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Quasi-isomorphism and Z(2)-Representations
for a Class of Butler Groups.

H. PAT GOETERS (*) - CHARLES MEGIBBEN (*)

ABSTRACT - is a finite rank torsion-free abelian group which is a ho-

momorphic image, with rank 1 kernel, of a completely decomposable group.
The study of these groups reduces to that of the special form G =
= G[Ai , ... , An ], which is the cokernel of the diagonal imbedding of A, n ... n
n An into Al 0... ED A., where the Ai’s form an n-tuple of nonzero subgroups of
the additive group of rational numbers. With any such group G we associate in
a canonical manner a vector space representation over the 2 element field

~~2~, of the poset typeset (G), consisting of the types realized by the nonzero
elements of G. Let H = G[Bl , ... , Bn be another such group with the same
typeset. We prove that G and H are quasi-isomorphic if and only if aR,G and ERR
are isomorphic representations.

1. - $(1tGroups.. 

In this paper, we continue earlier investigations of the quasi-
isomorphism problem for that special class of Butler groups which occur
as homomorphic images, with rank 1 kernel, of finite rank completely de-
composable groups. This is the class $(1) of Fuchs and Metelli [11] and
the «Butler dual» [6] of the class studied in a series of papers by Arnold
and Vinsonhaler, namely, those groups that occur as corank 1 pure sub-
groups of finite rank completely decomposable groups. Indeed all results

(*) Indirizzo degli AA.: Auburn University, Auburn, Alabama 36849, Vander-
bilt University, Nashville, Tennessee 37240.



obtained here apply with equal force to this latter class via what is by
now a routine dualization process. Two recent papers contain quite diffe-
rent characterizations of when strongly indecomposable G
and H are quasi-isomorphic. In [5] and [6] a characterization is given in
terms of the equality of ranks of a finite collection of functorially defined
fully-invariant subgroups of G and H; while in [11] the characterization
involves properties of a certain 10, 1 }-matrix 6 that transforms a distin-
guished set of types for G into a corresponding set of types for H. We
shall give yet another characterization of the quasi-isomorphism pro-
blem for ~3 ~ 1 ~-groups and furthermore illuminate the heretofore rather
mysterious nature of the Fuchs-Metelli matrix 8. In fact, when G and H

&#x3E; are quasi-isomorphic, then 8 is just the matrix with entries in the field
~(2)= {0~1} associated with a linear transformation that exhibits an
equivalence between canonically defined ~~2~-representations of the po-
sets typeset (G) and typeset (H). Although our solution of the quasi-iso-
morphism problem for $(1)-groups in terms of Z(2)-representations is
more in the spirit of Fuchs-Metelli rather than of Arnold-Vinsonhaler,
we show that the characterization given in [5] is a consequence of the one
obtained in [11].

As we shall shortly note, it suffices to deal with groups that arise
from the following special construction: ... , An ) be an n-tu-
ple of nonzero subgroups of the group Q of rational numbers, and let

= G[Al, ... , An ] denote the cokernel of the diagonal map

Thus we have a canonical epimorphism 7r a: A
1

(D A. - G[Al, ... , where a a (xl , ... , Xn) = 0 if and only if x-

= ... = Xn. Since clearly Im L1 a is a rank 1 pure subgroup
p is a of rank n -1. No real loss of gE

rality is involved in limiting our attention to groups of the form G[(ft]; for
if yr : A1 ® ... G is an epimorhpism with Ker a a rank 1 pure sub-
group, then it is easy to see that modulo a permutation there is an nz K n
such that G is isomorphic to the direct sum of Am + 1, ... , An and a group
quasi-isomorphic to G[A1, ... , Am ]. We shall henceforth write

... for ... and so ... &#x3E; x n~ - ·.. ~ if and

only if there is an r in n i =1 Ai such that (xl - yl , ... , xn - yn ) = rln
where 1n denotes the n-vector with all components equal to the rational
integer 1. Up to quasi-isomorphism, G[Ai , ... , An] depends only on the
isomorphism classes of the subgroups Ai , ... , An .
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PROPOSITION 1.1. [15] If Ai = Bi for i = 1, ... , n, then the groups
G = G[A1, ... , and H = G[Bl, ... , Bn ] are 

PROOF. Choose isomorphisms 0 i: Ai -~ Bi for i = 1, ...n, and suppo-
n

se a is a nonzero element of f l Ai . Then there exist nonzero integers
i=1 i n

dl , ... , dn such that ... is an element of 
~. ~. 

Thi fl9 Bi is the direct sum of the maps di 0 1, ... , d. 0,
then and consequently there is an induced homomorphism
Vf : G ~ H such that there is a nonzero integer d with dH c It is

routine to check that d = dl ...dn serves this purpose.

We now fix further notation that will remain in effect throughout this
paper. Henceforth, G = G[Ai , ... , An ], for a given n-tuple (AI, ... , 

with corresponding types for all where n =

={1,2,...,~}. The set 2n of all subsets of n is a boolean algebra with set-
theoretical intersection as multiplication and the addition is symmetric
difference; given by /+J=(7nJ’)U(7’ny)=(/UJ)n(/’UV),
where, of course, I ’ = for each I E 2n . Then 0 and n are, respectively,
the zero and identity elements of 2~; and, as a vector space over Z(2), the
dimension of 211: is n . The importance of the ring 2n to the study of groups
of the form G[a] is a consequence of the conspicuous description of the
typeset of G = G[Ai, ... , as given in [11] and [12] (see Theorem 1.1
below). If I is a nonempty subset of n, then we writer, for the type A í i.
As a matter of convention, the type determined by the rationals Q.

Since we shall be treating the question of when two groups of the
form are quasi-isomorphic, it is crucial that we have a general
method for constructing homomorphisms between such groups. In fact it
is a consequence of Theorem 4.1 below that whenever and are

quasi- isomorphic, there exist monomorphisms between these groups
that are induced by certain matrices. Following Fuchs-Metelli, we shall
let 8kdenote the matrix obtained from the {0, 11 -matrix 8 by replacing
each 0 in the k th column of 8 by 1. With a slight abuse of terminology,
when F c fi we say that x = ~xl , ... , 7 on) is constant on F provided there
is an a e f1 Ai such that xi = a for all i E F; clearly this notion is indepen-

i e F

dent of the representation of x .

PROPOSITION 1.2. eik I is an n x m 10, 11 -matrix
with In contained in the column space of 8, and, for each k E m, let Ek =
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- ~ i E iff: eik = 1}. If H = G[Bl , ... , where type V for
each k E m, then there is an induced homomorphism Vf 8: H -~ G . Mo-
reover, if rank 8 = m , then is quasi-equal to the subgroup of H
consisting of bm) that are constant on 

E m : rank 8k = 

PROOF. By Proposition 1.1, there is no loss of generality in assuming,
for each k e m, that Bk is a subgroup ( Thus each 

has a representation bk = dk where c~ E and dk e D Aj. This
representation of bk is not unique, but if bk = dk is another such re-
presentation, then ck - ck = dk - dk is an element of From this ob-

servation, it follows that there is a well-defined monomorphism 
-~ G given by _ ~ x1, ... , xn) where xi = eik bk + dk for all i; that is
xi = c~ if i e Ek and xi = dk if i E E’:. From the hypothesis that 1n lies in
the column space of 8, it follows that there exists integers aI, ... , am and

m

r # 0 such that 3i 
k=1 I ~

to be the ma

If we wrii

where d=0idi + ... Thus if ( bl , ... , bm ) is in the image of L1 83,
then there is a b E such that b = bk for each and in this case, x2 =

~ . Therefore is the zero map and conse-

quently there is an induced homomorphism ~ ~ : H-G such that

Assume now that rank 8 = m . Then a routine linear dependency ar-
gument shows that a~ # 0 if and only if rank 8k = m . ... , bm) is
constant on ~k = m ~, say, bk = b for all k E F, then

... , bm)) = (Xl’ ... , where xi = rb + d for all i E n and hence
... , bm ~ is in Ker ~ ~ . Conversely, suppose (61, ... , bm ~ is in Ker ~ ~ .
m

Then E eik ak bk + d is a constant independent of i; that is, there is a ra-
k=l 1 m

tional number s such tha s for all k , so that, bk = 0 for all

1~ E F. In case s = 0, the linear independence of the column vectors of 8
implies that for all k; thus, bk = 0 for all On the other

hand, if s # 0, then again by the independence of the column vectors,
k for all k; that is, bk = s for all k E F.o

s r r
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COROLLARY 1.1. Let pa~tition of n where m ~ 2 . If
A~ for each k E m, then there is a canonical monom01

f"=.L/(, 

G[B1, ... , Bm ] -~ G[Al , ... , where 1m 1JI is the pure sub-

group consisting of all ~x1, ... , xn) that are constant on each I~ .

PROOF. Let 8 = be the n x m{0, 1 }-matrix where eik = 1 if and
only if i Thus, in the notation of Proposition 1.2, Ik = Ek for each k E
E m. Moreover, since I,, ..., Im is a partition of n, the column vectors of 8
are linearly independent and their sum is In. Indeed, in the notation of
the preceding proof, a1= ... = am = r = 1. Therefore ~ _ ~ ~ is a mono-
morphism. Furthermore, xm ~ _ ~( ~ b1, ... , bm ~ ) and if 

m

thei i; that is, (Xl’ ... , is constant on Ik

Conversely, if x = ... , Xn) is constant on each Ik, then there exist
elements cl , ... , cm such that xi = ci whenever i Elk. Thus, for each k E
E m, ck E D Ai c Bk and (ci, ... , c~ ~ is an element of G[Bl, ... , Bm ] such

ielk
that ~( ~ c1, ... , = x . The purity of 1m "fJ/ is now easily verified. In-
deed ... , Yn) is an element of G = G[Ai , ... , An ] and if p is a
prime such that py E Im W, then pyj = py; for all i , j that is, yi = y~
whenever i, j Elk and consequently y E Im W..

COROLLARY 1.2. 1 1i for each then there is a
i ~ 7 -1 · ~ ~ -

natural isomorphism between G[A’, 1 ... , and G[A1, ... , An ]. Fur-
thermore, for each k E n, the canonical image of Ak is pure in

G[Ai , &#x3E; ... , A’ I.

PROOF. With for each Corollary 1.1 yields a mono-
morphism W: G[A1 , ... , An ] ~ G[A1, ... , An ] with 1m tp pure in G =
= G[Al, ... , An]. But since rank (Im tp) = n - 1, tp is onto. Finally, becau-U.&#x26;..&#x26;..I.’-’V .L ""’.1..1..1.110. IV ..&#x26;..,.L.&#x26;.U ’J.I..I.V’J...&#x26;...&#x26;..&#x26;..1.""’.1..&#x26;..], r..Jv,",""’’’’’

i’ , the canonical of At is the pure sub

group of G[A/, ... , consisting of all (Xl’ ... , xn) that are constant on

The upshot of Corollary 1.2 is that, after replacing the by the
A/’s, there is no loss of generality in assuming that Ak + f 1 Ai for

all kEn and that each i k = type (Ak ) is in the typeset of G . (Under these
circumstances, the n-tuple is said to be co~mmed in [7]; while in [11],
the group G = G[Ai , ... , An ] is said to be regularly represented.) The
only advantage in this normalization process, however, seems to be a
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psychological one, and moreover it fails to be preserved when one passes
to quasi- decompositions of G (see § 4). Therefore we shall generally
avoid making any such restrictions on the n-tuple ... , 

Our final corollary of Proposition 1.2 will prove to be of fundamental
significance in § 2.

COROLLARY 1.3. Swppose 8 = is an n x ~, {0, 11 -matrix such
that all row sums of 8 have the same parity and det 8 is an odd integer.
If, for each k E n, type (B~ ) ~ ViEk = 1 ~, then
there is a monomorphism Vf 8 : G[B1, ... , Bn ] ~ G[A1, ... , 

PROOF. Since 8 is nonsingular, 1n is in the column space of 8 and, by
Proposition 1.2, it suffices to show that rank 8~ = n for all k E n. In other
words, we need to prove that det ~k ~ 0 for This end appears to
be most easily achieved by means of linear algebra over the field Z(2). To
wit, 1 }-matrix, then detA denotes Z(2)-determinant
of A. From the familiar axiomatic characterization of determinants, it

follows that det2 A = 0(det A ) where 8 : Z~Z(2) is the canonical ring
homomorphism; that is, det2 A = 1 when det A is odd and detA = 0 when
det A is even. In particular, = 1. Consequently, we need only show
that det2 8k ;’A- 0 for each k E n.

Notice that the hypotheses on 8 imply that all row sums are necessa-
rily odd; for otherwise the column vectors of 8 would not be linearly in-
dependent in Next observe by the linearity of det2 that det~8~ =
= det 8 + det,2 ~ where ~ is an n x ?z, {0, 1 }-matrix with all row sums
of even parity. Hence the column vectors of lf are linearly independent in

that is, 0 and therefore det2 ~k = 0, as needed.

Recall that typeset (G) =  type (x): x E G and x ~ 0} where type (x)
is the type associated with the rank 1 pure subgroup of G generated by
x . For x = ... , Xn) an element of G = ... , A ], type (x) can be
calculated explicitly in terms of the types of the Ai’s and the subsets of n
on x which is constant. We defer to [11] or [12] for a proof of the follo-
wing elementary but indispensable result.

THEOREM 1.1. ([11], [12]) If x = ... , is a nonzero eLement of
G = G[Ai , then
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where Jl , ... , Js is the partition of n defined by the requirement that i
and j lie in the same Jk if and only if xi = Xj.

The preceding theorem, of course, yields a characterization of the
typeset of G; namely, a E typeset (G) if and only if there exists some par-
tition II, ... , 1m of n that determines a in the sense that

There may be more than one such partition of n that determines a, but
as we shall see in Theorem 1.2 below there is always a finest such parti-
tion determining cr. But first we shall work with the identity (*) to esta-
blish a fundamental computational lemma (recall that I + J represents
the symmetric difference of the sets I and J).

LEMMA 1.1. Let h , ... , Im and E be subsets of n.

PROOF. (a). By induction, it suffices to consider the case m = 2. As-

(b). If E = n, then the conclusion follows immediately from (*).
Otherwise, I,, ... , Im, E ’ is a partition of n and E =11 + ... + Im . Then
by (a) and ( ~ ),

Notice finally that, s:



Recall that for an arbitrary type a, G(a) = I xE G : type (x) ~ ~~ is a
fully-invariant pure subgroup of the torsion-free group G . Our next re-
sult is an elaboration on a theorem of Wuyen Lee [15].

THEOREM 1.2. Let a E typeset (G) where G = G[A1, ... , An]. Then
there exists a partition II, ... , Im of n that satisfies the following
conditions:

2. For an arbitrary partition Ji, ... , Js ofn, í Jl V a for all l E
E s if and only allles.

for each k E m, then G(a) is the irrzage of
"-~/C 

the canonical map Vf : G[Bi, ..., ...,A~], and consequen-
tly rank G(a) = m 2013 1.

PROOF. We begin with the following observation: If Kl, ..., Kt is a
partition of fi that determines a and if I, J is a partition of ~ such that
V a, then the partition Kl, ..., 1, 1, J also determines a. In-

deed, first observe that Lemma 1.1 (b) with m = 2 yields

But since by Lemma 1.1 (a), we have
the desired conclusion that

Therefore, given a partition of n that determines a, we can by successive
applications of the foregoing observation refine it it to a partition
7i, ..., Im that satisfies number 1 and enjoys the following special
property:

( * * ) For each &#x26;em, if I , J is a partition of Ik, then a.

With regard to item 2, first note that if J is any subset of n which is
the union of Ik’s, then by Lemma 1.1 (a). Conversely, let
J1, ... , J, be a partition of n such that V z ~~ ~ a for all 1 E s. Given any
Jl, there certainly exists some E m with Ik n Jl ~ ~ . The proof of 2 will
be complete if we can show that IkçJz. Suppose to the contrary that Ik c

Then in contradiction to ( * * ), I = Ik n JL and J = Ik n Jl’ yields a
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partition of Ik such that Finally, observe that 3 is
an immediate consequence of 2, Theorem 1.1 and the description of the

image of W as given in Corollary 1.1.

COROLLARY 1.4. Let a E typeset ( G) where G = G[Al, ... , An ]. Then
rank G(a) = 1 if and ouly if there is a nonerrz~ty proper subset E of n
that satisfies the following two conditions:

(i) 

(ii) If I , J is a partition of either E or E ’ , then z I V or.

Furthermore, if conditions (i) and (ii) are satisfied by some nonem-

pty proper subset E of n and if F is a subset of n such that í F V í F’ = a,
then either F = E or F = E ’ .

In the sequel, the (obviously unique) partition 7i..... Im of n descri-
bed in Theorem 1.2 will be referred to as the canonical partition asso-
ciated with a.

2. - The Z(2)-representation associated with G[Al, ... , An]--

In this section, we associate with each G = G[Al, ... , An ] a contrava-
riant Z(2)-representation ERG of the poset TG = typeset ( G ). Generally, if
(T, ~ ) is a finite poset and K is a field, then a contravariant K-represen-
tation of T is a family ( V, Vi : i E T) where V is a finite dimensional vector

space over x, each Vi is a subspace of V, and Vi 2 Vj whenever i ~ j . These
K-representations of T form a category with finite coproducts where a

morphism from ( V, Vi ; i E T ) to ( U, Ui ; i E T ) consists of a vector space
map ~ : V- U such that ç Uj for all j . We say that the representa-
tions (V, Vi : i E T ) and ( U, Ui : i E T ) are equivalent, and write

(V, Ui : i E T ) = ( U, Ui : i E T ), provided they are isomorphic in this

category.
The categories of Q-representations and ~~~~-representations are in-

timately related to the structure of arbitrary Butler groups [10]; see [2]
for a summary and a list of references. Since the Boolean ring 2n is a vec-
tor space over Z(2), the close connection between the subsets of n and
the typeset of G[Al, ... , suggests Z(2)-representations are a possible
vehicle for the study of B 

In fact, as we shall establish in this paper, and

H = G[Bl, ... , Bn ] are quasi-isomorphic if and only if the corresponding
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canonically defined ~~2~-representations ERG and are equivalent. In
the representation the base space will be 2n and the component sub-
spaces are the unital subrings introduced in the following theorem.

THEOREM 2.1. Let G = G[A~
canonical partition of n associated with or E typeset (G). Then (or) =
- ~ E E 2n : í E o~ ~ is a unital subring of 2n with dim 
= rank G(a) + 1 = m . Furthermore, denotes the type of Bk = f 1 Ai +iElk 

_

+ f 1, each k E m, then the map e : --~ 2’~ given by E =

m : Ik g E I is a ring isomor~phism that satisfies the following two
properties:

PROOF. That is closed under addition follows from Lemma 1.1
(a); while closure under intersection is a consequence of the fact that ea-
ch nonempty E E is, by Theorem 1.2 number 2, a union of Ik’s. It is,
of course, obvious from the definitions that contains the minimal
subring {Ø, That dim = m will follow once we establish the as-
sertion about e : -~ 2m .

It is computationally more convenient to work with the inverse of 0
and so we begin by defining a function 0 : 2m --~ 2n by O(E) = U Ik : k E
E E’} = E . Clearly 0 is a one-to-one map and by Theorem 1.2 part 2 , ~
maps 2m onto It is trivial that Ø(E’) = E’ = Ø(E)’. Suppose now
that El = Ø(E1) and E2 = Ø(E2). Since the Ik’s are pairwise disjoint, it is
evident that El That (P preserves addition is a conse-
quence of the following computation:

- - - J

With regard to condition (1), notice that Lemma 1.1 (b) yields :fr =
where .
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Similarly, where d E , ~ 2 E , , and therefore "iF V
V tr = ( ~ E V ~ E , ) = i E as desired. Ify is an element of
typeset (G) a, then clearly G(,u) c G(a) and nG (,u) g nG (a). Re-
calling the identification of G(a) with G[Bl, ... , (Theorem 1.2 num-
ber 3), we see that condition (1) implies that 0 maps nG(I1) onto

Clearly the definition of given above is meaningful even when a
is not in TG = typeset (G). Furthermore, then it is easi-

ly seen that = nG (,u) where /1 is the least type in TG with /1 ~ a. In-
deed when a and /1 are so related, then G(a) = G(I1) and the equation dim

= rank G(a) + 1 remains valid. We shall henceforth let ERG denote
the contraviant Z(2)-representation We could, of

course, replace TG by a larger set of types, but generally we shall only
need to compare representations ERG and 1llH where TG = TH. Notice,
however, that when H = the map (P in the proof of Theorem 2.1 can
be construed as an imbedding of 1llH into ERG.

We shall now adopt further notational conventions that will remain in
force throughout the remainder of this paper: G = G[A1, ... , An ] and

... , Bn ] with i i = type (Ai ) and a = type (Bi ) for all i E n.

The subrings nG(I1) are defined as in Theorem 2.1, while =

- ~ E E 2n : a E V ,u ~ where, of course, = i for any subset E
iEE

of n. We say that the representations and

~=(2~,~(~):~Erc) are equivalent provided TH = TG and there
exists a nonsingular linear transformation Q : 2w such that

= for all/1 E TH.
Our next theorem contains a fundamental criterion for establishing

the equivalence of ERH and ERG

THEOREM 2.2. Let G = G[A1, ... , and H = G[B1, ... , Bn ] where
TG = TH and rank rank for all Suppose that there
exist subsets El , ... , En of n that satisfy the following two condi-

tions :

Then the groups H and G are quasi-isomorphic and the representa-
tions ~,H and ERG are equivalent.



PROOF. First observe that condition (2) is logically equivalent to the
conjunction of the following two conditions:

Define a ] ; E~ . Recalling that I + J =
.1

= 0, we see that ,~ is linear

Then (3) and (4) imply, respectively, that Q(F’) = and that Q

is nonsingular. It then follows that all types p . In-
deed by (1) and Ler
= cr F , and simi

to implies í Q(F) V í 92(F)’ 
In order to prove the reverse inclusion nG(/J) 9 Q(nH(fl», we shall

" 

show has a description similar to the definition of S~ . Towards
this end, observe, Q is necessarily onto and there exist subsets

Fl, ... , Fn of n such that for all We claim then

that

Indeed the hypotheses TG = TH and imply
that dim and consequently 
Then, since S~ is one-to-one condition (1’) follows. We
furthermore maintain that
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and

We shall establish the validity of these latter two conditions via some
linear algebra over Z(2). Let 8 = [ eik ] be the n x n, 10, 1 }-matrix where
e2k = 1 if and only if i E Ek . Thus the column vectors of 8 can be identified
with the characteristic functions of the corresponding Ek’S or alternati-

vely, 8 is the matrix associated with the linear transformation relative
to the canonical of the vector space 2n . Similarly, we
let be the n x n, 10, 1 }-matrix where fji = 1 if and only if j E Fi .
From the familiar fact that the pointwise sum (mod 2) of characteristic
functions .yields the characteristic function of the corresponding sum of
the subsets of 2n, we see that (3) implies that (mod 2) all row sums of 8
equal 1, and (4) tells us that the column vectors of 8 are linearly indepen-
dent in Z(2). Similarly, the equations {z} = reflects the

(2 ~ 

kEFi 
~ 

fact that the matrix product 8 $ as computed in Z(2), is the n x n identity
matrix :In. Therefore det8 = 1 = and consequently the column
vectors of lf are also linearly independent in ~~ 2 ~ ; that is, condition (4’)
holds.

, 
To show finally that condition (3’) is satisfied, we need only verify

that (mod 2) all row sums equal 1. This, however, follows from the
matrix equation ~~ _ ~n and the fact that 8 enjoys this same property.
Perhaps the most convenient way to substantiate this last remark is to

introduce the
Then if ~" and T dei lote the rio

nf 9 rP~I~P(’.t,IVPIV. 1

because ~o(~ k ) = 1 for all k (

Because of (1’), (3’) and (4’), the linear map [2~: ~~~~ ~ ~~~° defined by
Q * (E) = I Fj is nonsingular with S~ * (nG (,~ ) ) all typesu. By

ieE

either a direct computation or by the observation that T= 8" (compu-
ted over Z(2)’ we see that for all

types u. Since TH = TG by hypothesis, we conclude that the representa-
tions and ERG are equivalent. Finally, we note that H and G are quasi-
isomorphic. Indeed, since all the requisite conditions of Corollary 1.1 are
satisfied, we have monomorphisms Wg: H- G and VJT: G-H. This
completes the proof.
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COROLLARY 2.1. If the representations ERH and ERG are equivalent,
then the groups H = G[Bl, ... , and G = G[Al, ... , are quasi-
isomorphic.

PROOF. Let S~ : 2R--*231 be a nonsingular linear transformation such
that = for all ,u in TH = TG . It then follows that rank

for each i E n because TG = TH and hence dim
= dim for each i E n. It suffices to show that the other

hypotheses of Theorem 2.2 are satisfied. Naturally then we introduce
subsets Ei, ... , En of n where for each 1~ . 
E Ek E for each k E n. Also we clearly have 

keF
because F and therefore condition (4) in the proof of Theorem

kEF

2.2 is satisfied since S~ is a nonsingular linear transformation. If we have
= n, then condition (3) in that proof will be satisfied and it will fol-

low that H and G are quasi-isomorphic.
It is possible for but this anomaly can only occur in the

extreme situation where TG contains a unique maximal type. In fact, if a
are distinct maximal types in TG , then _ ~ ~ , 

= nH(¡.,t) n nH (,u ) which will force = n. The point is that if E E n

n nG (,u) with then G will contain a nonzero x = (Xl’ ... , that
is constant on both E and E ’ . This, however, is absurd since Theorem 1.1
would imply type x = So if we may assume
that TH = TG contains a unique maximal type a, in which case nH(Q) c
c nH (fl) and TG (0’) c for allu in TH = TG . There certainly exists a non-
singular transformation with Then if

,S~ 1: 2" - 2" is the linear transformation that restricts to Q o on 
and agrees with Q on some fixed complement, it is routine to check that
Q 1 (nH (,u ) ) = for allu E TH . Finally, redefining the Ek’s in terms of
Sd 1, we see that Theorem 2.2 implies that H and G are quasi-isomorphic
since (n) = n.

The proof of the converse of Corollary 2.1 is more subtle. Exploiting
Theorem 2.1 and a fairly intricate induction on rank, we shall establish
this converse result for strongly indecomposable in § 3.
Finally in the last section, we take advantage of the fact that each
G[a] is quasi-isomorphic to a direct sum of strongly indecomposable
$(1tgroups in order to show that when H = G[Bl , ... , Bn ] is qua-
si-isomorphic to G = G[A1, ... , An ], then the representations and
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ERG are necessarily equivalent. In both instances, Theorem 2.2 will

be an indispensable tool.

3. - Strongly indecomposable $(1tgroups..

We now turn our attention to the quasi-isomorphism problem for

strongly indecomposable groups of the form G[Ai, ... , As noted in

§ 1, independent solutions of this problem have already been given in [6]
and in [11]. Our approach to this problem will, of course, apply techni-

ques developed in the preceding sections and will lead to refinements of
results obtained in these earlier treatments. There are various characte-

rizations of when G = G[Ai , ... , is strongly indecomposable (see [5],
[6], [11], and [14]), but the one we find most convenient is due to Goeters
and Ullery.

THEOREM 3.1. [12] The group G = G[A1, ... , An ] is strongly inde-

composable if and only if, for every and every nontrivial partition

The influence of this particular characterization is evident in the

proof of Theorem 1.2 above. As a consequence of Theorem 3.1, we can re-
move the redundant «cotrimmed» hypothesis from the characterization
of strongly indecomposable groups of the form G[Al , ... , An ] given in [5]
and [6].

COROLLARY 3.1. The group G = G[Al, ... , An] is strongly indecom-

posable if and only if rank G(T k) =1 for all 

PROOF. For each k E n, let r’ k = i k V /B í Ü and note that 0 ~ G(TD ç

because E TG and i ~ ~ Z k . First assume that rank = 1 for

all Then for all k E n, G( í Íc) =G(r~), from which it follows both
that is maximal in TG and that í Íc is the least element of TG which is

-&#x3E;’rk. Now suppose by way of contradiction that G is not strongly inde-

composable ; that is, there exists some k such has a partition
I, J with But then 

A By Corollary 
J= 0 and I, J is not a partition of W.

Conversely, assume that G = G[Ai , ... , is strongly indecomposa-
ble. Then, by Theorem 3.1 and Corollary 1.4, rank G( i k ) = 1 for all k E W.
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It remains to show, for each k , that G(7:k) = G( z k ), or equivalently, that
is the least element of TG which 7: k. Suppose then that a is the lea-

st element of TG with 7: k and let II, ... , 1m be the canonical partition
of n associated with a. Since a, we may assume, by Theorem 1.2
number 2, that I~ _ ~ 1~ ~ and W = 

i U  The desired conclusion

that = a will be obtained once we establish that m = 2 . But if m ~ 2 ,
then I ields a partition of such that

contradicting the fact that G = G[Ai , ... , An ] is strongly indecomposa-
ble.

COROLLARY 3.2. Let G = G[Ai , ... , strongly indecomposable
and aetypeset(G) with rank G( Q) =1. If a=íEVíE’
where E then G

~ A2s , B] is also strongly indecomposable.

PROOF. For each kEn, let Ak = Ak + n Ai and z ~ = i k V i =

= i k. By Corollary 1.2, we can identify K = B]
with ... , Ai:, B], which in turn can be viewed, via Corollary 1.1, as
a pure subgroup of G = G[Al, ..., Then 1 ~ rank K( z 2~ ) ~
~ rank rank G( z ~ ) =1 for all j e s by Corollary 3.1. Similarly.
rank K( a) = 1 and consequently K is strongly indecomposable by ano-
ther application of Corollary 3.1.

Now let z I = for each I c n, and observe that Theorem 2.1 ( 1 )
implies Thus 

A (i É V i É’) that if I , 
and consequently by Corollary 1.4. Therefore 
for I, J a partition of E’ , and it follows (see condition ( * * ) in the proof of
Theorem 1.2) that {~i.}....,{~}~’ is the canonical partition of n asso-
ciated with iE. Then, by Theorem 1.2 (3), K = Finally, a slight mo-
dification of the second half of the proof of Corollary 3.1 leads to the con-
clusion that z E is the least element in TG with z E ~ i E and hence =

= G( z E ) = G[Ail , ... , A2~ , B ], as desired.
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As will be seen in proof of our next theorem, the importance of Corol-
lary 3.2 is that it provides a method for establishing certain results about
strongly indecomposable ~ ~ 1 ~-groups via induction on rank. (For other
illustrations of this technique in the dual context, see [14] and [17].) We
are now in position to prove the main theorem of this section, in which we
.......... ~ - J’" ~ -, - - - - - -

adopt the convention the il when M = 0. In the sequel,
we shall frequently write G --- H to indicate that G and H are quasi-iso-
morphic.

THEOREM 3.2. Let G = G[Al, ... , and H = G[Bl , ... , Bn ] be

strongly indecomposable groups with equal typesets. Then the following
three conditions are equivalent:

(a) G and H are quasi-isomorphic.
(b) The Z(2)-representations ERG and RH are equivalent.

"1 for every proper subset M of

PROOF. We shall first prove that (a) implies (c). Suppose then that
G --- H and the desired conclusion (c) holds for strongly indecomposable
groups of rank  n - 1. By Corollary 3.1 and Theorem 2.1, is 2-
dimensional and is hence spanned by the vectors ~ k ~ and n. It then follo-
ws readily that whenever E is a proper sub-

kEE 

set n. Thus condition (c) is certainly satisfied if the a ï’s are merely a per-
mutation of the r j’s. So without loss of generality, we may assume that z 1
is distinct from all the aj’s. Then G - H implies that G( z 1 ) --- H( z 1 ) and,
by Corollary 3.1, rank = rank G( z 1 ) = 1. Therefore, by Corollary
1.4, there is a nonempty proper subset F of n such 
= z 1 V A í i. Similarly, rank G(a k) = = 1 for all and con-

sequently, by Theorem 2.1 and the proof of Corollary 3.2, dim =

= dim nG(aÍc) = 2 where a’ k V /l a j is an element of TH = TG for all
’l,k

In other words, condition (c) is satisfied in the special case where

We next observe that = Indeed if E is in
- / ’B............ -, ’B. j’ ’- , -- ’- , . J’ .. - , , -

1). On the other hand, this inclusion cannot be
............ , ~_, .. _ .. __ ..

proper since din
N ow supposi
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Corollary 3.2, there is a rank 1 group A 1 of type Ti such that =

... , BZs _ 1, A1 ] and are strongly
indecomposable groups of ranks s - 1 that t -1, respectively, where
s  n, t  n and s + t = n + 2. Since and

G2 = G(aF’) - H(aF’) are also strongly indecomposable groups of ranks
s - 1 and t - 1, respectively. 

"

Write where I is a proper subset of n, and then take
,S = I n F and T = I n F’ . By Theorem 2.1 we have ring isomorphisms
19 F: 0~ : ~(cr~’)~’2 where 0 F map,,

- - 

~ - - ~ - -

Thus, by the induction hypothesis, dim I + 1 and dim V2 =
= dim W2 = IT + 1. Because + ~ ITI _ ~  n , either ISI [  s - 1 or

~ T ~  t - 1. If ,S ~  s -1, then another application of the induction
hypothesis yields dim ( W1 + _ ~ ,S ~ + 2; that is, Con-

sidering inverse images, we see that Similarly, if T ~ I  t -
- 1, then Consequently, one or the other of Vl and V2 fails to
contain and therefore VI n V2 is a proper subspace of riG (a F) n

= nG ( i i ). It follows, since both VI and V2 contain 10, that
dim ( Vi n V2 ) =1. Finally observe that

Since (b) implies (a) by Corollary 2.1, it suffices to prove that condi-
tion (c), together with the other hypotheses on G and H, imply the repre-
sentations G and %H are equivalent. So we assume (c), and than show
that the relevant conditions of Theorem 2.2 are all satisfied. To begin
with, notice that 7: Íc = r k V A i i is in TG = TH and, by the proof of Corol-k 

i;,,! k

lary 3.2, is in fact the least element of TG is ~ 7:k. Thus 0 # H(r[) =

and, since rank G( 7: k) = 1 by Corollary 3.1, we certainly have the
requisite hypothesis; rank G( z k ), satisfied for all 

Next observe that condition (c) implies that dim = 2 for all

k E n, where i is the least element of TH = TG that is
iok

Then by Theorem 2.1, = G(a ) is a rank 1 pure subgroup of
G for each k E n, and therefore an application of Corollary 1.4 yields non-

_ 

empty proper subsets ... , En of n such that í Ek = a Íc for all k E
E n. In particular, we have Ek E for all k E n. It remains then to ar-
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gue that the Ek’s satisfy condition (2) in the statement of Theorem 2.2, or
equivalently, that the Ek’S satisfy both conditions (3) and (4) appearing
in the proof of that theorem.

Towards this end, we begin by noting that the two vectors Ek and n
form a basis for since dim = 2. But then another applica-
tion of condition (c) implies that the n vectors El , ... , En _ 1, n span 2w
and hence form a basis for 2B Therefore for some choice of scalars ak E

E Z(2) &#x3E; and we can write

Recalling the basic fact that (I + J)’ = I + J’ , we see that

where b. = 0 if a = 1 and bn = 1 when a = 0. Replacing En by E’ if necess-
ary, we may assume without loss of generality that a = 1. In fact it then
follows that all the equal to 1. Indeed if, say, a, = 0, then the n - 1

n

vectors E2 , ... , En _ 1, n would span the subspace ), contrary to

the fact that this subspace has dimension n by condition (c). In summary,
+ ... + n, or equivalently, E1 + E~ + ... + En = n. Since

El , ... , En _ 1, n form a basis for 2n, the last equation above implies that
the vectors El , E2 , ... , En are also a basis for 2n . Finally, by linear inde-
pendence, 3i if F # 0; and this observation completes the proof of

the theorem.

Recall that when given an n x n, ~ 0, 1 }-matrix 8, the matrix 8k re-
presents the matrix obtained by substituting the vector ln of l’s into the
k th-column of 8. In [111, 8 is called admissible, if the integral determi-
nant of 8k is nonzero for each index 1~ .

COROLLARY 3.3. Let G = G[A1, ... , An ] and 
strongly indecomposable groups with equal typesets, and suppose
8 = an n x ~,{0, with the property that, for each
k E n, E n : e2k = a nonempty proper subset of n such that

(Bk). Then the following conditions are equivalent:

(1) G and H are quasi-isomorphic.
(2) All row sums of 8 have the same parity and det 8 is an odd

integer
(3) 8 is admissibLe.
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PROOF. Notice first that the existence of such an 8 is not in doubt.

By the proof of Corollary 3.2, maximal element ofk 
2EIC

TH = TG and hence, by Theorem 1.2, there exists a nonempty proper
subset Ek of n such that V í Ek = type (Bk ). As one further
preliminary observation, we have from the linearity of the determinant
function, for all 1~ E n,

is obtained from 8 modifying the k-th column only by repla-
cing each 0 by 1 and each 1 by 0. In other is formed in the

same manner as 8 except that Ek is replaced by its complement Ek .
To see that (1) implies (2), we refer to that portion of the preceding

proof in which it is shown that condition (b) follows from condition (c). As
is noted there, El , ...En _ 1, n span 2n . Furthermore, forgoing the possi-
ble replacement of En by Eg in that earlier argument, we see that either
El + ... + E, - 1 + E, = n or else El + ... + 1 + En = n. Recalling the
relation between sums of the Ek’s and the sums (mod 2) of the column
vectors of 8 (see proof of Theorem 2.2), we have in the fwst instance that
all row sums of 8 are odd and in the second that all row sums of 8 are

even. Thus when El , ... , 1, En span 2n and E1 + ... + En - 1 + El = ~ ,
we have det8 = 1 and = 0; while, when El , ... , E - i , Eg span
2n and El + ...En-l 1 + En = ~ , we have = 1 and det2 8 = 0 . In ei-
ther case, det 8~ is an odd integer by (t).

Observe, by linearity of the determinant function, that det 8~ +
+ det 8~) = 0 for k # n, and that (2) and (t) imply that det 8 and det 8 (n)
have opposite parity. Thus, in view of the proof of Corollary 1.3, condition
(2) implies that det ~k ~ 0 for all k . Finally, assume that condition (3) is
satisfied and note then, the induced map V g: H ~ G of Proposition 1.2 is
a monomorphism. Then, because z ~ = z k V A z i is in TH = typeset (H)k 

and rank G( z k ) = 1, necessarily has finite index in G( z k ) =

= G(r~). Consequently, ~ ~ (H) has finite index in G = 3i G(r~); that is,
kEn

H -~- G , as desired. 
-

The equivalence of conditions (1) and (3) in Corollary 3.4 is, of course,
due to Fuchs and Metelli, and our proof that (3) implies (1) is the same as
given in Proposition 4.5 of [11]. The advantage of our new condition (2)
over condition (3) is that one can check more rapidly whether or not the
former is satisfied. A proof that G --- H implies condition (2) of Corollary
3.4 can also be derived from Yom’s «Vertex Switch» Theorem [17], but
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the proof of the latter itself involves a quite complicated induction on
rank using the same general method needed to establish our Theorem
3.2.

On the other hand, the original Fuchs-Metelli characterization re-
mains a potent tool with applications that do not follow directly from
condition (2) of Corollary 3.4. As an illustration of this fact, we shall next
show that when G and H are as in Theorem 3.2 then the analogue of con-
dition (c) with the replaced by the corresponding is also

equivalent to G --- H. It should be noted that this yields a slight refine-
ment of the Arnold-Vinsonhaler characterization [6].

COROLLARY 3.4. Let G = G[A1, ... , An ] and H = G[Bl, ... , Bn ] be
strongly indecomposable groups with equal typesets. Then G and H are
quasi-isomorphic if and only if the following condition is satisfied:

PROOF. From Corollary 3.2 and Theorem 1.1 (3), it is a routine induc-
tion to show that ran: ! ~ I whenever M is a proper subset

... , Indeed if F is a nonempty proper subset of n, then each
nonzero element of 2: has a positive multiple r = ... , xn ) with

iEF .

Xj = 0 for Thus, if G --- H then ran1

Conversely, assume that condition ($) is satisfied. In particular then,
rank = 1 for each i E n. Let 8 be as in Corollary 3.4, and assume by
way of contradiction that G and H fail to be quasi-isomorphic. Then by
condition (3) of Corollary 3.4, there must exist some 1~ E n such that det
8k = 0; say, rank 8~ = m  n . We shall let E1, ... , En denote the column
vectors of 8. By permuting the elements of n, we may assume that k = n
and that the column space of 8n is spanned by 1n and the column vectors
E1, ... , Em - 1 of 8. Since then Em is a rational linear combination of these
vectors, there exist integers aI, ..., am _ 1 and a such that

with 0 . Clearly, we can take these integers to lie in f 1 Ai and hence
iEn

we may view ... , amEm as elements of the group 
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Notice also by Theorem 1.1 (3) that is in for

i = 1, ..., m . Consequently, gm = g1 + ... + gm -. 1 is a nonzero element of
G(a m) n ( G( Q 1 ) + ... + Since rank = 1, is con-

tained in the pure subgroup ( G( ~ 1 ) + ... + G( Q m _ 1 ) )* generated by
m-1

L But thei

which contradicts condition (t). 0

4. - Quasi-isomorphism implies equivalence of representations..

In this final section, we complete our proof that G =

= G[A1, ... , An ] - H = G[Bl, ... , implies that the representations
ERG and ERH are equivalent. The proof will be by induction on the rank of
the groups and will, of course, rely heavily on the fact that the result hol-
ds in the case where G and H are strongly indecomposable (Theorem
3.2).

We begin with a basic fact about quasi-decompositions of groups of
the form G[a]. In the formulation of this preliminary result, we find it
convenient to use the following ad hoc notation: If I = ~ i1, ... , is the
subset of n with III = s , then we let denote the 

G[Ail , ... , 

LEMMA 4.1. Let I and J be subsets of n such that I U J = n and I n
n J = ~r~. If z j then

(a) and

(b) iEViE’ = whenever E is a subset of I not contai-
ning r.

PROOF. The assertion (1) is established in both [12] and [15]. Now
suppose and let E be a subset of I with Then 

As noted in [12], repeated applications of the first part of Lem-
ma 4.1 yields, via Theorem 3.1, the following fundamental fact:
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rj, where

whenever j ~ 1~ and each is strongly indecomposable. This result
also appears (with less formal notation) in [11], and was first proved in
the dual setting in [4]. By J6nsson’s celebrated version of the Krull-
Schmidt theorem for quasi-decompositions of finite rank torsion-free

groups [16], we conclude the following: If H = G[Bi, ... , Bn ] is quasi-iso-
morphic to then with

for each 1~ . These observations coupled with Theorem
3.4 serve as a basis for the proof of our main theorem, but the second as-
sertion in Lemma 4.1 will play an equally important role.

Although the simultaneous decompositions of quasi-isomorphic
groups G[A1, ... , An ] --- fli ... Q9 and H --- G[Bil I E9... fli
E9 with ostensibly resolve the issue of the equiva-
lence of []{,G and ~,H by Theorem 3.2 and the fact that coproducts of re-
presentations match up quite nicely, some precautions must be adopted.
Plainly put, when G quasi-decomposes into G = fl3 G[aj] arising
from an r E I n J satisfying []{,G fails to be the coproduct of

and This is because the vector space dimensions are simply
not right. This difficulty is overcome by passing from to the reduced

representation %G wherein 2~ and each component subspace is replaced
by the corresponding quotient space modulo 10, Wl.

Note that equivalence of representations is preserved under this re-
duction ; that is, 1llH = if and only if 1llH = ERG. Indeed if = ERG via
a vector space isomorphism S~ : 2~~2~, then as observed in the proof of
Corollary 2.3 we may assume that = n and hence _S~ induces an iso-

morphism on quotients modulo {Ø, fi) which will yield 1llH = ERG. On the
other hand, if Q : 2~7{0,~}2013&#x3E;2~/{0,~} is a vector space isomorphism
associated with an equivalence 1llH = ERG, then we can take Q : 0 - 2w to
be any of the 2n -1 liftings as follows: For each 1 ~ j  n, select Ej
such that + {Ø, = Ej + {Ø, Then extend ,S~ linearly, in that

Since D(E + ( 0 , fi) ) = F + ( 0 , fi) is an element of
jEF

nG (~)/~ ~, n~, then either possibility Q(E) = F or Q(E) = F’ yields a
member of nG (a), showing that S~ is a representation isomorphism from

onto ERG.

LEMMA 4.2. Let I, J and r be as in the statement of Lemma _4.1 so
that G --- Gl E9 G2 where G1= and G2 = G[aj]. Then RG = fl3
E9 ’%G2 -
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PROOF. First note that, for a fixed subset I of n, the map E ~ E n I
is a ring epimorphism from 2n onto 2,. Therefore the correspondence
E -~ (E n I , E n J) induces a linear map S:2~/{0.~}-~/{0./}e

J~. Moreover, the hypothesis on I and J insures that is one-to-
one and hence a vector space isomorphism since n - 1 = ( ~ I ~ - 1 ) +
+ ( ~ J ~ -1 ). If I(a) and J(a) are defined in the manner analogous to
the definition of then by Theorem 2.1, dim (I ( o~) /~ ~ , I ~ ) +
+ dim (J(Q)/~ ~, J 1) = rank Gl (a) + rank G2 (Q) = rank G(a) =
= dim (nG (c~)/~ ~ , ~il). Finally, Lemma 4.1 (b) and this latter observation
imply that Q defines an equivalence between 1llG and ’%Gl

We now have all the ingredients needed to establish our main

result.

THEOREM 4.1. Suppose that G = G[A1, ... , An ] and H =

= G[B1, ... , Bn ] have the same typeset. Then G --- H if and only if the Z(2)-
representations ERG and ~,H are equivalent.

PROOF. By Corollary 2.1, it remains only to show that H --- G implies
or equivalently, From the discussion following

Lemma 4.1, we have G - G[crl¡] fl3 ... fl3 and H --- fl3 ... fl3
E9 where, for each i = 1, 2 , ... , s , and are quasi-iso-
morphic strongly indecomposable groups.

For notational simplicity, let Gi = and Hi = for i =

=1, 2 , ... , s . Since the process of obtaining the quasi-decompositions for
G is by successive applications of Lemma 4.1, repeated applications of
Lemma 4.2 yields
conclude that 8tH::::::: 8tG as desired.

In closing, we note that it is possible to give an alternative proof of
Theorem 4.3 using Theorem 2.2 together with Theorem 3.2 and an induc-
tion on rank. Such a proof is technically more complicated since it invol-
ves the detailed analysis carried out in [13] of quasi-decompositions

... , A J - EÐ G[aj] where I is a subset of n with a pre-
scribed strongly indecomposable quasi-summand of G[Ai, ... , An ].
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