by tenstor product. The definition forces
the Hilbert functions to be symmetric.

In our previous paper [3], with two other coauthors, we used the defi-
nition of the strong Lefschetz property in the sense of [5], so that it can
be applied to algebras which do not necessarily have symmetric Hilbert
functions.

In the present paper we assume the symmetry of the Hilbert func-
tions whenever we discuss the strong Lefschetz property. To explain
why such a restriction is necessary we would like to point out the fact
that although the symmetric unimodality of Hilbert functions is pre-
served by tensor product, solely the unimodality of Hilbert functions is
not. Keeping this in mind, it is easy to construct counter examples in the
general sense of SLP to our Main Theorem. (See Definition 2, Remarks
3, 4, and Example 5.)

Let A be an Artinian K-algebra, and let y�A. Then y induces a linear
map 3y : AKA which is represented by a nilpotent matrix if y is a non
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unit. Our method has grown out of an attempt to determine the Jordan
canonical form of the linear map 3y induced by a general element y.
Why does the knowledge of Jordan canonical form of a general element
prove or disprove the strong Lefschetz property? This is explained as
follows: Suppose that two K-algebras A and B have the same Hilbert
function and one of them is known to have the strong Lefschetz proper-
ty. Then the other algebra has the same property if and only if a general
element has the same Jordan canonical form as the other. As one notices
easily the strong Lefschetz property of an Artinian algebra is an asser-
tion about the Jordan canonical form of a general element.

The basic idea of the proof of Main Theorem is to consider two nilpo-
tent elements g , h�End (V), where V is a vector space, commuting with
each other, and deduce certain inequality for the rank of ag1bh , with
some constants a , b , which assures that it is not too small in a setup of
Main Theorem. This is done in Section 3 (Proposition 21). As one might
expect it enables us to prove the weak Lefschetz property in certain cas-
es. Another important tool is Proposition 18 in Section 2. It enables us to
prove the strong Lefschetz property for the class of algebras in Main
Theorem by showing only the weak Lefschetz property using Proposi-
tion 21. These two propositions are the keys to the proof of Main
Theorem.

Considerable part of Section 2 is devoted for the proof of Proposition
18 just said above. Proposition 19 is an interesting consequence of Propo-
sition 18. It says that the weak Lefschetz property for all complete inter-
sections in certain fixed dimension, say n , implies the strong Lefschetz
property of all complete intersections in dimension (n21). Thus proving
that all complete intersections in any number of variables have the weak
Lefschetz property is equivalent to proving the same for the strong Lef-
schetz property, so in this sense the problems are the same. So far not
many results are available for the strong or weak Lefschetz property of
complete intersections. But at least we know that every complete inter-
section in codimension two has the strong Lefschetz property, and every
complete intersection in codimension three has the weak Lefschtz prop-
erty ([3], Theorem 2.3 and Proposition 4.4). Our result says that if there
exists a complete intersection without the strong Lefschetz property in
codimension three, it implies the existence of a complete intersection
without the weak Lefschetz property in codimension four.

One other purpose of Section 2 is the proof of Theorem 11, which says
that the strong Lefschetz property is preserved under taking tensor
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product. The result itself is not new but the proof is new because it does
not use the theory of aX2 . We wanted to avoid using the theory of the Lie
algebra, because it may apply to prove the strong Lefschetz property for
a larger class of algebras.

This section also includes some definitions. Among others we define
«CoSperner number» of Artinian algebras. This is easier to compute
than the usual «Sperner number.» For example Proposition 8 is implicit-
ly a description of the CoSperner number of certain K-algebras. Also we
introduce the «Jordan second canonical form» of a nilpotent matrix.
This is essentially the same as the usual Jordan decomposition, but as
one will see it is easier to deal with in the theory of Artinian
algebras.

As mentioned earlier, in Section 3 we are concerned with the rank of
certain nilpotent matrices. Let V be a vector space over K. Let g , g 8�
�End (V) be nilpotent matrices, both preserving a same flag of subspaces:
V0 %V1 %V2 %R%Vr 4V so g(Vi ) %Vi and g 8 (Vi ) %Vi for all i. We say that
g 8�End (V) is a deformation of g if they coincide in each block
End (Vi /Vi21 ) for i41, 2 , R , r. Let h�End (V) be yet another nilpo-
tent matrix preserving the same flag. In certain situations it happens
that the Jordan canonical form of g1h is known. In such a case we can
prove that the rank of g 81lh is no less than the rank of g1lh for any
deformation g 8 with a sufficiently general l�K (Proposition 21). This
plays an important role in the proof of Main Theorem.

In Section 4 we develop yet another important tool that we need for
the proof of Main Theorem. We consider the commutator algebra of A in
the full matrix ring End (A) and also in End (V7A) for some V. Recall
that the Double Commutant Theorem, in the simplest form, says that the
commutator algebra of End (V)71U in End (V)7End (U) is 1V 7
7End (U). In particular if dim V41 it reduces to the well know fact that
the center of the full matrix ring is the set of scalar matrices. First we
note that the commutator algebra of A embedded in End (A) is A itself.
Then this fact further enables us to determine the commutator algbras
of A in End (V7A). This is given in Lemmas 25 and 26. Not only the fact
but the notation is important. The vector space End (V)7End (U) `

`End (V7U) is a set of tensors of degree four. Put s4dim V and n4

4dim U. Then the vector space End (V7U) may be identified as the set of
elements in K

(m(i1 , i2 , i3 , i4 ) )
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with 1 G i1 , i2 Gs and 1 G i3 , i4 Gn. With the first two indices fixed it is
an n3n matrix and with the last two fixed it is an s3s matrix. In this
section a «block matrix» means such a tensor, and we write M 4

4 (m (i1 i2 )
i3 i4

). The element m (kl)
ij is the (ij) entry of the (kl) block. Lemma 27 is

the third key to the proof of Main Theorem. It describes the shape of
these block matrices, when a finite free extension of K-algebras AKB
factorizes as AKV7AKB , for some V%B , as homomorphisms of vec-
tor spaces.

In Section 5 we prove Main Theorem using the results proved in ear-
lier sections.

In Section 6 we show some classes of complete intersections which
have the SLP, as an application of Main Theorem.

The second author would like to thank Prof. Hirofumi Yamada and
Dr. Hideaki Morita for helpful conversations on the coinvariant rings of
the symmetric groups. Both authors would like to thank the referee for
remarks and questions that improved this paper.

2. Preliminaries.

Throughout this paper K denotes a field of characteristic 0 unless
otherwise stated. A graded K-algebra is a K-algebra with grading:

A4 5
i40

Q

Ai . The vector space Ai is the homogeneous part of A of degree i.

It will always be assumed that A0 4K and A4K[A1 ]. When we say that
(A , Y) is a graded Artinian K-algebra it means that A is a finite dimen-

sional K-vector space, so A4 5
i40

c
Ai where 0 GcEQ and Y4 5

i41

c
Ai

DEFINITION 1. Let (A , Y) be a graded Artinian K-algebra as
above.

l The Sperner number of A is Max ]dim AiNi40, 1 , 2 R , c(.

l The CoSperner number of A is !
i40

c21

Min ]dim Ai , dim Ai11 (.

Let y�A be a linear element. One sees easily that the greatest possi-
ble rank for the multiplication map 3y : AKA as an endomorphism of
the vector space is the CoSperner number and similarly, the least possi-
ble value for dim A/yA , or the corank of 3y : AKA , is the Sperner
number.
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DEFINITION 2. Suppose that (A , Y) is a graded Artinian K-alge-

bra such that A4 5
i40

c
Ai with Ac c0.

l The algebra A has the weak Lefschetz property (WLP) if there
is a linear element y�A1 such that the multiplication 3y : Ai KAi11 is
either injective or surjective for all i40, 1 , R , c21.

l The algebra A has the strong Lefschetz property (SLP) if there
is an element y�A1 such that the multiplication

3y c22 i : Ai KAc2 i

is bijective for all i40, 1 , R , [c/2 ].

l If A has the SLP, we call a linear element y with this property a
Lefschetz element of A.

REMARK 3. It is easy to see the following:

1. The strong Lefschetz property implies the weak Lefschetz
property.

2. The weak Lefschetz property implies that the Hilbert function
of A is unimodal and the dimension of Ker [3y : AKA] is equal to the
Sperner number of A , where y is as in Definition 2.

3. The strong Lefschetz property implies that the Hilbert function
of A is symmetric.

REMARK 4. In our paper [3] we used the more general definition of
strong Lefschetz property than the one given above. Namely we said
A4 5 Ai has the strong Lefschetz property if there is a linear form y�
�A such that the homomophism 3y k : Ai KAi1k is either injective or sur-
jective for any k and any i. (It is not difficult to see that if we assume that
A has a symmetric Hilbert fucntion, then the two defintions are equiva-
lent.) Throughout this paper we use the definition in the specialized
sense, as defined in Definition 2, which forces the Hilbert functions to be
symmetric. The necessity for this will be explained in Example 5 just
below.

EXAMPLE 5. Only in this example we use SLP in the general
sense. We consider algebras with the Hilbert function like (1 , n , 1 ,
1 , R , 1 ). As is easily seen such algebras exist and they have the SLP, as
the homogeneous part of the highest degree is spanned by a power of a
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linear form. If n42, such an algebra is unique up to isomporphism ex-
cept for (1 , 2 , 1 ), in which case there are two isomorphism types.

1. Let A be a K-algebra with the Hilbert function (1 , 3 , 1 , 1 , 1 ).
The tensor product B»4A7K A has the Hilbert function (1 , 6 , 11 , 8 , 9 ,
8 , 3 , 2 , 1 ). It is not unimodal, so B cannot have even the WLP. (See Re-
mark 3.)

2. Let A have the Hilbert function (1 , 2 , 1 , 1 , 1 ). Let B4

4K[z] /(z 2 ), so B has the Hilbert function (1 , 1 ). Put C4A7K B. Then C
has the Hilbert function (1 , 3 , 3 , 2 , 2 , 1 ). By computation it turns out
that C has the SLP, but D»4C7K B does not have the SLP although it
has the unimical Hilbert function (1 , 4 , 6 , 5 , 4 , 3 , 1 ). Indeed there is a
linear element in D which is annihilated by the third power of the maxi-
mal ideal. So the map 3y 3 : D1 KD4 does not have the full rank for any
linear element y�D. This shows that the SLP is not preserved by the
tensor product with 7K K[z] /(z 2 ) even if unimodality is preserved.

A partition of a positive integer n is a way to express n as a sum of po-
sitive integers. This will be denoted by n1 5n2 5R5nr , where n4!ni

with ni D0. Usually it is written in the decreasing (or increasing) order
but in this paper we do not stick to this custom. Two partitions n1 5n2 5
5R5nr and n 81 5n 82 5R5n 8r 8 of n are the same if they are the same as
sets with multiplicities counted.

Let V4K n be a vector space of dimension n. End (V) will denote the
ring of all linear transformations of V over K. Let Y�End (V) be a nilpo-
tent element. We will denote the Jordan decomposition of Y by
writing

P(Y) 4n1 5n2 5R5nr

where n1 , n2 , R , nr are positive integers such that Sni 4n. The meaning
of this is that Y is represented as the direct sum of matrices of the
form

.
`
`
`
´

0 1
0 1

Q Q
Q Q Q

Q

0 1
0

ˆ
`
`
`
˜
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of size ni . Note that the dimension of Ker [Y : VKV] is the number of
blocks of the Jordan canonical form of Y. It is to be understood that P(Y)
denotes the partition itself rather than the matrix.

REMARK 6. Suppose that A4 5
i40

c
Ai (Ac c0) has the SLP with a

Lefschetz element y�A1 . A basis for the Jordan decomposition for 3

3y : AKA is obtained as follows: First of all 1 , y , y 2 , R , y c will be a part
of the basis, giving us the first block for the Jordan decomposition. Now
let 0 c a �Ker [Ac21 KAc ] (if it exists). By the SLP of A there exists a�
�A1 such that ay c22 4 a. Then the elements a , ay , ay 2 , R , ay c22 , none
of these being dependent of the previously chosen basis elements, will be
another part of the basis, giving us the second block. If there is b �
�Ker [Ac21 KAc ] independent of a then we choose b�A1 such that
by c22 4 b and let b , by , by 2 , R , by c22 be the third part of the basis.
Continue this way until elements of Ker [Ac21 KAc ] are exhausted.
Then we move to Ker [Ac22 KAc21 ] and repeat the same process to ex-
pand basis elements. When this process is finished, it means we have de-
composed 3y into Jordan blocks.

Let m0 Gm1 GRGmc be an increasing series of positive integers
such that n4m0 1m1 1R1mc . For i41, 2 , R , c let Y(i21) i be the
mi21 3mi matrix N ONEN , where E is the identity of size mi21 and O is
the zero matrix of size mi21 3 (mi 2mi21 ). Furthermore for (i , j) with
jc i11 define Yij to be the zero matrix of size mi 3mj (0 G i , jGc). Let
Y4 (Yij ) be the n3n matrix consisting of submatrices Yij at the posi-
tions (i , j). We call Y the Jordan second canonical form of a nilpotent
matrix. It is determined uniquely by an increasing sequence of positive
integers: m0 Gm1 GRGmc. Call the usual Jordan canonical form the
first if we need to distinguish.

A basis for the second Jordan canonical form is nothing but a re-
ordering of the basis elements for the Jordan (first) canonical form. It is
easy to see how to reorder the basis elements, but for the purpose that
we need later, we would like to make this explicit. Let B be a basis for
the Jordan canonical form of a nilpotent element Y�End (V). Let c be
the maximum integer such that Y c

c0. Put Bi 4 ( Ker Y c112 i )O
OB0( Ker Y c2 i )OB. Furthermore put B 8c 4 ]e�Bc Ne�Image Y( and let
B 9c 4Bc 0B 8c . Then, for a second canonical form of Y , it suffices to choose
any order «T» on the elements of B satisfying the following proper-
ties:
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1. If e�B 8c and f�B 9c , then eT f.

2. For e , f�Bi with iEc , we have eT f if eYT fY.

3. If e�Bi , f�Bj for iE j , then eT f.

Start with a nilpotent element Y�End (V) where dim V4n. Let c be
the greatest integer such that Y c

c0. Let m 8i 4dim Ker [Y i : VKV] for
i4c11, c , c21, R , 1 , 0 , and put mi 4m 8 c2 i112m 8c2 i . Then Y is
represented by the Jordan second canonical form, described above with
the sequence of integers, m0 , m1 , R , mc . Note that this is automatically
an increasing sequence. Let C be a scalar matrix. Then we note that C1

1Y can be put in a Jordan first canonical form only by a permutation of ba-
sis elements.

Let Y�End (V) be nilpotent and let P(Y) 4n1 5R5nr be the parti-
tion associated with the Jordan decomposition of Y. Assume they are put
in the decreasing order: n1 Fn2 FRFnr . Both the first and the second
Jordan canonical form can be best described by using Young tableaux.
Let T4T(n1 , n2 , R , nr ) be the Young diagram (aligned left) with rows
of ni boxes. We number the boxes from left to right naturally. Using T it
is easy to describe the Jordan canonical form of Y. Namely the Jordan
canonical form is the matrix J4 (aij ) defined by

aij 4
.
/
´

1

0

if j is next to the right of i in T ,

otherwise .

Let T× 4T(nr , nr21 , R , n1 ) be the Young diagram aligned right with
nr2 i boxes for the ith row. We number the boxes of T× vertically from top
to bottom starting with the leftmost column ending with the rightmost
column. For such a Young tableau we write T× 4 T×(m0 , m1 , R , mc ),
where the integers m0 , m1 , R , mc are the numbers of boxes of columns
put in the increasing order. So the two partitions n1 5n2 5R5nr and
m0 5m1 5R5mc of n are dual to each other. Here is an example of T4

4T(5 , 3 , 1 ) and T× 4 T×(1 , 1 , 2 , 2 , 3 ).

1 2 3 4 5 7
6 7 8 3 5 8
9 1 2 4 6 9

The integers in the boxes are supposed to be the indices of basis ele-
ments. So the set of elements with indices in each row form a Jordan
block for Y.



The finite free extension of Artinian etc. 127

Using T× the Jordan second canonical form can be described exactly
in the same manner as for the first form with T. Namely if J4 (aij ) is the
Jordan second canonical form for Y then we have

aij 4
.
/
´

1

0

if j is next to the right of i in T×,

otherwise .

In particular a basis element is not in the image of Y if and only if its in-
dex appears as the first integer of some row. Also a basis element is in
the kernel of Y if and only if its index appears as the last integer of some
row. (These apply to both T and T×.)

Here is an example of Jordan second canonical form. Let V4K 9 , and
let Y�End (V) be nilpotent such that P(Y) 455351. Then the dual
partition is 151525253. The second canonical form for Y is the
matrix:

To summarize the above observation we have

PROPOSITION 7. Suppose Y�End (V) is a nilpotent element with
Y c

c0 and Y c11 40. Let P(Y) 4n1 5R5nr , where n1 Fn2 FRFnr .
Then the Jordan canonical form is described by the Young tableaux
T4T(n1 , n2 , R , nr ). The Jordan second canonical form of Y is de-
scribed by T× 4 T×(m0 , m1 , R , mc ) with m0 Gm1 GRGmc , where

mi 4dim ( ( Ker (Y c2 i11 ) /( Ker (Y c2 i ) ) .

Furthermore the partition m0 5m1 5R5mc is dual to P(Y).

PROPOSITION 8. Put V4K n , V 84K n 8. For d4n , n 8 , let Ed �
�End (K d ) denote the identity. Suppose that Nd �End (K d ) is a nilpotent
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element such that P(Nd ) 4d , i.e., Nd is equivalent to a single Jordan
block of size d. Let

NA 4En 7Nn 81Nn 7En 8�End (V7V 8 ) .

Then

(1) P(NA)4(n1n 821)5(n1n 823)5(n1n 825)5R5(Nn2n 8N11)
�������������������������

Min ]n, n 8(
(2) dim Ker (NA) 4Min ]n , n 8(.

(3) rank (NA) 4rank (Nn 8 )n 1n 8 (n21) 4rank (Nn )n 81n(n 821).

PROOF. (1) We may assume that Nn and Nn 8 are already put in the
Jordan canonical form. Consider the algebras K[x] /(x n ) and K[y] /(y n 8 ).
The linear map K[x] /(x n ) KK[x] /(x n ) induced by multiplication by x
may be identified with Nn and similarly for y and Nn 8. Thus the multipli-
cation map 3(x1y) : AKA , where A4k[x , y] /(x n , y n 8 ), is essentially
the same as NA in consideration. By ([3], Proposition 4.4), which uses a
theorem of Galligo ([2]), A has the SLP. Assume nGn 8. Then it is easy
to see that the Hilbert function of A is as follows:

1, 2, 3, R , n22, n21, n, n, R , n
˘×=

Nn2n 8N11

, n21, n22, R , 3, 2, 1
�����������������������

n1n 821

(The case nDn 8 is similar.) In Remark 6 we showed a procedure to de-
compose the map 3(x1y) into Jordan blocks, from which (1) follows
easily.

(2) Notice that the maximal integer of the Hilbert function of A is Min
]n , n 8(. Since A has the SLP, it has WLP (Remark 3), from which the
assertion follows.

From (2) it follows that rank (NA) 4Max ]nn 82n , nn 82n 8(. On the
other hand we have

rank (Nn )n 84
.
/
´

n2n 8

0

if n 8Gn ,

if n 8Dn .

This proves the first equality of (3), and also the second by symmetry.

REMARK 9. The figure below illustrates the Jordan canonical form
of the matrix NA in Proposition 8, which turns out to the same as the lin-
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ear map

3(x1y) : K[x , y] /(x n11 , y n 811 ) KK[x , y] /(x n11 , y n 811 ) .

It helps us see the block sizes and the number of blocks of the decompo-
sition of NA. This can be proved by using the representation theory of the
Lie algebra aX2 ([7]), or alternatively by the SLP of the ring
k[x , y] /(x n , y n 8 )([3]), as said above.

Fig. 1. – The figure illustrates the Jordan decomposition of NA for n45, n 847.

PROPOSITION 10. Let (A , Y) and (B , Z) be Artinian K-algebras
and let y�A and z�B be some non-unit elements (not necessarily of
degree 1). Put Y4y71117z , which is an element of A7K B. If P(3
3y) 4d1 5R5dr and P(3z) 4 f1 5R5 fs then

(1) P(3Y) 45i , j 5q41
Min ]di , fj( (di 1 fj 1122q)

(2) dim Ker (3Y) 4!
i , j

Min ]di , fj (

(3) rank (3Y) 4 !
j41

s

(rank (y fj)1d( fj 21)), where d4!di .

PROOF. (1) is proved using Proposition 8 block for block. Then (2)
follows immediately from (1) as dim Ker (3Y) is the number of blocks of
the Jordan decomposition of (3Y). For (3) notice first that this is imme-
diate from Proposition 8 if s41. Thus the general case also follows.

THEOREM 11. The SLP is preserved by tensor product. To be pre-
cise if A and B are graded Artinian K-algebras with the SLP then the
tensor product A7K B also has the SLP. In particular, A[z] /(z n ) has
the SLP for any nF0 if A does.
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PROOF. Probably the best proof is to use the theory of the Lie alge-
bra aX2 as was indicated in [7]. Alternatively one can argue as follows.
Choose Lefschetz elements g�A1 and h�B1 (Definition 2). Decompose
A45Ui into subspaces so that each summand gives a Jordan block for
3g : AKA , and similarly let B45Vj be a Jordan decomposition for 3

3h : BKB. This can be done by the procedure of Remark 2. So we may
assume that all Ui and Vj have bases consisting of homegeneous ele-
ments. Now A7B decomposes as

A7B4 5
i , j

(Ui 7Vj ) .(1)

Since this is a decomposition as graded vector spaces, we also have

(A7B)k 4 5
i , j

[ (A7B)k O (Ui 7Vj ) ] .(2)

where (A7B)k denotes the degree k homogeneous part of A7B. Note
that each Ui 7Vj %A7B is fixed under the multiplication 3( g71117
7h), and these subspaces further decompose into Jordan blocks as shown
in Proposition 8 (1). Put Y4g71117h and let c be the maximum inte-
ger such that (A7B)c c0. The proof of Proposition 8 (1) in fact tells us
that, for each pair (i , j), the linear map

3Y c22k : (A7B)k O (Ui 7Vj ) K (A7B)c2k O (Ui 7Vj )(3)

is bijective for each k40, 1 , R , [c/2 ]. In view of the decomposition of (1)
this proves the SLP of A7B with Y a Lefschetz element.

Among all P(N) for nilpotent elements N�End (V) we put the total
order U as follows. (Recall that P(N) denotes the partition itself rather
than the Jordan matrix.)

DEFINITION 12. Suppose that N , N 8�End (V) are nilpotent ele-
ments such that P(N) 4n1 5n2 5R5nr and P(N 8 ) 4n 81 5n 82 5R5
5n 8r 8 , where we assume that n1 Fn2 RFnr and n 81 Fn 82 RFn 8r 8 . Then we
will write P(N) U P(N 8 ) if and only if (1) rEr 8 or (2) r4r 8 and ni 4ni8

for i41, 2 , R , j21 and nj Dnj8. P(N) and P(N 8 ) are regarded as the
same if ]ni ( and ]n 8i ( are equal as partitions of the integer n»4dim V.
(So U is a total order on the set of all partitions of n.)

L e t (A , Y) be an Ar t i n i a n K- a l g e b r a w i t h K4A/Y ( n o t n e c e s s a r i l y
g r a d e d ) . L e t ]j 1 , j 2 , R , j n ( b e a se t o f a l g e b r a i c a l l y i n d e p e n d e n t
e l e m e n t s o v e r A. Pu t A *4A(j 1 , j 2 , R , j n ) , w h i c h i s t h e p o l y n o m i a l



The finite free extension of Artinian etc. 131

r i n g A[j 1 , j 2 , R , j n ] lo c a l i z e d a t t h e m i n i m a l p r i m e i d e a l
YA[j 1 , j 2 , R , j n ] . A l s o p u t Y*4YA * an d K *4A * /Y* .

PROPOSITION 13. With the same notation as above, suppose that
Y4 (x1 , R , xn ). Put Y4j 1 x1 1R1j n xn . We consider Y as an ele-
ment of A * and 3Y�EndK * (A *). Then P(3Y) is the maximum ele-
ment of the set ]P(3y)Ny�Y( with respect to the order «U» introduced
in Definition 12. Also there exists an element y�Y such that
P(3y) 4 P(3Y).

PROOF. Let y be an element such that P(3y) is the maximum ele-
ment in ]P(3x)Nx�Y(. In ([8] Theorem A) it was proved that

dimK * A * /YA *4dimK A/yA .

Now set r4dimK A/yA and let

P(3y) 4d1 5d2 5R5dr and P(3Y) 4d 81 5d 82 5R5d 8r ,

where we assume that d1 Fd2 FRFdr and d 81 Fd 82 FRFd 8r . (Both 3y
and 3Y have the same number r of blocks.) By way of contradiction as-
sume that P(3y) U P(3Y). This means that there exists an integer kD

D0 such that di 4d 8i for iEk and dk Dd 8k . Put p4d 8k and let B4

4K[z] /(z p ), where z is a new indeterminate. Compare the numbers of
blocks of P(3(y1z) ) �EndK (A[z] /(z p ) ) and P(3(Y1z) ) �
�EndK * (A *[z] /(z p ) ). Note that A[z] /(z p ) `A7K B and A *[z] /(z p ) `

`A *7K * B. By (2) of Proposition 2, we have

Jblocks in P(3(y1z) ) EJblocks in P(3(Y1z) ) .

But the other inequality LHS F RHS was proved in ([8] Theorem A).
Thus we get a contradiction.

Any element y�A such that P(3y) 4 P(3Y) will be called a general
element of A. A general element is automatically an element of Y0Y2. It
should be noted that when A is graded, a «sufficiently general» linear
form will be a general element in this sense.

PROPOSITION 14. Let A be an Artinian graded K-algebra. Then the
following conditions are equivalent.

(1) A has the WLP.

(2) There is a linear form g�A such that dim A/gA is equal to the
Sperner number of A .
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(3) For a general element g�A , dim A/gA is equal to the Sperner
number of A .

(4) There is a linear form g�A such that rank [3g : AKA] is equal
to the CoSperner number of A .

(5) For a general element g�A , rank [3g : AKA] is equal to the
CoSperner number of A .

PROOF. Easy.

LEMMA 15. Suppose that A4 5 Ai40
c has the SLP and y�A1 is a

Lefschetz element. Put B4A/(0 : y) and let y be the natural image of y
in B . Let q4c/2 if c is even and q4 (c11) /2 if c is odd. Then

(1) B has the SLP and y is a Lefschetz element of B .

(2) If the Hilbert function of A is h0 , h1 , R , hc , then the Hilbert
function of B is equal to the sequence h0 , h1 , R , hc with the term hq

deleted.

PROOF. For (1) the proof of ([7], Theorem 3.8) works verbatim. (2)
follows immediately from the proof of ([7], Theorem 3.8).

PROPOSITION 16. Let A4 5
i40

c
Ai be an Artinian graded K algebra

with Ac c0. Put n4dim A and hi 4dim Ai . Since ! hi 4n , the positive
integers hi’s give us a partition of the integer n . Now let y be a general
linear form of A , and let P(3y) be the partition of n for the Jordan de-
composition of 3y . Then the following conditions are equivalent.

(1) A has the SLP.

(2) The sequence ]h0 , R , hc ( is symmetric and the dual partition of
P(3y) is h0 5h1 5R5hc .

PROOF. Assume (1). As we pointed out in Remark 3, the Hilbert
function of A is symmetric. Put fi 4dim (0 : y i11 ) /(0 : y i ). First note
that the dual partition of P(3y) is the set of positive integers

] fi Ni40, 1 , R , c(

with multiplicity counted. We would like to show that if the sequence
h0 , h1 , R , hc is arranged in the decreasing order it coincides with
the sequence f0 , f1 , R , fc . Since A has the SLP it has the WLP.
Hence f0 is the Sperner number of A , which is the maximal integer
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of ]hi (. Using Lemma 15 proof is complete by induction on c . We
have proved that (1) implies (2).

Now assume (2). Put B4A/(0 : y) and y 4y mod (0 : y). First we in-
duct on c to show that B has the SLP with a Lefschetz element y. For
this we have to show the following two things:

(i) The Hilbert function of B is equal to

h0 , h1 , R , hq21 , hq11 , R , hc ,

where q4 [c/2 ].

(ii) If the above sequence is considered as a partition of n2hq , it is
the dual of P(y).

Note that P(3y) is obtained from P(3y) by subtracting 1 from each
term. On the other hand a highest term in the dual partition of P(3y) is
the number of terms of P(3y), i.e., the number of blocks in the Jordan
decomposition of 3y . The second statement of (2) says that this is equal
to the Sperner number of A . Hence by Proposition 2 A has the WLP.
Thus we may identify Bj with Aj for 0 G jEq and Bj with yAj for jFq .
(Note this is possible because we are assuming that h0 , R , hc is symmet-
ric.) It follows that the Hilbert function of B is the sequence h0 , h1 , R , hc

with the term hq deleted, where q4 [c/2 ], and that it is the dual of P(y).
Now the induction hypothesis says that B has the SLP with a Lefschetz
element y. Let i be any integer such that 0 G iEc/2 if c is even and 0 G

GiG (c21) /2 if c is odd. We would like to show that the map 3

3y c22 i : Ai KAc2 i is bijective. Consider the diagram:

[A/(0 : y) ]i

I

Bi

K
3y c2122i

K
3y c2122i

[A/(0 : y) ]c212 i

I

Bc212 i

K
3y

Ac2 i

The vertical maps are bijective by definition of B . The horizontal map in-
dicated 3y is bijective as the map 3y : Ac212i KAc2i is surjective. The
horizontal map downstairs is bijective by induction hypothesis. It follows
that the composite [A/(0 : y) ]i KAc2 i upstairs is bijective. This is noth-
ing but the desired bijection y c22 i : Ai KAc2 i as (0 : y)i 40. Thus A has
the SLP.

COROLLARY 17. Suppose that a graded K-algebra A4 5
i40

c
Ai has a

symmetric Hilbert function. Let y be a general linear element of A .
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Suppose either (1) A/(0 : y i ) has the WLP for all i41, 2 , R , c , or (2) A
has the WLP and A/0 : y has the SLP. Then A has the SLP.

PROOF. It is easy to see that in either case the second condition of
Propsition 16 is satisfied. Hence the SLP of A follows.

The following is very important in the proof of the main theo-
rem.

PROPOSITION 18. Let A be an Artinian graded ring with a symmet-
ric Hilbert function, and let z be an algebraically independent element
over A . Then the following conditions are equivalent.

(1) A[z] /(z n ) has the weak Lefschetz property for all nF0.

(2) A has the strong Lefschetz property.

PROOF. Suppose that A has SLP. A[z] /(z n ) is the tensor product of A
and K[z] /(z n ). Since the SLP is preserved by tensor product, it has SLP,
hence WLP. We have proved that (2) implies (1).

We prove (1) implies (2). By way of contradiction assume (1) and as-
sume that A does not have SLP. Let y�A be a general element and
let

J»4 P(3y) 4d1 5d2 5R5dr

be the Jordan decomposition for 3y . Since we are assuming that A has
the WLP, it follows that r is the Sperner number of A (Proposition 14).
Let h0 , h1 , R , hc be the Hilbert function of A and let J 8 »4d 81 5d 82 5
5R5d 8r be the dual partition of h0 5h1 5R5hc . Here note that the
number of terms of the partition J 8 is also r, as well as that of J , as it is a
highest term of h0 , R , hc . Proposition 16 implies that J 8cJ , but in fact
it implies J 8UJ . Suppose that di 4d 8i for i41, 2 , R , k21 and d 8k Ddk .
Put p4dk . Then as in the proof of Proposition 13, one sees that the
A[z] /(z p ) does not have the WLP, contradicting the assumption (1).

The WLP and the SLP are different even if algebras are assumed to
be Gorenstein (cf. [3], Example 4.3) but the following Proposition tells us
that they are the same for complete intersections if they are considered
all together in all dimensions.

PROPOSITION 19. Let C be the family of all Artinian complete inter-
sections with standard grading over K . Then the following conditions
are equivalent.
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(1) All members of C have the weak Lefschetz property.

(2) All members of C have the strong Lefscjetz property.

PROOF. (2) imples (1) because SLP implies WLP. Suppose that there
is a member A of C which does not have the strong Lefschetz property.
Then using the same idea as in the proof of Proposition 13, one can prove
that there exists some integer j such that A 84A[z] /(z j) does not have
the weak Lefschetz property. Since A 8 is a member of C , this shows that
(1) implies (2).

REMARK 20. All complete intersections in codimension two have the
SLP and all complete intersections in codimension three have the WLP
([3], Theorem 2.3 and Proposition 4.4). Proof of Proposition 19 tells us
that if there exists a complete intersection in codimension three which
does not have the SLP then there exists a complete intersection in codi-
mension four which does not have the WLP. So far we know of no exam-
ples of complete intersections without SLP or WLP. It seems natural to
conjecture that all complete intersecions in all codimensions have the
SLP.

3. The rank of certain nilpotent matrices.

In this section matrices may be considered over a field K of arbitrary
characteristic. Let M4 (mij ) be an s3s matrix with the following
properties.

1. mij 40 if jG i (so M is upper triangular andnilpotent).

2. mij � ]0, p , q(.

3. Each row of M has at most a p and a q .

4. Each column of M has at most a p and a q .

5. If mij 4p then j4 i11.

Let X be the matrix obtained from M by setting p41 and q40 and Y
by p40, q41. So M4pX1qY . Call X 84 (x 8ij ) a deformation of X4

4 (xij ) if it is an upper triangular nilpotent matrix and x 8ij 4xij for (i , j)
such that j4 i11.

PROPOSITION 21. As described above let M be a matrix having the
properties 1-5 and let X , Y be such that M4pX1qY . Let X 8 be any de-
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formation of X . Then

rank (X 81lY) Frank (X1Y) 4rank (M)

for an algebraically independent element l over K .

PROOF. will be preceded by two lemmas.

LEMMA 22. By a permutation of rows and a permutation of
columns of M , the matrix decomposes into blocks of the following four
types of matrices and a zero block.

( i )

.
`
`
`
´

p
0
0

QQ
Q

0

q
p
0

0
q
p

. . .
0
q

Q Q
Q

. . .

. . .

. . .

. . .

. . .

Q Q
Q

p

0

0
0
0

q

p

ˆ
`
`
`
˜

( ii )

.
`
`
`
´

q
p
0

QQ
Q

0

0
q
p

0
0
q

. . .
0
0

Q Q
Q

. . .

. . .

. . .

. . .

. . .

Q Q
Q

q

p

0
0
0

0

q

ˆ
`
`
`
˜

( iii )

.
`
`
`
´

p
0
0

QQ
Q

q
p
0

0
q
p

. . .
0
q

Q Q
Q

. . .

. . .

. . .

. . .

Q Q
Q

p

0
0
0

q

ˆ
`
`
`
˜

( iv )

.
`
`
`
`
`
´

q
p
0

QQ
Q

0

QQ
Q

0

0
q
p

0

0

0
0
q

Q Q
Q

. . .
0
0

Q Q
Q

p
. . .

. . .

. . .

. . .

q

p

0

0
0
0

QQ
Q

0

q

p

ˆ
`
`
`
`
`
˜

PROOF. If we set p4q41 then M is a (01)-matrix, and we may re-
gard it as the incidence matrix of a bipartite graph. From this view point
we label the rows of M by the set ]ai N1 G iGs( and columns ]bj N1 G jG

Gs(. The sets ]ai ( and ]bj ( are regarded as two different objects. Let us
write bj K

p
ai if p is the (ij)th entry of M and aj K

q
bi if q is the ( ji)th entry.

A (pq)-path is a finite sequence of either one of the following:

.
/
´

bj K
p

ai K
q

bj 8K
p

ai 8K
q

bj 9K
p

R

ai K
q

bj K
p

ai 8K
q

bj 8K
p

ai 9K
q

R

By the way p’s and q’s are arranged, it follows that iE i 8E i 9 R and
jE j 8E j 9ER . Thus they are finite sequences. Either may end with a p



The finite free extension of Artinian etc. 137

or a q . Since each row and each column of M contains at most a p and a q ,
it is easy to see that the bipartite graph defined by M decomposes
uniquely into such maximal (pq)-paths. If it starts with a p and ends with
a p it gives us a block of type (i). Similarly the other three kinds of paths
correspond to matrices of types (ii)-(iv).

LEMMA 23. Let M be the same as above. Let r the rank of M . Then
the non-zero entries of the matrix Rr M are monomials in p and q of de-
gree r with coefficients 1 or 21. Let Q be the monomial in p , q that oc-
curs in Rr M with the highest degree in q . Then Q occurs only at one
place in the matrix Rr M .

PROOF. We need proof only for the last assertion. Decompose M into
blocks of the four types given in Lemma 22 and a zero block. We may dis-
regard the zero block so we assume that each row and column has at
least a p or a q . The rank of the block of type (i) and (ii) is the size of the
block. The rank of the block of type (iii) is the number of rows, and that
of type (iv) is the number of the columns. The ranks of the blocks sum up
to the rank of M . To prove the assertion we have to show that a choice of
rows and columns as many as r (the rank of M) is uniquely determined if
the determinant of the submatrix is to be non-zero and if it is to be the
highest degree in q . As in the proof of Lemma 22, regard M as the inci-
dence matrix between the two sets of vertices ]ai N1 G iGs( 2 ]bj N1 G

GjGs(. Define the subset R% ]ai ( by claiming that

x�R ` x occurs as the last rowof a block of type (iv)

and similarly, the subset C% ]bi ( by

y�C ` y occurs as the first column of a blockof type (iii).

Let R 8 and C 8 be the complements of R and C respectively. Then it is
easy to see that the submatrix of M with rows R 8 and columns C 8 is the
only possibility for the desired property.

PROOF OF PROPOSITION 21. The second equality is easy. We prove
the first inequality. Recall that M4pX1qY so its rank is the same if we
set p41. Let R 8 , C 8 be the subsets of rows and columns that were de-
fined in the proof of Lemma 23. Let Z the submatrix of X 81lY with
rows and columns R 8 and C 8 . Then the determinant of Z is a polynomial
in l whose head term is the same as the corresponding minor of X1lY .
Thus the proof is complete.
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4. – The commutator algebra of Artinian algebras in certain endo-
morphism rings.

In this section we denote by M(n) the n3n full matrix ring over K .
For a finite dimensional vector space V we may identify End (V) with
M(n) if a basis of V is specified.

Let A be a graded K-algebra. We denote the regular representation
of A by

3 : AKEnd (A) .

In other words, the notation 3a for a�A means that it is the multiplica-
tion map 3a : AKA .

LEMMA 24. Let A4 5
i40

c
Ai be an Artinian K-algebra with the SLP

and let y�A1 be a general linear element. (We assume Ac c0. ) Let 3

3: AKEnd (A) be the regular representation of A . Then there is a homo-
geneous K-basis of A such that 3y is put in the Jordan second canoni-
cal form as defined in Section 2, and at the same time 3a is an upper
triangular form for all a�A . In any choice of such a basis, the first of
the basis elements is 1 �A0 and the last is a homogeneous element of A
of the highest degree (up to a constant multiple). Furthermore 3a is
constant on the diagonal for all a�A .

PROOF. Let B4 ]ei ( be a basis on which 3y is put in the Jordan sec-
ond canonical form. Let T× be the Young tableau that is associated with B
as explained in Section 2. (We may identify a box of T× and the integer of
the box and the element of B with that index.) Recall that the boxes of T×

are numbered in such a way that box i is next to box j on the left if and
only if yei 4ej . Also recall that (0 : y) is generated by the basis elements
in the last column of T×, and more generally 0 : y i11 /0 : y i is spanned by
the basis elements in the (c2 i)th column of T×. Since for all x�A the
multiplication 3x : AKA preserves the flag

V40 : y c11 &0 : y c &R&0 : y 2 &0 : y&0 : 1 40,

the representation 3 : AKEnd (A) is block upper-triangular. Now it
suffices to prove that the induced representation on each diagonal block:
AK End ( (0 : y t11 ) /(0 : y t ) ) is upper triangular. By induction on c it
suffices to prove that AK End (0 : y) is upper triangular. In Section 2
we showed a procedure to decompose 3y into a Jordan canonical form
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and we showed how it was converted to the Jordan second canonical
form. It shows that if i and j are in the last column, then

iE j ¨ deg ei Gdeg ej .

This means that if ei and ej are basis elements of (0 : y) such that
deg ei Edeg ej then iE j . Since the multiplication by element of A raises
the degree unless it is a unit, we see that 3 : AK End (0 : y) is upper tri-
angular. We have proved the first part. The second part also follows im-
mediately from the construction of T×. Finally 3a is constant on the diag-
onal as (a2a) is nilpotent for some a�K .

For any subest � of M(n) we define

Comm (�) 4 ]W�M(n)NWx4xW for all x��(

and call it the commutator algebra of � . (It is an associative algebra
with identity.) The same notation Comm (�) will be applied to for a sub-
set � of End (A).

LEMMA 25. Let (A , Y) be an Artinian K-algebra. Then the com-
mutator algebra of 3A»4 ]3aNa�A( coincides with 3A itself. More
precisely we have

]W� End (A)NW(3z) 4 (3z) W (z�A( 4 ]3aNa�A( .

PROOF. Note that if W� End (A) commutes with 3z for all z�A it is
determined by W(1), from which the assertion follows.

Let � be a subset of M(n). After H. Weyl [9] we define the two sub-
sets s� , �s of M(sn) as follows:

s�4 ]

.
`
´

M

0

M

Q Q
Q

0

M

ˆ
`
˜

NM��( ,

�s 4 ]

.
`
´

M11

M21

QQ
Q

Ms1

M12

M22

QQ
Q

Mm2

R

R

Q Q
Q

R

M1s

M2s

QQ
Q

Mss

ˆ
`
˜

NMij ��( .

LEMMA 26. Let (A , Y) be an Artinian K-algebra with dim A4n .
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Let V be a finite vector space over K of dimension s . Fix some bases for
A , V and V7A and identify End (A) 4M(n) and End (V7A) 4M(sn).
Put �43A . Then the commutator algebra of s� is �s .

PROOF. If s41, then we have already proved this in Lemma 25. Let
M �M(sn) and let M 4 (M (ij) ) be the block decomposition such that
M (ij) �M(n) and 1 G i , jGs . An element of s� may be written as
diag (3a , R , 3a

���
s

) for some a�A . Thus if M is in the commutator of s�

it implies that M (ij) (3a) 4 (3a) M (ij) for all a�A and for all pairs (ij).
In other words each block M (ij) is in the commutator of � . By the previ-
ous lemma M (ij) �� . This shows that Comm (s�) %�s . The other inclu-
sion is obvious. Now the proof is complete.

A matrix M �M(sn) may be regarded as a block matrix in two ways.
Namely,

(1) M 4 (Mij ), where Mij �M(s) and 1 G i , jGn and

(2) M 4 (Nij ), where Nij �M(n) and 1 G i , jGs .

In either case we write M 4 (m (lk)
ij ), by which we mean that the ele-

ment m (lk)
ij is the (ij) entry of the block (kl) of M. In this notation, it will

tacitly be assumed either

(1) 1 Gk , lGs and 1 G i , jGn or

(2) 1 Gk , lGn and 1 G i , jGs .

Let F : M(n) KM(sn) be the s-copy of M . Namely, F is the homomor-
phism defined by F(M) 4diag (M , R , M

���
s

). We are regarding F(M) as

consisting of s 2 blocks where each block is an n3n matrix. Let M4

4 (mij ) �M(n). Define G(M) to be the sn3sn matrix obtained from M by
replacing the entry mij by the matrix mij E where E is the s3s identity.
Thus G gives us a homomorphism G : M(n) KM(sn). We call G(M) the s-
inflation of M . We are regarding G(M) as consisting of n 2 blocks where
each block is an s3s matrix.

Suppose now M 4 (m (kl)
ij ) �M(sn). We define the «hat operation»

× : M(sn) KM(sn)

by M×4 (m (ij)
kl ). The hat operation is nothing but a certain conjuga-

tion.
Now we can state our key lemma.
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LEMMA 27 (Key Lemma). We use the same notaion as above. Let
M �M(sn). Then

(1) If each block of M is an upper triangular matrix then M× is a
block upper triangular matrix. (See Figure 2.)

(2) If each block of M is constant on the diagonal, then M× is con-
stant on the diagonal blocks. (I.e., all diagonal blocks of M× are the same
matrix.)

(3) If M�M(n), then F(M)×4 G(M).

PROOF. (1) Write M 4 (m (kl)
ij ). Suppose that m (kl)

ij 40 for any k , l , if
jE i . This means that (ij)-block of M×4 (m (ij)

kl ) is the zero matrix, if
jE i .

(2) Write M 4 (m (kl)
ij ). Suppose that m (kl)

ii 4m (kl)
11 for all i , if k and l

are fixed. This implies that the i-th diagonal block, for any i , of M×4

4 (m (ij)
kl ) is the same as the first diagonal block.

(3) Write F(M) 4 (m (kl)
ij ). Then by the definition of F we have

that

m (kl)
ij 4

.
/
´

0
m (11)

ij

if kc l ,
if k4 l .

This means that each block of F(M)×4 (m (ij)
kl ) is a diagonal matrix and

moreover each diagonal entry is the same as the (11)-st entry of the
block. This proves the assertion.

Fig. 2. – Block-wise upper triangular vs Block upper triangular.

5. – Main theorem

THEOREM 28. Let (A , Y) be a graded Artinian K-algebra and let B
be a finite free algebra over A such that the algebra map AKB pre-
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serves grading. Assume that both A and B/YB have the SLP. Then B
has the SLP.

PROOF. Put C4B/YB . Let b �C denote the image of b�B by the
natural surjection. Let z�B be a linear element such that z is a Lef-
schetz element of C . Let s4dim C and let

aek Nk41, R , sb

be a basis for C such that 3z � End (C) is represented as the Jordan
(first) canonical form on this basis. Let ek be a preimage of ek and let V
the vector space spanned by ek’s. Since B is free over A these elements
ek’s are a free basis of B over A (Nakayama’s Lemma). Thus we may
write

B4Ae1 1Ae2 1R1Aes

as a direct sum of A modules. This gives us a bijection of vector
spaces:

V7AKB , v7a O va

and we may identify B with the tensor space V7A . Let y�A be a gener-
al linear form of A and let

a fiNi41, R , nb

be a basis for A described in Lemma 24.
Now the set ]ek fj N1 GkGs , 1 G jGn( is a basis for B . With these

bases for A and B we make identification End (A) 4M(n) and End (B) 4

4M(sn). Consider the diagram:

A K
3

End (A)
E

M(n)

K
F

K
F

End (B)
E

M(sn)

The vertical maps are identifications made above. The symbol 3 : AK

K End (A) denotes the regular representation of A . The map
F : End (A) K End (B) is defined by F(f) 4IV 7f for f� End (A),
where IV denotes the identity map of V . Note that the same map
F : M(n) KM(sn), in terms of matrices, is the s-copy of matrices of M(n)
as defined earlier. It should be noted that for a�A , the homomorphism
F(3a) � End (B) is nothing but the multiplication 3a : BKB induced
by 3a : AKA .
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Notice that 3z� End (B) commutes with all elements of F(3A),
which is, in the notation of Lemma 25, s(3A). By Lemma 26 we see that
the endomorphism 3z is represented by an (s block) by (s block) matrix
where each block is an upper triangular matrix of size n . Consider 3z× as
defined in the Section 4. Then Key Lemma 27 says that 3z× is an (n
block) 3 (n block) matrix with the same diagonal blocks of size s . It is
easy to see that each diagonal block is the matrix for 3z : CKC repre-
sented on the basis of C

ae1 , R , es b

as we chose first. Consequently it is a Jordan first canonical form. Let
X �M(sn) be the matrix consisting of the same diagonal blocks as those
of 3z× and with zero blocks off diagonal. Then 3z× is a deformation of X.
Put Y 4 F(3y)×. Also by Key Lemma 27 we see that Y is the s-inflation
(as defined in a paragraph preceeding Lemma 27) of 3y� End (A). It is
easy to see that Lemma 21 can be applied to this situation and we get the
conclusion:

rank [3 (z1ly)× : BKB] Frank [X 1 Y �M(sn) ]

for some l . Now notice that X 1 Y �M(sn) is, in fact, the matrix for the
multiplication 3(z71117y) � End (C7A). Put B 84C7A . Then B 8

and B have the same Hilbert function and B 8 has the strong Lefschetz
property. This means that the rank (z1ly) : BKB has reached the
CoSperner number of B and thus it follows that B has the weak Lef-
schetz property. But the same argument can be used to prove that
B[t] /(t m ) has the weak Lefschetz property for any mD0, because we
have the flat extension AKB[t] /(t m ) with the fiber C[t] /(t m ) which also
has the strong Lefschetz property. Now the strong Lefschetz property
of B follows from Proposition 18.

COROLLARY 29. (1) Let (A , Y) be a graded K-algebra with the
strong Lefschetz property. Let B4A[z] /(h), where h is a monic homoge-
neous polynomial in the variable z with coefficients in A . Then B has
the strong Lefschetz property.

(2) Let R4K[x1 , R , xn ] be the polynomial ring and let I%R be a
height n homogeneous complete intersection ideal. Suppose that a
power of a linear element z of R can be a member of a minimal generat-
ing set for I . Put B4R/I . If R/I1 (z) has the strong Lefschetz property,
so does B .
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PROOF. (1) Main theorem applies since the ring B is a flat extension
of A and B/YB`K[z] /(z r ) for some r .

(2) Suppose that z r is one of the members of a minimal generating
set for I . Put A4K[z] /(z r ). One notices that I : z s 4I1 (z r2s ), which
shows that B is a flat extension of A , because the injection 0 K (z s ) KA
remains exact by making the tensor with B . Now one may apply Main
Theorem.

6. – Some applications.

PROPOSITION 30. Let R be the polynomial ring in three variables
over K . Let I be a homogeneous complete intersection ideal of R . If a
power of a linear form can be an element of a minimal generating set of
I , then R/I has the SLP.

PROOF. Let z be a linear form such that I4 ( f , g , z n ) for some n .
Then R/I1 (z) has the SLP by [3] Proposition 4.4. Hence the SLP of R/I
follows from Corollary 29 (2).

PROPOSITION 31. Let R4K[x1 , R , xn ] be the polynomial ring and
let si (x) be the basic symmetric polynomial of degree i , for i4

41, 2 , R , n . Let r be a positive integer. Put

fi 4si (x r
1 , x r

2 , R , x r
n ), for i41, 2 , R , r ,

and I4 ( f1 , R , fr ). Then R/I has the strong Lefschetz property.

PROOF. Let X be an indeterminate. Put z4xn . z r satisfies the
equation

X n 2 f1 X n21 1R16fn 40

which shows that I4 ( f1 , R , fn21 , z rn ). We induct on n . The induction
hypothesis measns that R/(z) has the SLP. So the SLP of R/I follows
from Corollary 29 (2).

REMARK 32. In the above corollary it is well known that the
elements

f1 , f2 , R , fn

are an integrity basis of the ring of invariants by a certain pseudo-reflec-
tion group acting on the polynomial ring K[x1 , R , xn ] by linear transfor-
mation of the variables. Moreover if r41, the ring R/I appears as the co-
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homology ring of the algebraic variety G/B where G4GL(n) is the gen-
eral linear group and B a Borel subgroup. So G/B is the complete flag va-
riety. In this case the ring K[ f1 , R , fn ] is the ring of invariants by the
Weyl group of type An21 . If r42, it is the cohomology ring of G/B where
G4SO(2n11) is the special orthogonal group with B a Borel subgroup.
The ring K[ f1 , R , fn ] is the ring of invariants by the Weyl group of type
Bn . Since G/B is non-singular the Hard Lefschetz theorem states the
same thing as the SLP on these rings. For detail we refer the reader to
[4] and [6].

PROPOSITION 33. Let R be the polynomial ring over K in n vari-
ables and let I%R be a height n complete intersection ideal. Let In (I)
denote the ideal generated by the head terms of elements in I with re-
spect to the graded reverse lexicographic order. If In (I) is a complete
intersection, then R/I has the strong Lefschetz property.

PROOF. That In (I) is a complete intersection means that it is gener-
ated by powers of the variables. Let z be the last variable of R and let r
be the least integer such that z r �In (I). Then it follows that z r �I and it
can be an element of a minimal generating set of I . Moreover, since
In (I1 (z) ) 4In (I)1 (z) ([1] Proposition 15.12), we may use Corollary 29
(2) to prove the SLP of R/I by induction on the number of vari-
ables.

REMARK 34. Let R4K[x1 , R , xn ] be the polynomial ring and let I
be the ideal generated by the set of basic symmetric polynomials in

x r
1 , x r

2 , R , x r
n .

Then In (I) is a complete intersection. In fact we have

In (I) 4 (x1
r , x2

2r , R , xn
nr ).

To prove this, first note that

I4 ( f1 , f2 , R , fn21 , xn
nr ),

as was shown in the proof of Proposition 31. Then induct on n noticing
the equality

In (I) 4In ( f1 , f2 , R , fn21 )1 (xn
rn ).
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