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Globally Invertible Differentiable or Holomorphic Maps.

E. BALLICO (*)

0. Introduction.

The following problem was studied in [8]. Let M be a connected C °°
manifold and f : M-M a locally invertible surjective C °° function. Is

every such f invertible? The answer was that this is the case if the funda-
mental P) of M is finite (where P is any point of M). Of
course, sometimes the answer is negative, e.g. for the circle. If instead of
a locally invertible map f : M ~ M we consider a locally invertible map
f ’ : N ~ M with M fixed but with fixing the domain N, then the answer is
obviously negative for every M P) ~ 0 (see [8, Cor. 4] for a
particular case). But we want to consider the original problem in which
the domain and the target are the same, i.e. we do not want to change
our «universe». We consider only compact manifolds. We will give sev-
eral examples of compact manifolds for which the answer is negative, but
we will show that very often, «usually», the answer is positive. The moti-
vation behind [8] was explained at the end of the introduction of [8] and
in [8, sections 4.2, 4.3 and 4.4]; key words: Market Equilibrium, Limited
Arbitrage and Uniqueness with Short Sales.

In the first section we will give several remarks on this topic and pro-
ve the following result.

PROPOSITION 0.1. Fix an integer n ~ 5. Let Mtop be a compact con-
nected topological n-dimensional manifold which admits a differentia-
ble structure and with ir i (M top’ P) = 0 for every i ; 2. There exists a dif-
ferentiable structure M on Mtop and a locally invertible differentiable

(*) Indirizzo dell’A.: Dept. of Mathematics, University of Trento, 38050 Povo
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map f : M -~ M with deg ( f ) ; 2 if and only if n 1 (Mtop, P) contains a
proper subgroup H of finite index with H z 1 (Mtop, P) as abstract
groups.

It is well-known (see the exercise on page 180 of [14]) that for every
integer n ; 4 any finitely presented group may be realized as the funda-
mental group of a compact connected n-manifold. If dim (M) = 2 we give
a complete classification: the answer is negative if and only if M is either
a 2-torus or a Klein bottle (Proposition 1.11 ). We stress that 0.1 follows
very easily from standard properties of K(z, 1 )’ s and that all results of
section 1 are just easy exercises. However, we believe that the problem is
nice and that it is reasonable to study it in several different catego-
ries.

In section 2 we consider the same problem for compact complex ma-
nifolds and holomorphic maps. Here is the main result of this pa-
per.

THEOREM 0.2. Let X be a compact complex surface such that there
exists a holomorphicl ocally invertible map.7r: X -~ X with deg(z) &#x3E; 1.

Then X belongs to one of the following classes:

(i) X = E x B with E elliptic curve and B smooth curve of genus
; 2;

(ii) X is a torus;

(iii) X is a hyperelliptic surface;

(iv) X is a minimal ruled surface over an elliptic curve;

(v) X is one of the non-kdhler surfaces without curves and with
bl (X) =1 constructed by Inoue in [12].

Every product E x B with E elliptic curve, every torus, every hype-
relliptic surface and every surface as in (v) has such a non-trivial cove-
ring. ,Some but not all the minimal ruled surfaces over an elliptic cur-
ves have such a non-trivial covering.

For a complete description of the minimal ruled surfaces over an el-
liptic curve with such a non-trivial covering, see 2.3.

The author wants to thank the referee for fundamental contributions.
The author was partially supported by MURST (Italy).
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1. Differentiable maps.

Unless otherwise stated we will use the following notations and con-
ventions. Let M be an n-dimensional differentiable connected compact
manifold and f : M - M a locally invertible differentiable map. Since M
is compact, the continuous map f is a covering map. For any P E M, set
d : = card ( f -1 (P) ). Since M is connected, this integer d is independent
from the choice of P and will be called the degree deg ( f ) of f . To avoid
trivialities we always assume d ~ 2. Let X be a compact connected com-
plex manifold and a: X ~ X a holomorphic locally invertible map. Hence
Jr is a covering map; again we will set d : = deg (jr) but we will call n the
complex dimension dimc(X) of X; hence X is a 2n-dimensional compact
differentiable manifold.

REMARK 1.1. Fix P E M. Since f is a covering map there is a sub-
group H of .7r 1 (M, P) with H of index d and H = (M, P). In particular

P) has a proper subgroup of finite index isomorphic to P).
If the universal covering of M is contractible, i.e. if M is a

1 (M, P), 1) (or, equivalently, P) = 0 for every i ~ 2 ), then
this condition is also a sufficient condition for the existence of a conti-
nuous degree d covering map m : Mt - Mt : just use the universal defi-
ning property of K(.7r, 1 )-spaces.

PROPOSITION 1.2. Let M be a connected differentiable manifold
such that P) has a proper subgroup, H, of finite index isomor-
phic to P). Assume that the topological space Mtop is a K(.7r, 1 ),
i. e. assume .7r i (M, p) = 0 for every integer i ; 2. Assume that the topolo-
gical space Mtop has only finitely many differentiable structures. Then
there exists a differentiable structure, say on Mtop , and an integer
d &#x3E; 2 such that there is a degree d differentiable covering map
f Mdiff - Mdiff ·

PROOF. Let x be the index of H in ,n 1 (M, P). By Remark 1.1 there is
a continuous degree x covering map m : Mtop - Mtop . Fix on the target
Mtop the differentiable structure corresponding to M . Then the covering
map m induces a differentiable structure of Mtop seen as the domain of
the map m and for which the map m is differentiable and locally inverti-
ble. The same is true if we take instead of m any iteration of the map m.
Since Mtop has only finitely many differentiable structures, we will find a
differentiable structure Md;ff on Mtop and an integer t ~ 1 such that the
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map m o ... o m (t times) induces a differentiable covering map from Mdiff
onto itself.

REMARK 1.3. With the notations of 1.2, call x the index of H in

P). The proof of 1.2 shows the existence of a positive integer t su-
cht that we may find a differentiable structure Mdlff on Mtop and f with
deg (f) = xt.

PROOF OF PROPOSITION 0.1. For any compact topological n-manifold
Z, let be the set of all smooth structures on a topological manifold
homotopic to Z. Since n ; 5 the set is finite ([13, p. 2]). By as-
sumption we have Hence we conclude by Remark 1.3.

EXAMPLE 1.4. Let M = be a compact real torus, i.e. the quo-
tient space (seen as an additive group) by a discrete subgroup of
translations T with compact; we may take We see easily di-
rectly that for every integer d &#x3E; 1 there is a degree d differentiable cove-
ring map f : M -M. This follows also from Remark 1.1 or from the case
n = 1 (the circle) and Example 1.6 below.

EXAMPLE 1.5. Let X be an n-dimensional complex compact torus,
i.e. a compact complex manifold isomorphic to en I r, where 7" is a rank 2 n
subgroup of the abelian group Cn acting on C’ by translations. Fix an in-
teger t ~ 2. The multiplication by t on Cn induces a covering holomorphic
map of degree 

EXAMPLE 1.6. Let D be any differentiable manifold. Let M be a dif-
ferentiable manifold such that there exists a locally invertible differen-
tiable map f : M ~ M of degree d &#x3E; 1. The map f induces a differentiable
map g : M x D -~ M x D , g( (x, y)) : _ (f(x), y), which is locally inverti-
ble and with deg ( g) = deg ( f ) &#x3E; 1. Furthermore, g is proper or a cove-
ring map if and only if, f has the same property. Hence from any example,
M, we obtain in a trivial way a huge number of higher dimensional exam-
ples. The same is true in the category of complex manifolds and holomor-
phic maps.

REMARK 1.7. Since the topological Euler characteristic is multipli-
cative for finite coverings, we have e(M) = 0. The same is true for a com-
plex compact manifold X and for the complex Euler characteristic

z(0x).



29

REMARK 1.8. Since f is locally invertible, we have f * ( TM) = TM.
Since d # 1, this implies that all Pontryagin numbers of M are zero ([14,
§ 16]). For a compact complex manifold X as above the same is true for
its Chern numbers related to its holomorphic tangent bundle ([14, § 16]).
In particular we have cl (X)’ = 0 and = 0.

LEMMA 1.9. Assume M not orientable and Let u : M’ -~ M be the

orientation covering. Hence u is a double covering and M’ is connected
and orientable. Let f : M - M be a degree d covering. Then there exists
a degree d covering f ’ : M ’ ~ M ’ such that f o u = u o f ’.

PROOF. Let (M " , u ’ , f ’ ) be the cartesian product of the maps f and
u . Hence M " is a differentiable manifold and u ’ : M " - M, f ’: M " -~ M ’ f

are covering maps with deg (u ’ ) = 2 , deg ( f ’ ) = d and f o u ’ = u o f " . It is
sufficient to check that M" and M’ are diffeomorphic. Since M’ is orien-
table, every connected component of M" is orientable. First we assume
that M " is connected. By definition of orientable covering the map u ’
factors through u , say u ’ = g o u . Since both u ’ and u are degree two co-
vering maps, g is a diffeomorphism, as wanted. Now assume M" not con-
nected. Since deg (u") = 2, this implies that M" has two connected com-
ponents, each of them mapped by u " diffeomorphically onto M . Since M
is assumed to be not orientable, we obtained a contradiction.

REMARK 1.10. Let M be a compact 2-dimensional manifold with a
covering map of degree d ~ 2. By Remark 1.7 we have e(M) = 0. Hence
if M is orientable, then it is a torus. Viceversa, by Example 1.4 every to-
rus has such a non-trivial covering. Now assume M not orientable. By
the first part of the proof and Lemma 1.9 the orientable covering M’ of
M is a torus. Hence M is a Klein bottle ([15, bottom of p. 75]). We see M’
as R 2 /Z2 and M as the quotient of M ’ by the involution M’- M’ in-

duced by the affine map m : R 2 --~ R 2 with m( ( x , y ) ) = ( x + 1 /2 , - y ).
Fix an odd integer n ~ 3 and set d : = n 2. Let f ’ : M ’ - M ’ be the degree
d local diffeomorphism induced by the linear map f " : R 2 ~ R 2 with
f"((x, y)) _ (nx, ny). Since n is odd we have f" o m((x, y)) = (nx +
+ n/2, -ny), m o f"((x, y)) = (nx + 1/2, -ny) and hence f’ o a = a o f’ in-
duces a degree d differentiable map f : M - M. Since f ’ is locally inverti-
ble, f is locally invertible. Hence the Klein bottle is a solution of our pro-
blem and the only non-orientable one. Hence we have proved the follo-
wing result.
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PROPOSITION 1.11. Let M be a compact 2-dimensional manifold
with a covering map of degree d ; 2. Then M is either a torus or a Klein
bottle. Viceversa, for every integer d ; 2 the torus has a degree d diffe-
rentiable covering map and for every odd integer n ; 3 the Klein bottle
has a degree n 2 differentiable covering 

2. Compact complex surfaces.

In this section we prove Theorem 0.2. To prove 0.2 we will analyze
several cases. In some of the cases we will obtained very precise infor-
mations which go much further than just the statement of 0.2. Let X be a
complex compact smooth surface such that there exists a locally biholo-
morphic map with d : = deg (n) &#x3E; 1. Since the fundamental

group of X is infinite, X is not a rational surface. Hence X contains at mo-
st finitely many exceptional curves of the first kind. Assume the existen-
ce of an exceptional curve D of the first kind. Since D = P1 is simply con-
nected and each connected component, T , has normal bundle

isomorphic to N D/x,f-1 (D) is the disjoint union of d exceptional cur-
ves of the first kind. Hence there is no such D, i.e. X is a minimal surface.
Since we obtain i.e. Furthermore,
e(X) = X(Ox) = 0 (Remark 1.7). From the classification of surfaces (see
[5, table on bottom of p. 402] and exclude the elliptic surfaces which are
not hyperelliptic or a torus or have an elliptic curve as a factor) we will
obtain that X belongs to one of the following 6 classes:

1) a P’-bundle over an elliptic curve;

2) a complex torus;

3) a hyperelliptic surface;
4) an analytic surface with C(X) = C, i.e. such that the only mero-

morphic functions on X are the constant ones;

5) a product E x B with E elliptic curve and B smooth curve with
~a(B) % ‘2 ~

6) a non-algebraic surface with algebraic dimension a(X) = 0.

To check if one of the surfaces in cases 1), ... , 6) has a self-map, we
need to consider the case K(X) = 1 and the case a(X) = 1. Since 
= = 0, in both cases X must be an elliptic fibration f : X ~ B with B
smooth curve and + 1 = 0x) a 2. By [4, Lemme at p. 345] X
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is birationally equivalent to E x B with E elliptic curve. Since X is mini-
mal, we have X = E x B . Any surface E x B gives a solution to our pro-
blem by 1.6.

For every complex torus X and every integer t ~ 2 there is such map
yr with d : = deg (,,r) = t 4 (Example 1.5).

(2.1) Here we assume that C(X) = C , i.e. that the only meromorphic
functions on X are the constant ones. In particular X is not algebraic. By
[7, Th. 2.16] X contains only finitely many irreducible complex curves.
Fix an irreducible curve A c X (if any). Notice that for every irreducible
component, B, of :rr -1 (A) we have Furthermore, if

~a (A) ~ 2 , then p, (B) &#x3E; ~a (A), unless z I B : is an isomor-

phism ; in this case, since deg (Jr) &#x3E; 1, there is another irreducible compo-
nent of (A ). By iterating ;r we see that the finiteness of the set of cur-
ves in X implies that for every such curve A the algebraic set :rr -1 (A ) is
irreducible and 1. Notice = deg (,~)(A ~A).
Since X has only finitely many curves, we see that the set of all possible
self-intersection numbers A ~A is bounded. Since &#x3E; 1, we obtain
that for every curve A c X we have A’A = 0 . We claim that if Pa (A) = 0 ,
i.e. if A = P’, this implies that X is a ruled surface. To check the claim use
for instance that the normal bundle NA of A in X is trivial, h ° (A , A) =
= 1, h 1 (A , NA ) = 0 and hence that by deformation theory A moves inside
X is a one-dimensional family. In particular if Pa(A) = 0, then X is alge-
braic, contradiction. Now assume Pa (A) = 1. By the adjunction formula
and the assumption A’A = 0, we have = 0, i.e. A is an irreducible
curve of canonical type in the sense of [5, Def. 1.6 of part 2]. By [5, Th. 4.2
of part 3] X is an elliptic surface. Hence X contains infinitely many com-
plex curves, contradiction. It remains the case in which X contains no
complex curve. In summary, we have excluded all compact complex sur-
faces X with C(X) = C except the ones without any complex curve. For
this case, see 2.4, 2.5 and 2.6.

(2.2) Here we assume that X is a hyperelliptic surface. We want to
prove that for every integer t prime to 12 there is an unramified covering
,r : X- X with deg (z) = t . By [5, p. 37], there are two elliptic curves El
and Eo and a finite abelian group G acting on El x Eo and such that X =
- El x Eo /G . Furthermore, all such groups G and all such actions are com-
pletely classified (see [6, p. 37]; as remarked there, the subcase a3) does
not occur in characteristic 0). In all these cases the action of G on El x Eo
is induced by an action of G on El and an action of G on Eo and for every
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h E G the corresponding action of h on El is given by the translation with
a point P( h ) E E1; P( h ) is a torsion point of El ; we need to know P( h ) only
for the generators of G. Here we consider subcase al); we have G = Z/2Z
and if h E G is not the identity P(h) is any torsion point a E El whose or-
der is 2. Take any odd integer z and consider the map a : E1 x x

x Eo given by a( (x , y ) ) = ( zx , y ); a is a degree z unramified covering; sin-
ce 2 a = 0 and z is odd, we have zP( h ) = P( h ); thus the action of G com-
mutes with a and hence it induces a degree z unramified covering
f : X-X, as wanted. The same proof works in subcases bl), cl and d),
i.e. in the other subcases in which G is cyclic; we have card ( G ) = 3 (resp.
4, resp. 6) in subcase bl) (resp. cl), resp. d)); here we take a generator h
of G and take as P( h ) any torsion point of order card (G); we take as z
any integer prime to card (G). Now we consider subcase a2); we have
G = (Zl2Z) x (Zl2Z); if h , h ’ are generators of G , P( h ) and P( h ’ ) are di-
stinct torsion points of El with order 2; again we take the same map a
with as z any odd integer. Now we consider subcase b2); here G =
= (Z/3Z) x (Zl3Z) and we may use the same map a with as z any integer
such that z = 1 mod (3). Now we consider subcase c2); here G = (2!/2Z) x
x (Zl5Z); just take z =1 mod (4) and conclude in the usual way.

(2.3) Here we assume that X is a Pl-bundle over an elliptic curve C.
This implies the existence of a rank 2 vector bundle E on C such that X =
= P(E) ([3, Th. III.10]). We want to classify all such vector bundles E and
hence all such surfaces X . If E , E ’ are rank 2 vector bundles on C we ha-
ve P(E) = P(E ’ ) if and only if E ’ = E Q9 L for some L e Pic ( C) ([9, Prop.
V. 2.2]). since deg (E ©L) = deg (E) + 2 deg (L) ([8, p. 408]), to achieve
such classification we may assume that either deg (E) = 0 or deg (E) =
- -1. Since every fiber of g is simply connected, the unramified degree d
covering Jr is induced by an unramified degree d covering v : C- C.
Hence there is a L ePic(C) such that v * (E) = E ® L . We have

deg (v * (E)) = deg (v) - deg (E) and hence deg(L) = (d -1 ) deg (E)/2 . M.
Atiyah gave a complete classification of all vector bundles on an elliptic
curve ([2, Part II]). First assume deg (E) = 0 . If E is indecomposable, up
to a twist by a line bundle, E is uniquely determined and it is a non-tri-
vial extension, e , of Oc by 0c . The set of all extensions of 0c by Oc is pa-
rametrized by the abelian group H 1 (C, OC) = C which has no torsion. In
this case v * (E) is still semi-stable and given by the extension de of 0c by
Dc. Hence v * (E) is indecomposable and we have v * (E) ==EQ9L for so-
me L E Thus in this case P(E) is a solution of our problem. Now
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assume E decomposable, say with A E Pica ( C), B 
and a ~ 0 . We have v * (A) EPicda(c) and v * (B ) EPic-da(C); by Krull-
Remak-Schmidt theorem ([l]) the indecomposable factors of a vector
bundle on C are uniquely determined, up to a permutation; hence a
necessary condition for the existence of L E Pic (C) such that v * (E) = E
is that a = 0 ; indeed if a &#x3E; 0 we should have either A ® L = v * (A)
(forcing deg (L ) _ ( d - 1 ) a &#x3E; 0 ) and B (9 L =- B (forcing deg (L) =
_ (1-d) ao) or A®L=v*(B) (forcing deg(L) _ - (d+1) ao) and
B ®L = v * (A) (forcing deg (L) _ (d + 1 ) a &#x3E; o). Now we assume Up
to a twist by a line bundle we may assume A = Ox. Hence v * (A) = Ox.
Every B E Pico (C) with v * (B ) = B gives a solution. Since Pico (C) is an el-
liptic curve, it has exactly d 2 torsion points of order dividing d. Hence
there are exactly d 2 line bundles B E Pico (B) with v * (B) = B and each of
these line bundles gives a solution of our problem. Viceversa, any other
solution of our problem is given by a pair (B , v), B E Pic° ( C), such that
there exists L E Pico (C) with L = v * (B) and withE 0 L = OC . Hence L =
= B * and for fixed v we need to find all B E Pic° ( C) with v * (B ) = B * . If v
is just the multiplication by an integer t &#x3E; 0 (and in this case d = t 2 )
v * (B ) B 0’ and we are looking for all the line bundles, B , such that
B ®~n + 1 ~ - 0c, i.e. we are looking for the torsion points of Pic° (C) with
order dividing n + 1. On a general elliptic curve C the only endomorphi-
sms of C are induced by the multiplication by an integer, up to a transla-
tion and on any elliptic curve the group of all endomorphisms is known
([11, Ch. 12, § 4]). In each case for each elliptic curve we may find all the
possible line bundles B . We just warn the reader that the case B = Oc is
counted twice, because Ox is considered to have order 1, i.e. order divi-
ding both d and n + 1. Now we assume deg (E) _ -1 and use again
Atiyah’s classification of vector bundles on C. First assume E indecom-
posable ; by Atiyah’s classification ([2, Th. 7 at p. 434]), up to a twist by a
line bundle there is a unique such E and such E is semistable; further-
more, for every endomorphism v the bundle v * (E) is semistable, i.e. it is
either indecomposable or the direct sum of two line bundles with the sa-
me degree; if d is even v * (E) cannot be stable, because no rank 2 vector
bundle on E with even degree is stable; hence if d is even the pair (E, v)
does not give a solution. Assume d odd; since v * (E) is semistable and
deg ( V * (E) ) _ - d is odd, v * (E) is stable; hence there is L E Pic (C) with
v * (E) = E ® L ([2, Th. 7 at p. 434]); hence in this case (E, v) gives a
solution. Now assume E decomposable, say E = A EB B with A E Pica ( C),

and since v * (A ) v * (B ) 
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and d ; 2, by Krull-Remak-Schmidt theorem ([1]) there is no line bundle
L E Pic ( C) with v * (E) (j ust look again at deg (L)).

(2.4) By [17] and [12, Theorem in § 5], every smooth complex compact
surface without curves is an Inoue surface, i.e. belongs to one of the
three classes of surfaces constructed in [12]. Here we will consider the
case in which X is an Inoue surface SM . We will show that for every such
X and every integer t3 &#x3E; 2 there is a locally biholomorphic map f : X-X
with deg ( f ) = t 3. Fix any such X and an integer t ~ 2 . X is associated to
a matrix M E SL( 3 , Z) with eigenvalues a real, ~3 and fl with ~3
and a &#x3E; 1 ([12, § 2]). There are generators gi, 0 ~ i ~ 3, such
that gigj = if 1 ~ i ~ j ~ 3 and go gi go = for 1 ~ i ~ 3.
Let H be the subgroup of generated by g’ and Let

f : X ’ --~ X be unramified covering associated to H . Since goglgo-l 1 =
and H we obtain that H has index t 3 in

(i.e. that deg ( f ) = t 3 ) and that X’ is associated to M. Hence
X’ = X.

(2.5) Here we fix the complex compact surface X constructed in [12,
§ 3] with respect to the parameters N, p, q , r, t with N E SL( 2 , Z) with
two real eigenvalues, p, q and r are integers with r # 0 and t E C . Here
we will show that for every integer x ~ 2 there exists a degree x 2 locally
biholomorphic morphisms f : X-X. For the construction of X Inoue fi-
xed real eigenvectors ( al , b1 ) and (cr,2, b2 ) of N and then defines X as the
quotient of H x C (H c C the upper half plane) with respect to a group G
of biholomorphic transformation of H x C onto itself with certain gene-
rators go, gl , g2 and g3 (see [12, pp. 273-274]). We define a degree x 2 lo-
cally biholomorphic taking X ’ : = H x
x CIH with H subgroup of G generated by go , ( g2 )x and (~3)’’~; here
we use that the commutator of and ( g2 )x is ( g3 )~ 2. We have X ’ = X
because H corresponds to the same parameters N, p, q , r and t just ta-
king (xa1, xb1) and (xa2, xb2) instead of (a,, b1) and (a2, b2 ) as eigenvec-
tors of N.

(2.6) The proof of (2.5) shows that for every integer x ; 2 and every
complex compact surface X constructed in [12,§ 4] with respect to the pa-
rameters N, p, q and r there is a locally biholomorphic morphism
f : X-X with deg(f) = x 2.

The proof of Theorem 0.2 is over.
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