RENDICONTI del SEMINARIO MATEMATICO della UNIVERSITÀ DI PADOVA

PAVEL SHUMYATSKY

Fitting height of A-nilpotent groups

Rendiconti del Seminario Matematico della Università di Padova, tome 104 (2000), p. 59-62

http://www.numdam.org/item?id=RSMUP_2000__104__59_0

© Rendiconti del Seminario Matematico della Università di Padova, 2000, tous droits réservés.

L'accès aux archives de la revue « Rendiconti del Seminario Matematico della Università di Padova » (http://rendiconti.math.unipd.it/) implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

NUMDAM

Article numérisé dans le cadre du programme Numérisation de documents anciens mathématiques http://www.numdam.org/

Fitting Height of A-Nilpotent Groups.

PAVEL SHUMYATSKY (*)

ABSTRACT - Let A be a finite supersolvable group acting coprimely on a finite solvable group G in such a manner that the fixed point subgroup $C_G(A)$ normalizes every A-invariant Sylow subgroup of G. Let h(G) and k(A) denote the Fitting height of G and the composition length of A respectively. It is shown that under certain assumtions on A the inequality $h(G) \leq k(A) + 1$ holds.

Let A be a finite group acting coprimely on a finite group G. Following [1] we say that G is A-nilpotent if the fixed point subgroup $C_G(A)$ normalizes every A-invariant Sylow subgroup of G. This generalizes the notion of the fixed-point-free action, i. e. the action with $C_G(A) = 1$. The results obtained in [1], [2], [3] show that the relation with the "fixed-point-free" case extends far beyond formal definitions.

Assume that G and A are solvable and let h(G) and k(A) denote the Fitting height of G and the composition length of A respectively. (Thus, k(A) is the number of primes dividing |A| counting multiplicities.) There is a conjecture that if $C_G(A) = 1$ then $h(G) \leq k(A)$. This has been confirmed in many cases (see [5]). In particular, A. Turull showed that the conjecture is true if A is supersolvable and no section of A is isomorphic to $\mathbb{Z}_r \wr \mathbb{Z}_s$ or to $GN(p^{q^e})$, where p is a prime dividing |G| (see [5] for the necessary definitions).

The question on the Fitting height of an A-nilpotent group was considered by E. Jabara [2]. He proved that if A is cyclic of prime-power or-

(*) Indirizzo dell'A.: Department of Mathematics, University of Brasilia, 70910-900, Brasilia, DF Brasil. E-mail: pavel@mat.unb.br

Research supported by FAPDF and CNPq. 1991 Mathematics Subject Classification: 20 D 10.

der then, under some additional assumptions on G, the inequality $h(G) \leq k(A) + 1$ holds. The goal of the present paper is to show that the technique developed by A. Turull can be quite effective in the treatment of length problems for A-nilpotent groups. In fact most of the argument contained in this paper originates from Turull's work [4].

THEOREM. Let G be a solvable A-nilpotent group, where A is supersolvable and no section of A is isomorphic to $\mathbb{Z}_r \wr \mathbb{Z}_s$ or to $GN(p^{q^e})$ for any prime p dividing |G|. Then $h(G) \leq k(A) + 1$.

In fact the hypothesis that G is solvable is superfluous in the above theorem as it is shown in [1] that any A-nilpotent group is solvable. Our first lemma is quite obvious and so we omit the proof.

Lemma 1. Let A act coprimely on a finite group G and assume that G is A-nilpotent. Let N be an A-invariant normal subgroup of G and H an A-invariant subgroup of G. Then A induces an action on G/N and H under which both groups G/N and H are A-nilpotent.

LEMMA 2. Let G be a finite solvable group with $h = h(G) \ge 2$. Suppose that A acts coprimely on G and G is A-nilpotent. Let M be a minimal A-invariant normal subgroup of G and assume that $h(G/C_G(M)) = h - 1$. Then $C_M(A) = 1$.

PROOF. Since G is solvable, M is an elementary abelian p-group for some prime p. Set $C = C_G(M)$ and F/C = F(G/C). Then F/C is a nilpotent p'-group. Let S be an A-invariant Sylow q-subgroup of F for some prime $q \neq p$. By the hypothesis $C_M(A)$ normalizes S and therefore $[S, C_M(A)] \leq M \cap S = 1$. Since M is minimal and S does not centralize M, it follows that $C_M(A) = 1$.

We now require the notion of A-support of G as introduced by A. Turull.

DEFINITION. Let a group A act on a finite solvable group G. A subgroup $P \leq G$ is called a generating A-support subgroup of G if:

- 1) P is normal in AG and P is p-group for some prime p.
- 2) There are AG-invariant subgroups P_1 and H such that

A) $P_1 \le Z(P)$, P/P_1 is elementary abelian and AG-completely reducible,

- $B) H \leq C_G(P_1),$
- C) $H/H \cap C_G(P/P_1)$ is elementary abelian for some prime r,
- D) H acts non-trivially on each H-chief factor of P/P_1 .

Then the A-support of G (denoted by $\operatorname{supp}_A(G)$) is the subgroup generated by all normal in AG subgroups $S \leq G$ such that S is either abelian or a generating A-support.

Lemma 3 ([4, 4.3]). Let G be a finite solvable group and A act on G. Then

- 1. $\cap C_G(X) \leq F(G)$, where X runs through the AG-chief factors of $\operatorname{supp}_A(G)$. In particular $C_G(\operatorname{supp}_A(G)) \leq F(G)$.
- 2. If $N \le G$ and N is normal in AG then $\operatorname{supp}_A(G)N/N \le \operatorname{supp}_A(G/N)$.
 - 3. If $B \leq A$ and (|A|, |G|) = 1 then $\operatorname{supp}_B(G) \geq \operatorname{supp}_A(G)$.
 - 4. $C_A(\operatorname{supp}_A(G)) \leq C_A(G/F(G))$.

The next lemma is immediate from Theorem 4.6 of [4].

- LEMMA 4. Let AG be a solvable finite group with G normal in AG and A supersolvable without sections isomorphic to $\mathbb{Z}_r \wr \mathbb{Z}_s$ or to $GN(p^{q^e})$ for any p dividing |G|. Let k be a field of characteristic not dividing |A| and M an irreducible kAG-module. Assume
 - 1. M is faithful for G;
 - 2. $B_1 > B_2$ are normal subgroups of A with $|B_1/B_2|$ a prime;
 - 3. $C_M(B_1) = 0$ and $C_M(B_2) \neq 0$.
- If $S = \text{supp}_A(G)$, we have $C_S(B_1) = C_S(B_2)$ and $C_{G/F(G)}(B_1) = C_{G/F(G)}(B_2)$.

THEOREM. Let G be a solvable A-nilpotent group, where A is supersolvable and no section of A is isomorphic to $\mathbb{Z}_r \wr \mathbb{Z}_s$ or to $GN(p^{q^e})$ for any prime p dividing |G|. Then $h(G) \leq k(A) + 1$.

PROOF. Let $1 = A_0 < A_1 < \ldots < A_n = A$ be a chief series of A. Set h = h(G). By Lemma 3, we can choose an AG-chief factor F_1 of $\operatorname{supp}_A(G)$ such that $h(G/C_G(F_1)) = h - 1$. If h - 1 > 0 we can choose an AG-chief factor F_2 of $\operatorname{supp}_A(G/C_G(F_1))$ such that $h(G/C_G(F_2)) = h - 2$. Continuing this process we obtain AG-chief factors F_1 , F_2 , ..., F_h of G such that for any $1 \le i < j \le h$ either F_j is a factor of $\operatorname{supp}_A(G/C_G(F_i))$ or F_j is a factor

of $(G/C_G(F_i))/F(G/C_G(F_i))$. Lemma 2 shows that if $i \leq h-1$ then $C_{F_i}(A) = 1$. We therefore can define the map

$$f: \{1, ..., h-1\} \rightarrow \{1, ..., n\},$$

where f(i) is the smallest k such that $C_{F_i}(A_k) = 1$.

If k = f(i) = f(j) for some j > i then, by Lemma 4 applied with A_{k-1} and A_k in place of B_2 and B_1 respectively, we have $C_{F_j}(A_k) = C_{F_j}(A_{k-1})$. But then $f(j) \le k-1$, a contradiction. Therefore f is one-to-one and $h \le n+1$.

REFERENCES

- [1] Antonio Beltrán, Actions with nilpotent fixed point subgroup, Arch. Math., 69 (1997), pp. 177-184.
- [2] ENRICO JABARA, Una generalizzazione degli automorfismi privi di coincidenze, Rendiconti Accad. Naz. Sci. XL, Memorie di Matematica, 101, Vol. VII (1983), pp. 7-14.
- [3] HIROSHI MATSUYAMA, On finite groups admitting a coprime automorphism of prime order, J. Algebra, 174 (1995), pp. 1-38.
- [4] A. Turull, Supersolvable automorphism groups of solvable groups, Math. Z., 183 (1983), pp. 47-73.
- [5] A. TURULL, Character theory and length problems, in: Finite and Locally Finite Groups, NATO ASI Series, Series C: Mathematical and Physical Sciences, 471, Kluwer Academic Publishers, 1995, pp. 377-400.

Manoscritto pervenuto in redazione l'1 settembre 1998.