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A Third Look at Weight Diagrams.

NIKOLAI VAVILOV(*)

ABSTRACT - In this paper, which is a sequel of [PSV], we develop a completely ele-
mentary approach to calculations in Chevalley groups G = G(O, R) of types
0 = E6 and E7 over a commutative ring using only the weight diagrams
(alias, crystal graphs) of their minimal modules. After an elementary con-
struction of a crystal base we explicitly describe action of root subgroups and
of the extended Weyl group, multilinear invariants, equations defining the or-
bit of the highest weight vector and Freudenthal tranvections. As an illustra-
tion of our methods we give the first complete a priori proof of the central step
in the method of decomposition of unipotents (see [VPS], [V2], [VP], [SV]
[VPe]) for these cases. Namely we prove that any singular column v is sta-
bilised by a non-trivial Freudenthal transvection of a certain type («fake root
unipotent») and that there are in fact enough of those to generate the whole
elementary group of type 0 over R as the v ranges over the columns of a ma-
trix g e G . It is known that this result immediately implies the main structure
theorems for G (description of normal subgroups, standard commutator for-
mulae and the like). The results of the present paper provide complete proofs
for the algebraic part of [V2] in the cases of E6 and E7, complete proofs for the
geometric part of the above paper are given in [V7].

Introduction.

Let 0 be a reduced irreducible root system, W = W( ~ ) be the corre-
sponding Weyl group. We fix an order on (P and denote by 11=
- ~ a 1, ... , a L ~, ø + and 0 - the corresponding sets of fundamental, positive
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and negative roots respectively. Then the Weyl group is generated by the
set S of fundamental reflections s, = wa 1, ... , sl = Wa z. As usual P( ~ ) de-
notes the lattice of integral weights of 0 and P( ~ ) + + is the cone of domi-
nant integral weights. Recall that any weight cv E P( ~ ) + + is a non-nega-
tive integral linear combination of the fundamental weights w 1... , ~ L .

Further, let G = G(O, R) be the simply connected Chevalley group
of type (P over a commutative ring R with 1. One can find all the relevant
notions in [A], [B], [C], [H6], [H], [M], [Stl], [S] (see [V2], [V4], [VP] for
many additional references). Fix a dominant weight cv E P( ~ ) + + and let
V = V( cv ) be the Weyl module of G with the highest weight cv . The corre-
sponding representation G ~ GL(V) will be denoted by yr. By A(n) we
denote the set of weights of the representation 7r with multiplicities. An
admissible base v’, A E A(z), of V consits of weight vectors and has the
property that the action of the root unipotents xa ( ~), a is de-
scribed by matrices whose entries are polynomials in ~ with integral
coefficients.

The weight diagram of .7r is a marked graph, whose nodes correspond
to the weights of yr (usually with multiplicites) and two nodes A andu are
joined by a bond marked i if their difference A - 03BC = a i is the i-th funda-
mental root. Eventually, one should indicate the positive direction as
well. Sometimes this is done by drawing arrows instead of lines. We
draw the diagrams in such a way that a larger weight stands to the left of
and/or higher than a smaller one, with the landscape orientation usually
being primary. Another convention is that we omit at least one of the two
equal labels at the opposite sides of a parallelogramm.

Below we reproduce two typical weight diagrams, the one of the repre-
sentation of the Chevalley group G( E 6 , R) with the highest weight (ij 1 ,

Fig. 1. - (E6, w1).
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and the one of the representation of the Chevalley group G(E7, R) with
the highest weight 

Fig. 2. - (E7, w7). 

Here, as always, the numbering of the fundamental roots follows that
of [Bl]. The weight diagrams are especially useful when - as in the
above cases - all weights (apart, probably, from the zero weight) have
multiplicity one, in particular, for basic representations [M]. Recall, that
a representation is called basic, if its nonzero weights form one orbit
with respect to the action of the Weyl group. All basic representations,
apart from a unique representation for each type, are microweight [B2],
i.e. they do not have zero weight, so that the weights in fact form a single
Weyl orbit, as in the above cases (E s , WI) and ( E 7 , w 7 ). Diagrams of all
basic and adjoint representations are collected in [PSV].

These diagrams arise in a number of contexts, ranging from repre-
sentation theory of semisimple Lie algebras and algebraic groups to in-
variant theory, algebraic geometry, algebraic K-theory, differential ge-
ometry and combinatorics. One can find detailed discussion of the dia-
grams and some of their uses, as well as many additional references, in
[Ho], [PR], [PSV], [Sch], [V2], [V5], [VP]. Now, a posteriori, weight dia-
grams are a special case of crystal graphs of M. Kashiwara (1) [Kl]-[K3].

(1) Which are intimately related to the canonical bases of Lusztig [L1]-[L3].
An explicit description of crystal bases is ultimately provided by Littelmann’s
path theory [Lil], [Li3]. One can find a very accessible introduction to this circle
of ideas in [J].
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That the weight diagrams as described here and depicted in [PSV] do in-
deed coincide with the crystal graphs is obvious for microweights (the
microweight representations do not melt - any temperature is like tem-
perature zero; see also [Li2] for a more general result describing crystal
graphs for almost all fundamental weights). For the adjoint representa-
tions it is checked in [Ma]. For the classical cases it follows also from the
explicit construction of crystal graphs in [KN].

The first appearance of the weight diagrams in print, which we could
trace (2), is [CIK]. There the weight diagrams were considered purely
combinatorially, as the adjacency diagrams for the cosets of the Weyl
group W = W( ~ ) modulo a parabolic subgroup Wj, J c II. For example
the nodes of the above diagram may be interpreted as the cosets W/WJ =
= W( E 6 (/W( D5 ). two cosets w, Wj and w2 Wj are joined by a bond marked i
if = si wl WJ for the i-th fundamental reflection si . In the case of

microweight representations these diagrams are - up to labels - the
Hasse diagrams of the (reversed) induced Bruhat order. This is the most
common interpretation of the diagrams, see, for example, [BE], [CC2],
[Hil], [Hi2], [PR], [PI], [P2], [Sch], [St], [V2], [V5] and references
there.

Weight diagrams are also sometimes used as a shorthand form of the
weight graphs. This graph has the same nodes as the corresponding
weight diagram, shereas its bonds correspond to all positive roots,
rather than just the fundamental ones. In other words, two weights A, p
are joined by a bond marked a E ø + The weight graphs of
types and (E7, have special names, they are called the
Schldfli graph and the Gosset graph respectively, see [BCN] and refer-
ences there. Weight graphs have very strong regularity properties and
have been extensively studied in combinatorics, expecially in the context
of finite geometries and sphere packings. Historically the graphs of

types (E6, and (E7, first appeared in the theory of algebraic
surfaces. The Schlafli graph describes the configuration of the 27 lines
on the surface obtained from the projective plane p2 by blowing up 6
points, whereas the Gosset graph describes the configuration of the 56

(2) E. B. Vinberg told us that weight diagrams were used by E. B. Dynkin and
his students in Moscow in mid-fifties. To describe their shape Dynkin even coined
a special word Veretenoobraznost’, meaning approximatively «the property of ha-
ving form similar to that of a spindle» - what would nowadays be called «rank
symmetry» and «rank unimodality». But they never made their way to the publi-
shed works of Dynkin’s school, as far as I can see.
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nonsingular rational curves with negative self-intersection on the sur-
face obtained from P~ by blowing up 7 points, see [Hr], [Mn] for details
and [v5] for further references and an explicit identification of the
curves with the nodes of Figures 1 and 2.

The second look at the weight diagrams was started by the paper of
M. R. Stein [St2]. The usual techniques based on the calculations with
canonical forms (Bruhat decomposition, etc.) does not work for groups
over rings. This is why one has to find a substitute for matrix calculations
which works also for exceptional groups. H. Matsumoto [M] developed
techniques which allow to calculate with one column or one row of a ma-
trix representing an element of a Chevalley group G in a basic represen-
tation (V, In particular, he has shown that one may normalize an ad-
missible base v ~ of V in such a way that the action of xa ( ~) is described by
very nice formulae. In the case of a microweight representation all

unipotents are quadratic and the formulae become especially simple:

otherwise

(which is a special case of the formulae, expressing the action in a canoni-
cal base, see the footnote in § 2). In the presence of zero weight the for-
mulae are slightly more complicated.

In [St2] the weight diagrams were used to visualize these calcula-
tions. Namely, we may conceive a vector a = (a,~) E V as a marked graph
as follows: put aA to the node of the diagram corresponding to A. Then
the diagram shows how xa (~) acts on the components of a. A positi-
ve/negative fundamental root unipotent x + a 2 ( ~) acts along the bonds
marked i in the positive/negative direction. For an arbitrary root a the
action of xa (~) is described by directed paths with the labels, corre-
sponding to the expansion of a into a linear combination of the funda-
mental roots, see [St2], [V2], [PSV], [VP].

Now the matrix of an element n( g), g E G , with respect to the
base v ~, is defined in the usual way. Its columns and rows
are indexed by the weights and the p-th column consists
of the coefficients in the expansion of with respect to v ~.
thus the columns of the matrix may be interpreted as vectors from
V. By the same token, the rows of the matrix are vectors from
the dual module V*. It is essential that the columns and the rows
of this matrix are not linearly ordered, but partially ordered by
the corresponding weight diagram or its dual, respectively. Using
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the weight diagrams one can fairly efficiently calculate with such

matrices.

However in [M], [St2] and subsequent publication almost all calcula-
tions were performed up to signs. As M. R. Stein himself puts it: «It

should be noted that in describing the elementary transformations no at-
tempt to fix signs has been made» [St2]. In the present paper we make
yet another step. Namely, we show that in fact a weight diagram encodes
also the information about the signs. Consider the action constants cA,
defined by = vÀ + cÀavÀ+a. We show that the signs of cA,’s are
easily determined by looking at the weight diagram.

Let us illustrate this in the above example of (Es, see § 2 for the

precise statements. It turns out, that one can normalize an admissible
base in such a way that for a fundamental or a negative fundamental root
a all cA, are + 1 (Theorem 1). Now contemplating Figure 1 one notices
that, for instance, the six paths with labels {1, 3}, corresponding to the
root a 1 + a 3 are of two different kinds: when read in the positive direc-
tion three of them have labels (3, 1), whereas three others have labels
( 1, 3 ). This means precisely that (for the standard choice of structure
constants for E6, see [C], [GS], [V3] and references there) three of the
action constants are + 1, whereas the other three are -1. The
same applies to all roots: one may compute the sign of the action con-
stants from the order of labels in the paths corresponding to a given root
(Theorem 2).

In other words, a weight diagram ( ~ , to) (together with the struc-
ture constants of the corresponding Lie algebra, or, what is the same, to-
gether with the weight diagram ( ~ , ad) of the adjoint representation of
the corresponding type) contains all information necessary to completely
describe the action of G on the module with the highest weight cv . Of

course, a weight diagram is much easier to memorize and to use, than a
table of the action constants. With the help of the weight diagrams one
gets an explicit control over the action of the root unipotents xa (~) in the
minimal representation of the exceptional groups. In fact, one can think
of the above diagrams as a mnemotechnical device, which encodes in a
compact form most of the information you might be willing to recover
about the groups of type E6 or E7 if you pretend to calculate in them on a
beach and have forgotten your Bourbaki at home.

In this paper we illustrate some of the possible applications of this
idea. First of all, what we said above means that in fact a weight diagram
describes the action of the extended Weyl group W = W(Ø) (also called
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the Tits-Demazure group [MPS]), not just of the Weyl group itself. This
is extremely important, since the extended Weyl group controls signs in
most of the calculations related to G . In all usual cases G has multilinear

invariants on V which have very few W-orbits of monomials (say, just
one, two or three). This means that the weight diagrams allow to explic-
itly control the equations on the entries of matrices representing ele-
ments of G . After an explicit construction of the cubic form for E6 and
some remarks concerning E7 we take a special case of this problem and
explicitly determine the equations defining the orbit of the highest
weight vector (Theorem 3).

In [V2, §§ 10-14] we had to find a non-trivial element of root type sta-
bilizing a given vector v E V. In the calculation reproduced there we had
to quote explicit knowledge of the action constants as well as of the equa-
tions defining the orbit of the highest weight vector. Here we show that
in fact this is not necessary, one can check that the unipotent elements
constructed there stabilize a given (singular) vector simply by looking at
the order of labels in certain paths and that these unipotents actually
generate the whole elementary group as the vector ranges over the
columns of a matrix g E G (Theorems 4 and 5). Thus the present paper
may be regarded as an updated version of the algebraic half of [V2]. We
do not try to include here complete proofs for the geometric part, since
this would more than double the length of the paper.

To avoid some further technical complications related to the presence
of zero weight and to present the ideas in their simplest form, in this pa-
per we focus on the microweight representations, especially on those of
types (E6, w 1 ) and (E7, (jj 7). In particular for types E6 and E7 the con-
tents of the present paper suffices to supply complete proofs for what
was left open in [VPS], [V2]. In [V7] I revise also the geometric part of
[V2] giving a complete proof of Theorem 1 of [V2] for these cases. On the
other hand, to analyse the case of E8 one is compelled to work in the ad-
joint module and this is, probably, the correct approach for all types.
Classical cases are described in detail in [V2] and especially in my joint
works with A. V. Stepanov [SV] and E. Ya. Perelman [VPe], whereas
[V6] treats the adjoint case for simply-laces systems. A systematic treat-
ment with the emphasis on the adjoint and the short-root modules will
appear in my forthcoming joint papers with E. B. Plotkin, «Structure of
Chevalley groups over commutative rings », see [V2], [VP] for a descrip-
tion of the whole project (in fact the five sections of the present paper
are toy versions of [VP] and subsequent papers).
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It is assumed that the reader actually looks at Figures 1 and 2 - and,
possibly, at other figures from [V2], [PSV] - while going through §§ 2, 3
and 5. But there is much more hidden in them, than what we could possi-
bly mention here. For example, the number of all paths from the left end
to the right end is exactly the multiplicity of the highest self-intersection
of the cycle of codimension 1 in the Chow ring A * ( G/Pi ), where i = 1 or 6
for E6 and 7 for E7, see [Hil], [PI]. Many other similar observations from
various sources are collected in [PSV], [V5]. The pictures certainly de-
serve a further look («... und weise die Gedanken oder Traume nicht ab,
die dir dabei etwa kommen»).

1. Preliminaries.

This section contains some background material, related to basic rep-
resentations, structure constants of Lie algebras and realization of mi-
croweight representations in the unipotent radicals of parabolic sub-
groups.

1 °. Basic representations.

We keep notation from the introduction. In particular, yr is a basic

representation of a Chevalley group G on a Weyl module V, (o is the

highest weight of this representation. Recall that by we denote the
set of weights of .7r with multiplicities. All non-zero weights have multi-
plicity one, and we denote the set of non-zero weights of yr by ~l * (n). In
turn, the multiplicity of the zero weight equals the number of the funda-
mental roots which are weights of this representation. In other words,
ne = mult ( 0 ) = ] 4 (Jt) ] , where L1(n)=A*(n)nII. Then A(Jt) has m
«distinct» zero weights 5, one for each a E L1(n).

The above definition of a basic representation is equivalent to the fol-
lowing one: if the difference a = À - Il of two weights À, Il * (.7r) is a
(fundamental) root, then ,u = wa (~, ), see [M]. This means that for any
non-zero weight A of a basic representation takes one of the follow-

ing three values 

Then
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PROOF. By definition of a basic representation wa(À) = ~, + a. It re-
mains to compare this with the definition of a reflection with respect to a
root.

LEMMA 2. Let a , a + {3 E ~ be such that À, À + a, À + À + a +

+ {3 E A(n). Then at least one of the following two assertion holds:

PROOF. Suppose that the weights ~, , ~. + a , ~, + ~3 , ~, + a + ~3 are all

non-zero. Then by the preceding lemma

which means exactly that ( a , = 0 .

In particular, if the weights ~, , ~, + a , ~, + ~3 , ~, + a + ~3 are all non-

zero, then a and f3 must be orthogonal short roots, whose sum is a long
root. For simply-laced root systems this is impossible. This does not oc-
cur for the fundamental. roots either: indeed, two orthogonal fundamen-
tal roots generate a subsystem, isomorphic to A1 + Ai and not to B2.

LEMMA 3. Assume that W is simply laced -r is a microweight rep-
resentation and a, + f3 E 0. If for a given weight A E one has

A + a + ~3 E A(z), then A + a E A(;r) or A + ~3 E but not both.

PROOF. Since (P is simply laced and a + ~3 E=- 0, the roots a and f3 can-
not be orthogonal. Thus, by the preceding lemma, A + a and A + f3 cannot
be both weights of .7r. On the other hand, if neither of them is a weight,
then Wa (/I) = h - a, A and = h - A. However by assumption
wa+/3(À)=À+a+f3 and now the equality wa+ø=wawøwa leads to a
contradiction.

In the sequel we use two notions of distance between two weights
~,, p EA(n). As usual we define the distance as the length of a shortest
path between A and p . The distance between A andu in the weight graph
is denoted by d(A, p ). In other words, d(A, root, in this
case the weights A and p are called adjacent. Similarly, d(A, Jl) = 2 if A -

is not a root, but there exists a weight v such that both h - v and v - p
are roots. For reasons which become apparent in 3° two weights at dis-
tance 2 are called orthogonal.. In the case of ( E6 , one has d(A, ,u ) ~ 2
so that any two distinct weights are either adjacent, or orthogonal. But
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in the case of ( E 7 , ~ 7 ) for any A there exists exactly one p such that
p) = 3. This p will be denoted by Z * and called the opposite of A.
We will use also the distance between two weights in the weight dia-

gram itself, which will be denoted by h(A, ,u ). First, let A and u be two
comparable is a linear combination of the fun-

damental roots with nonnegative coefficients and h(~, , p) = ht(~ 2013~). In
general h(A, p) = h(v, À) + h( v , ,u ), where v is the least upper bound of ~,
and ,u . For a microweight representation can be described also as
the length of the shortest element w E W such that w(A) = 03BC (that such a
w exists is exactly what it means for a representation to be microweight).
The maximal values of h(II, p) for ( E 6 , and ( E 7 , (7) are 16 and 27
respectively.

2’. Structure constants.

Let L be the complex semisimple Lie algebra of type (P with the Lie
bracket [ , ], H be a Cartan subalgebra of L . Consider the root space de-
composition a (=- 0, of L with respect to H. Choose a
Chevalley system ea E La Bf 0 1, a E=- 0, see [B2], [H6]. Recall that togeth-
er with the fundamental coroots hf3, the elements ea form a
Chevalley base. In particular, for all roots such that a + ~3 ~ 0
the structure constants N af3, where [ ea , e~ ] are integers.

The constants arise also as structure constants in the Chevalley
commutator formula. For two elements x, y E G we denote by [x, y]
their commutator xyx -1 y -1. Let now o:, /3 + ~3 ~ 0, ~, t7 Then
the Chevalley commutator formula asserts, that

where the product on the right hand side is taken over all roots of the
form ia + jfl E ~ , i , j E N, in any given order. One has = 0 , ± 1, ±
± 2, ± 3 and the primes p = 2, 3 which actually appear in the formula are
called very bad for G (or for 0). The constants are called the struc-
ture constants of the Chevalley group, and Naf3ll = For a simply
laced root system the product on the right hand side has at most one fac-
tor, so that Naf3 are the only structure constants.

For the simply laced case one has N af3 = 0, ± 1 and the only problem
is to determine the signs of the structure constants. Below we describe
the choice of signs which will be used throughout the paper. Let a Ei 0 +
be a positive root. Then a = ~ mi a ü a i E lI , where ~i are non-negative
integers. Their sum E mi is called the height of the root a and is denoted
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by ht ( a ). The sequence mi m2 ... ml is called the string Dynkin form of a
(as opposed to the usual Dynkin form, where mi’s are put into the corre-
sponding vertices of the Dynkin diagram).

Let us choose the height lexicographic ordering of positive roots
which is regular (i.e. a root of smaller height always precedes a root of
larger height) and lexicographic at the roots of a given height. It is a to-
tal ordering of (P ’ and we write if a precedes fi with respect to this
ordering. By definition this means that either ht(a)  or ht(a) =
= ht (p) and the integer represented by the string Dynkin form of a is big-
ger than the integer represented by the string Dynkin form of fl.

Recall that a pair ( a , of positive roots is called special if a + fi E ø
and a  13 with respect to the ordering described above. A pair ( a , is

called extraspecial if it is special and for any special pair ( y , d ) such that
a + 13 = y + 6 one has a  y . Then the values of the structure constants

may be taken arbitrarily at the extraspecial pairs and all the other
structure constants may be uniquely determined using only the standard
properties of the structure constants, see [C, p. 58-60].

In this paper we always assume that the signs of at all extraspe-
cial pairs is taken to be « + » . In other words, is positive, if a i + 13 E
E=- 0 + and there is such that a i + /3 = a j + y for some y E=- 0 + . Ta-
bles of the structure constants under this assumption may be found in
[GS], [V3] and [VP].

In the sequel we make a very heavy use of some well-known proper-
ties of the structure constants, see [C]. The following obvious property
will be used without any specific reference:

The other two are somewhat more complicated and to save space we
state them only for simply laced systems since we only use them in this
case:

and

Observe that in the last formula only two of the summands can be
non-zero. Indeed, Na~ ~ 0 and N~Y ~ 0 implies that a + {3 + y E=- 0.
Thus {3 forms angle 2 Jt/3 with both a and y . Suppose 0 . Then the

angle between a and y also equals 2z/3 and thus a , y lie in one plane.
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But then 6 = 0, a contradiction. Thus (2) is equivalent to a piece of the 2-
cocycle equation:

This last formula is extremely important for the rest of the paper.

3°. Internal Chevalley modules.

Let T = T(O, R ) be a split maximal torus in G. In the sequel the ele-
mentary root unipotents xa (~), etc. are always defined with respect to
this torus. For a root Xa = ~xa(~), ~ E 1~~ denotes the corresponding (el-
ementary) root subgroup. Since G is simply connected, T is generated by
the where, as always, ha ( s ) =

~. As usual, we set

(here (X) denotes the subgroup of G generated by the subset X). Let
B = B( ~ , R) = T U be the standard Borel subgroup of G.

Further, let J c 17 be a subset of fundamental roots and OJ be the
subsystem of 0 generated by J. We denote by Pj the corresponding
standard parabolic subgroup, by Lj its standard Levi component and by
UJ its unipotent radical, respectively. Then Pj = Lj Uj is a semidirect
product, where Lj acts on Uj via conjugation. When R = K is a field, Pj is
generated by B and Xa , a E ø J, whereas Lj = and UJ =
= (Xa, a E ~ + B ~ ~ ~. We consider also the opposite parabolic subgroup
PJ , which has the same Levi subgroup Lj and the opposite unipotent
radical UJ- = ~X _ a , 
We are interested in the realisations of microweight modules for G =

Lj as factors of the unipotent radical UJ of some parabolic subgroup PJ
of a larger Chevalley group. The consecutive factors Uj(h)/Uj(h + 1) of
the lower central series of UJ have an obvious structure of R-modules
and may be considered as LJ-modules via conjugation. The decomposi-
tion of those into indecomposable summands is very well understood, see
[ABS]. However we do not need to reproduce results of [ABS] in full
generality, since the only case we need is that of maximal parabolic sub-
group, where a shape is completely determined by its level and every-
thing becomes essentially trivial.

Fix an r, 1 ~ r ~ l, and let J = Jr = The corresponding maxi-
mal parabolic subgroup, its Levi component and unipotent radial will be
denoted simply by Pr, Lr and Ur, respectively. Denote by Zr(h) the set of
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roots a e W of a r level h :

The union of all 1, will be denoted Then (at least under
condition that the very bad primes of G are invertible in R , which auto-
matically holds for the simple laced case when there are no very bad
primes), a factor

is an irreducible L,-module with the highest weight cv , where a) is the el-
ement of the largest height.

Since our focus is on the (commutator subgroup of the) Levi compo-
nent Lr, rather then on the ambient group itself, we slightly change the
notation: in the sequel 0 will refer to what was called 0 j before, where-
as the root system of the ambient group will be denoted by L1. When r is
fixed, we write simply I instead Of Ir and instead Thus,
L1 = ~ U~U (-~).

We will be interested essentially in the following two cases. First, let
(A, W) = ( E 7 , E 6 ), r = 7. In this case the r-level of the maximal root
equals 1, so that ~ = ~( 1) and the unipotent radical U7 is abelian. The
representation of G( E s , R ) on U7 is the 27-dimensional representation
with the highest weight WI, see Figure 1. Observe, that [ABS] works
with the dual representation in Ui, rather than with that in UJ. In our
case the representation of G( E 6 , 1~ ) on U7 is the 27-dimensional repre-
sentation contragredient to the one above and its highest weight equals
~6.

Second, let (A, 0) = ( E g , E 7 ), r = 8. In this case the r-level of the
maximal root equals 2, so that ~ = ~( 1 ) U ~( 2 ), where ~( 2 ) consists of
the maximal root only, and the unipotent radical U7 is extraspecial. The
representation of G(E7, R ) on U7 ( 1 ) / U7 ( 2 ) is the 56-dimensional repre-
sentation with the highest weight WI, see Figure 2.

In this realization weights of V correspond to roots of ~( 1 ) and the
distance between two weights in the weight graph is expressed as fol-
lows : d(A, p ) = 1, 2, 3 depending on whether (0) = ,~/3 , yr/2, or 2n/3.
We freely switch between these two languages and substantially use
these realisations of the representations in the sequel.
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2. Signs of the action constants.

In this section we describe how to read off the signs of the action con-
stants from a weight diagram. All details are given for the microweght
modules for E6 and E7. In particular, the results of this section may be
considered as an elementary definition of the simply connected groups of
these types.

1 °. Action of the fundamental root unipotents.

The microweight modules for E6 and E7 have the following nice prop-
erty (3). This result remains valid for all microweight representations,
even when they cannot be realised via an internal Chevalley module. A
different proof, based on the geometric results of [PRI, is given in

[V6].

THEOREM 1. Assume that 0 = E6 or E7 and a is a microweight rep-
resentation. Then there exists an admissible base v ~ of V in which CÀa =
= +1 whenever a is a fundamental or a negative fundamental root.

PROOF. Keep the notation from the preceding section. In particular,
if 1 = 6, 7, then d = E 1 + 1 is the set of roots
a E d such that in the expansion a a i of a into a linear combina-
tion of the fundamental roots on has ml + 1 = 1. Let first (o = w 1 for E6 or

for E7. Then V may be interpreted as the first factor

UL + 1 ( 1 )~UL + 1 (2 ) of the lower central series of the unipotent radical UL + 1
of the parabolic subgroup P, + 1 in G(L1, R). The weights of V may be in-
terpreted as the roots of 1.:’.

We set v Y = xY ( 1 ). Recall that the elementary unipotents of the
group G act by conjugation. Since the case when a + y is not a root is
trivial, we may assume that a + y E 1.:’ and thus

In other words, in this case cya = Observe that the following fact
shows that it suffices to consider the case when a is fundamental.

(3) Since in the microweight modules there is an essentially unique choice of
an admissible base, a nice admissible base must be a canonical base of G. Lusztig
[L1]-[L3] and a crystal base of M. Kashiwara [K1]-[K3]. As was observed by R.
Carter, this means that Theorem 1 is in fact a special case of the positivity proper-
ty of canonical bases [L1].



215

LEMMA 4. For all a E À such that ~, + a E-= A(,7r) one has

Indeed, applying (1) to a + y - (a + y) = 0, we get Nay = =

= N- a, y + a * In particular if all cya = + 1 when a is fundamental, then the
same holds when a is negative fundamental.

Now we argue by induction in the height of y . If ht (y) = 1, then
y = a L + 1 and if a is a fundamental root one has NaY = 1 by our convention
about the structure constants. Let now ht(y) ~2 and assume that our
assertion holds for all roots 6 E ¿ of smaller height. If a is the smallest
fundamental root such that (y + a) - a then again Nay = 1 by our
choice of the structure constants. Thus it remains to consider the case

when there exists a fundamental root such that 

which precedes a. Since one must have and thus

y - ~3 E , ht (y -  ht (y). Take such a ~3 minimal with respect to the
order  and apply (2) to a + y - ~8 - (a + y - Since = 0 , we
get

Now N_~, _ a _ Y + p _ - N~, a + y -~ ~ ~ 1~ by minimality of (3 and thus (ap-
plying ( 1 ) twice) we get

But both factors on the right hand side are + 1 by the induction
hypothesis.

It remains to consider the case when = ill 6 for E6. Here V may be
interpreted as the unipotent radical of the parabolic subgroup of E 7 op-
posite to P7 . In other words, this time the weights of V are - y , y E ~ . If
we set v - Y = x _ Y ( 1 ) as above, then the case of OJ = ill 1 implies that

Na, -y = - N -a, y = -1 for all fundamental roots, which is not quite what
we wanted. However, since the poset ~ is ranked by height, the solution
is to switch the signs of the base vectors of odd rank. In other words, the
base conclusion of the theorem.

In the sequel we fix a base v ~ as above. The theorem was stated for E6
and E7, but such bases exist also in the classical cases. For the funda-
mental modules of a group of type A, these are exactly the standard
bases vil /B VV2 A ... 1 ~ il  i2  ...  + 1. This natural repre-
sentations of other classical groups are usually considered with respect
to the bases such that for a fundamental root one of the action constants
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is + 1 whereas another one is -1. Clearly one can switch the sings of
some base vectors to make all of the action constants to be + 1, only that
such a base would be less convenient than the usual one. The spin case is
addressed in the second part of [VP].

2’. Action of arbitrary root unipotents.

Let now a E=- 0 be an arbitrary root and A E=- A(.7r) be a weight such that
We want to calculate CAa. Lemma 4 shows that cAa =

= c~. + a, - a , so that we may from the very start assume that a E=- 0 + . First
we give an inductive formula which reduces the problem to the roots of
smaller height.

Let B be the smallest fundamental root such that a - fi EE 0. Then by
Lemma 3 either A + ~8 is a root, or A + (a - ~3) is a root, but not both. This
allows to reduce calculation of C Àa to that of c~, a _ ~ .

LEMMA 5. Let a EA(n), and be the smallest funda-
mental root such that Ei 0. Then

PROOF. Our choice of ~3 guarantees that xa ( 1 ) = xa _ ~ ( 1 )].
This means that

Calculating the expression on the right hand side, we get

It remains to apply Theorem 1.

Now it is completely clear how to calculate CÀa inductively: one

has to iterate Lemma 5. To formalize this idea we introduce the

following notion. Define the canonical string of a root as

follows. The canonical string of a fundamental root a i is i. If ht(a) ~ 2
and a i is the smallest fundamental root such that a - a then

the canonical string of a is the string join of i and the canonical

string of a - a i (in other words, i must be appended to the canonical
string of a - a i on the left). For example, the canonical strings of
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the maximal roots of E 6 and E7 are 24315423456 and 13425431654234567
respectively.

Now to calculate CÂa we proceed as follows. Let il ... ih, where h =
= ht ( a ), be the canonical string of a . We search for a path in the negative
direction starting at ~.1 = A + a which has labels i1, ... , ih in the same or-
der. Such a path does not necessarily exist. If there is a bond labeled il
hanging on À 1 in the negative direction, we set ~, 2 = ~,1- a il , otherwise
we say that il is nasty for A and set A 2 = ~,1. Now if there is a bond la-
beled i2 hanging on A 2 in the negative direction, we set A 3 = A 2 - oth-

erwise we say that i2 is nasty for A and set ~, 3 = ~, 2 , etc. We proceed like
this until we get to the end of the canonical string. Let n = n( a , À) be the
number of labels in the canonical string of a nasty for ~, . Then Lemma 5
immediately implies the following recipe.

THEOREM 2. Let v ~ be an admissible base satisfying conclusion of
Theorem 1. Then for all a E ~ + and all A E such that A + a E 

one has

With this rule it is a matter of less than one minute to calculate the

explicit action of xa (~) on V in each case. It is further simplified by the
following facts, which one immediately notices contemplating Figure 1

and Figure 2 (of course, one could give an independent a priori proof
along the lines of the above proof of Theorem 1).

PROPOSITION 1. The action constants CÀa enjoy the following prop-
erties :

(1) If a is the maximal root, then CÀa =1 for all A, A + a E
E A(n).

(2) For any root a the parity of the number of negative structure
constants CAa is opposite to the parity of ht (a). In other words, f1 CAa =
= ( - 1 )ht(a) -1, where the product is taken over all A E A(z) such that
~, + a E 

(3) For any root a 
+ the last non-trivial action constant CAa is

always + 1. In other words, if ,u + a £1- A(n), for all fl  A, , but ~, + a E
E then CAa = + 1.

Several recent papers explicitly tabulate the action of Xa (~) in these
representations, see [Te], [DMV] and references there.
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3°. Action of the extended Weyl 

Extended Weyl group W = W( ~) of type 0 is the subgroup of G gen-
erated by wa ( 1 ). If char R2 , it is an extension of the ordinary Weyl
group W = W( ~ ) by an elementary abelian group of order 21, where
1 = rk ( ~ ), see [T]. Let N = R) be the normalizer of T in G in the
sense of algebraic groups, In other words, N is generated by T and

Then is isomorphic to N(O, Z).
Since w, (E) are defined in terms of xa ( ~), it is clear from the above,

that a weight diagram controls the action of This means that a

weight diagram describes action of the corresponding extended Weyl
group, not just of the ordinary Weyl group. Since this action is responsi-
ble for the signs of monomials in equations among the matrix entries of a
matrix jr(g), g E G , in this subsection we make this description explicit. In
fact, the following two lemmas describe the action of N.

LEMMA 6. Assume that a E ø, A E E E R * . Then

PROOF. The above formulae immediately follow from the definition
of w, (E) -1 ) xa ( E ), the definition of and Lemma 4.

Now Theorem 2 gives a rule how to read off the action constants c~,a
- and thus also the coefficients in the formulae appearing in Lemma 6
- from the weight diagram. In particular, this means that the weight
diagram encodes the whole information about the action of W. In many
cases it is more convenient though to read off the action of W directly
from Theorem 1. Namely if a is a fundamental root, then CAa = 1 when-
ever A + a E and =1, whenever A - a E so that the for-
mula in Lemma 6 simplifies to

Now to find wv ~ for an element w E W one has simply to pick up a decom-
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position of w as a product of the fundamental generators wa ( 1 ), a E II,
and apply the above rule to each factor.

The above lemma describes also the action of 

LEMMA 7. Assume that The

PROOF. The above formulae immediately follow from the definition
of ha ( ~ ) = wa ( E ) wa ( 1 ) -1, Lemma 6 and Lemma 4.

3. Defining equations.

In this section we show that the results of the preceding section allow
to fix signs also in the equations defining a matrix 7r(g), g E G . It is well
known that the simply connected groups of types E6 and E7 can be de-
scribed as the isometry groups of appropriate multilinear invariants on
their minimal modules. Using Theorems 1 and 2 one can explicitly deter-
mine the sings of monomials of the cubic form on the free module of rank
27 and the quartic form on the free module of rank 56, invariant under
the action of these groups. In fact in the rest of the paper we use not the

cubic/quartic invariants themselves, but rather their first/second partial
derivatives defining the orbit of the highest weight vector. Here we ex-
plicitly derive these quadratic equations in a slightly different form

(Theorem 3). This result is crucial both for the definition of fake roots

unipotents in § 4 and for the proof of Theorems 4 and 5 in § 5. Some of
the basic references for the present section are [Al], [A2], [Br], [CC1],
[CC2], [CW], [C2], [FF], [G], [Ha], [LS1], [LS2], [Se]. Some further de-
tails and many references to earlier publications may be found in [V2]
and [V5].

1 °. The cubic form for E6 .

Let V = be the 27-dimensional module of the Chevalley group
G = of type E 6 . Then there exists a three-linear form F : V x
x V x such that G can be identified with the full isometry group of
the form F, i.e. with the group of such that
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F(gu, gv, gw) = F(u, v, w) for all u, v, The similarities of the

form F, i.e. transformations g such that F(gu, gv, gw) _ ~,F(u, v, w) for
a scalar ~, E R *, form the extended Chevalley group G = G( E 6 , R).

This form was discovered by L. E. Dickson in 1901 (!), used by E.
Cartan in the geometric study of real Lie groups and further studied by
C. Chevalley and R. D. Schafer in 1950-51. An especially elementary and
elegant construction of this form was proposed by H. Freudenthal in
1952. In fact, the construction gives not the three-linear for F itself, but
rather the corresponding cubic form Q. Clearly one can identify V with
the 27-dimensional R-module M(3, R )3. Now for an element (a, b , c) E
E M( 3 , R)3 one defines a cubic form in 27 variables by

It can be prove (see [Al], [A2]) that over a field the isometry group of the
cubic form Q coincides with the isometry group of its complete polarisa-
tion F. Actually M. Aschbacher uses a different construction of the form,
not in terms of 3A2 , as above, but in terms of A5 (the essence of this con-
struction is expressed by the partition 27 = 6 + 15 + 6), but the resulting
forms are equivalent. This is in fact a characteristic free result (4) which
extends to all commutative rings (see [V2], § 6).

Another interpretation of the cubic form Q is as the norm form of the
exceptional 27-dimensional Jordan algebra, see [FF]. As such it was

studied by H. Freudenthal, T. Springer, F. Veldkamp, N. Jacobson and
other. This interpretation is intimately related with the realisation of the
Chevalley group of type E6 as the structure group of the split exception-
al Jordan algebra (for fields see [S2], where it is phrased in a slightly dif-
ferent, but essentially equivalent language of J-systems, for rings one
should consider quadratic Jordan algebras instead, if one is not inclined
to sacrifice the case 2 g R * ).

When R = K is a field, there are exactly 3 orbits of the Chevall group
G on the one-dimensional subspaces of V or, what is the same, there are

(4) If the form Q were non-degenerate,, this would fail in characteristics 2 and
3. But the form Q is highly degenerate - it must be, for the semisimple part of
the isometry group of a nondegenerate cubic form is finite. In fact M. Aschbacher
considers 3-forms, which are triples consisting of the cubic form Q, its partial po-
larisation T, linear in the first argument and quadratic the second one, and its
complete polarisation F, see [Al] - [A3]. To get a fully satisfactory theory over
rings one has to generalise the notion of a 3-form along the lines suggested by A.
Bak’s theory of quadratic forms over form rings, see [HOM].
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exactly 4 orbits of the extended Chevalley group G on the vectors v E V,
see [Mr], [Al], [CC11. The generic G-orbit consists of the vectors v E V
such that F(v, v , v ) ~ 0, in [CCI] such vectors are called black. Over a
field such that K * ~ K *3 this orbit may split into several G-orbits. The
orbit of the submaximal dimension consists of the vectors v such that

F(v, v , v ) = 0, but there exists a vector u such that F(v, v , u) # 0. Such
vectors are called grey. Grey vectors always form one G-orbit. The next
orbit consists of the vectors v # 0 such that F( v , v , u ) = 0 for all u E V.
Such vectors are called white. Finally there is the zero vector v = 0. Vec-
tors v such that F( v , v , u ) = 0 for all u E V are also often called singular,
see [Al]. In the above terminology a vector is singular if it is either zero
or white.

The condition that a vector v is singular may be also expressed in
terms of the cubic form Q or its partial polarisation T. In terms of T one
must have T(u, v) = 0. In other words, v is singular if and only if it is
zero of the 27 partial derivatives of the form Q, see [CC2]. These partial
derivatives are quadratic polynomials, which are explicitly listed in

[CC2] and (in a slightly different language) in Theorem 3 below.
Next we recall the construction of the cubic form from [V2], where we

can now give a very simple rule for the signs. It is known that the form
has one Weyl orbit of monomials, and that this orbit corresponds to tri-
ads of weights. Namely, a triple (11,,u, v) of distinct weights is called a
triad if are pair-wise orthogonal (or, what is the same, their dif-
ferences À - !l, À - v, !l - v are not weights). In the terminology of [Al a
triple of weights ( , y, v ) is a triad exactly when v A, V 11, V v generate a

special plane. Let 0 be the set of triads, ] 8 1 = 2’7 ~ 10 . Then the three-
linear form F takes the following values: F(v ~ , v ~‘ , v v ) _ ± 1 if

(A, p , v ) E e and F( v À, V 11, = 0 otherwise. The sings are determined
by the condition that the form F is invariant under the action of W. A
model triad in the realisation from § 1 is

and we set ,u o, v o ) = 1 for this particular one. For any other triad
( , f.1, v ) the sum

is orthogonal to all fundamental roots a 1, ... , a 6 . Thus for any funda-
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mental reflection wa E W(E6) one has the following alternative: either
wa(À, y, v) = (~, , u, v), or exactly two of the weights A, are moved

by necessarily in opposite directions (say, wa(À) = A + a , =

= = v). This means that the sign of f ( v ~ , vu, be calcu-

lated in terms of the distance of the triad (A, v) from the model trad

Namely, let

be half of the sum of distances between respective terms of the triads.
Then one sets F(v ~ , V V) = ( -1 )h(À, Ii, v). The cubic form can be de-
fined similarly, only that to avoid the coefficient 6 which would cause
problems in characteristics 2 and 3, now one has to sum only over the set
0 0 of unordered triads I A, u, v ~. Clearly, 10 o I = ] 8 ] /6 = 45. Then for
a vector x = 2: XÀ vÀ one has

where the sum is taken over f 1, ,u , v) E 0 0.

2’. The quartic form for E7.

There is a similar, but more complicated description of the simply
connected group of type E 7 acting on the 56-dimensional module V =
= V(w 7 ). In this case one needs two invariants to define the group, one of
degree 2, another of degree 4. First of all, the module V is self-dual and
supports a unimodular symplectic form h. Further, there exists a four-
linear form F : V x V x V x V ~ R such that G can be identified with the
full isometry group of the pair h, F, i.e. with the group of all g E GL (V)
such that h( gu , gv) = h(u, v ) and F(gu , gv , gx , gy) = F(u, v , x , y ) for
all u , v , x , y E V. The similarities of the pair form the exteuded Cheval-
ley group G = G(E7, R).

It is obvious, how to construct h. The construction of the quartic in-
variant is somewhat more complicated and classically one constructed
not the four-linear form F itself, but rather the corresponding quartic
form (5). That the group G preserves a quartic form in 56 variables was
first observed by E. Cartan, at least in characteristic 0, but his explicit

(5 ) The first appearance of the quartic form is again in a 1901 paper of L. E.
Dickson, in the context of the 28 bitangents and thus of the Weyl group W( E 7 ).
Apparently the explicit connection with the group of type E7 was missing. Other-
wise Chevalley groups would have been discovered half a century earlier!
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construction of the form seems to be an error. A very elegant construc-
tion of such an invariant over a field K of characteristic not 2 was given
by H. Freudenthal. Namely, he identifies V with the space A(8, K)2,
where A( 8 , K) is the space of anti-symmetric 8 x 8 matrices, and consid-
ers the following symplectic product and quartic form:

Then in all characteristics distinct from 2 one can identify the isometry
group of this pair as the simply-connected Chavalley group G of type E7
over K, see [A2], [C2]. The constructions of the form by M. Aschbacher
and B. Cooperstein are slightly different. In fact [A2] constructs the
form in terms of A6 (the essence of this construction is expressed by the
partition 56 = 7 + 21 + 21 + 7), whereas the construction in [C2] is closer
to that of Freudenthal as it is phrased in terms of A7 (where 56 = 28 +
+ 28). The isometry group of Q alone is spanned by G and a diagonal ele-
ment of order 2, see [C2]. In characteristics p a 5 everything works
smoothly, whereas characteristic 3 needs some extra care.

But the thing breaks down in characteristic 2. Not only the above
construction does not work, but apparently in characteristic 2 there is no
non-trivial G-invariant symmetric four-linear form on V (see [A2]). This
is because in characteristic 2 the form

obtained by squaring the symplectic form becomes symmetric, which it is
not in characteristics a 3. In fact M. Aschbacher [A2] constructs a 4-lin-
ear G-invariant form F in characteristics 2, symmetric with respect to
even permutations.

There are other constructions of the form Q , notably that of R.
Brown [Br], which works in characteristics # 2, 3. Let V be a space
which supports a non-degenerate inner product. Then to define a three-
linear form on V is essentially the same as to give V an algebra structure.
By the same token to define a four-linear form on V is essentially the
same as to give V a structure of a ternary algebra. In fact, there is a re-
markable ternary algebra of dimension 56 constructed in terms of the
exceptional Jordan algebra J, see [Br], [FF] and references there. The
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algebra consists of 2 x 2 matrices over J with scalar diagonal entries,
56 = 1 + 27 + 27 + 1, which is exactly the way how we draw Figure 2.

The orbits of G = G(E7, K) on the 56-dimensional module were classi-
fied in [Ha] in the absolute case, in [LS] for finite fields and in [C2] in

general. These orbits are essentially described in terms of the four-lin-
ear form. Again characteristics 2 and 3 require some additional attention
and one needs the notion of a 4-form (see [A2], [C3], which is a quartic
form together with its polarisations, to account for all details. So let char
K # 2, 3. Then a vector u E V is called singular if F( u , u , x , y ) = 0 for
all x , y E Tl, brilliant if F( u , u , u , x ) = 0 for all x E TT and lumenescent if
F(u, u, u, u) = 0. Otherwise, i.e. if F(u, u, u, u) ~ 0, the vector u is
called dark. The orbits of G on V are as follows: 0, non-zero singular vec-
tors, non-singular brilliant vectors, luminescent vectors which are non-
brilliant, and finally one or several orbits of dark vectors, parametrised
by K */K *2 (these orbits are fused by the action of the extended Cheval-
ley group G of type E 7 ).

In the next subsection we give an ad hoc definition of a singular vec-
tor, for use in §§ 4 and 5 and do not try to verify that our singular vec-
tors actually coincide with the singular vectors as defined by B. Cooper-
stein in [C2]. This is because although a construction of the form Q simi-
lar to the one given in the preceding subsection for E6 is possible, it is al-
ready much more complicated, and taking care of all details requires se-
rious effort. Instead we explain where the problem lies.

In fact, suspecting that E7 stands in the same relation to E6 as E6 it-
self does to D5 , one is immediately tempted to define the quartic form on
V as follows. Take a base vector v À. Then the vectors v" , = 2 ,
generate a 27-dimensional module U which carries the cubic E6-form.
One defines tetrades as quadruples (A 1, À 2, À 3, À 4) of pair-wise orthogo-
nal weights. Let e and O o be the sets of ordered and unordered te-
trades respectively. Clearly, 10 1 = 56.27 .10, whereas 1 = O ~ /24 =
= 630 . Then tentatively one defines the quartic form Qtent as 
Y- the sum is taken À2, À3, A4} E H0 and
the signs are defined by the condition that the resulting form is invariant
under the action of W. One should be slightly more cautions here, than
in the case of E6, because now wa can move all 4 weights of a tetrade, two
in positive, two in negative direction, in which case the sign is not

changed, but the expression of the sign in terms of u j) still works.
This is essentially the same, as define a four-linear form Ftent by setting

~4)=(_i)~i~2~~ for a tetrade (Al, À2,
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A3, A4) E e and F tent ( v ~ 1, v ~ 2 , v3, v ~ 4 ) = 0 otherwise. By construction
the form is invariant under the action of W and it remains only to check
that it is preserved by a root subgroup Xa for some root Unfortu-

nately this is not the case. In fact, for any tetrade (A 1, À 2, À 3 , À 4) and
any elementary root unipotent g = xa(E) one has

Unfortunately there are quadruples of weights for which the right-hand
side is zero, whereas the left-hand side is not. Take, for example, four
weights ~1,~2,~3,~4 such that À 1 + a, ~, 2 + a , ~, 3 + a , h 4 - a are

weights and the 8 above weights form a cube (i.e. the corresponding
weight diagram is the tensor product of three copies of see

[C2], [C3], [PSV]). One of the weights h i , À 2, À 3 is adjacent to the other
two, say A2) = d(Al, A3) = 1, so that v A2

= 0 . On the other hand, expanding 
by linearity we get 8 summands of which exactly one, namely

v ~ 2 , v ~ 3 , v ~ 4 ), corresponds to a tetrade and is equal to ± 1.

Thus the form Ftent is not preserved by Xa .
Well, in itself this is not tragic since one hopes to repair the situation

throwing in another Weyl orbit of monomials. But this is where the real
trouble starts. In the above example throwing in another orbit would
give you two further summands, which are non-zero, which would leave
you either 0, or twice something. This means that you could not define
the value of the form on the tetrades to be ± 1, but should have started
with ± 2 instead. It is here that one starts feeling extremely unhappy.
But in fact in characteristic 2 the above construction is essentially cor-
rect, in the sense that it tells you what the relevant part of the quartic
form is, which accounts for the reduction to E6 . For fix a base vector v ~ .
Then F(v~, ~ , ~ , ~ ) consists of two parts, the form Ftelt defined above
and another part thrown in to make the form G-invariant, having the
form F(v ~ , v ~ * , ~ , ~ ). But the second part reveals you nothing new as
compared with the fact that the group preserves a symplectic form.

In [V7] I give this last observation a precise technical meaning by de-
scribing the group of type E 7 as being essentially the stabiliser of the
ideal in the polynomial ring in 56 variables, generated by 126 partial
derivatives of F tent. These 126 quadratic forms are determined in Theo-
rem 3 below and in the remarks immediately following its statement I
explain where one sees all these 126 forms on Figure 2. This identifica-
tion works over Z and as opposed to the description via a quartic invari-
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ant, characteristic 2 plays no special role whatesoever. The proof in 1il7]
almost word for word follows the general scheme of «matrix preserver
problems» approach of W. C. Waterhouse (see [W] as an excellent intro-
duction to his method). The only place where one has to work slightly
harder is a certain Lie algebra calculation necessary to ensure the fact
that the stabiliser of the above ideal is smooth.

3°. Orbit of the highest weight vector.

It is well known that in any representation of G the orbit Gv + of the
highest weight vector v + is an intersection of quadrics [Li]. In this sub-
section we explicitly describe the equations defining the orbit of v + for
the microweight representations of types E6 and E7. Of course, for these
cases the corresponding equations have been determined some 40 years
ago by H. Freudenthal and J. Tits, (see also [Se], [LS1], [LS2], [LW],
[CC2]), but again we would like to show how one can read the equations
directly from the weight diagram.

Let a) for E6 or cv =W7 for E7, the case (~, (o) = (E6, w6) fol-
lows by duality. In the next theorem we use the same interpretation of
the modules, as in § 1, 2. In particular, 0 = Ez, l = 6, 7, d = El + 1, and

The group G = G(~, R) acts on 
a E L, by conjugation. Since we are interested only in the

equations satisfied by an element of the orbit Gv + of the highest weight
vector v + , we may assume that R = K is a(n algebraically closed)
field (6).

In both cases one may take highest weight vec-
tor, where

or

is the maximal root of E7 or the unique submaximal root of Eg, respect-

(’) Essentially we ask when a column may be completed to a matrix from G.
The obvious necessary conditions are that this column should be unimodular and

satisfy the equations satisfied by the vectors in the orbit of v + . Over fields these
conditions are also sufficient, but over rings there are further obstructions rela-
ted to the non-triviality of lower K-functors and their analogues, which we do not
discuss here. In general over a ring a unimodular column cannot be even comple-
ted to an invertible matrix, unless all finitely generated projective modules are
free.
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ively. Recall that to a vector a = ( aa ) E V there corresponds the product
x = 11 E ~ . In the case of E 7 this product is considered
modulo U8 (2) the root subgroup, corresponding to the maximal
root of Eg . The coefficients aa will be called the coordinates of x. The ac-
tion a H ga of G = G(L1 , K) on V is expressed by conjugation x H 
Thus in these terms the orbit Gv + may be described as the set of root

unipotents contained in V = XY , 
When I reported about this work in a Darstellungstheorie seminar in

Bielefeld, C. M. Ringel asked whether the fact that a longest regular se-
quence of such quadratic equations defining the orbit of the highest
weight vector has exactly 10 terms has something to do with the fact that
there are 10 small squares in Figure 1. It does indeed, and the answer is
called the theory of standard monomials. In fact, there are 27 rectangles
in this figure, and each of them corresponds to an equation. Only that the
orbit of the highest weight vector is not a complete intersection and thus
these equations are not independent. More generally, there is an equa-
tion for any pair of incomparable weights (clearly rectangles in Figure 1
correspond to such pairs). For the microweight representations this is
exactly the message of [Se] (see also [LS1], [LS2] for more general re-
sults and [PSV] for further related observations).

THEOREM 3. Let K be a field, and let G be the simply connected
Chevalley group of type 0 = E6 or E7 over K Let V = V(w )for 0 = E6
and V = = E7 . If a vector a = E V, a = in the or-

bit of the highest weight vector then for every pair of roots a , ~3 form-
ing angle of one has

where the sum is taken overall unordered pairs I y, d ~, y, ð E 1, such
that 

Now, let R be an arbitrary commutative ring. In view of the preced-
ing subsections it is natural to call a vector a = E V singular if it
satisfies Equations (3) listed in this theorem. A subspace of V is called
singular, if it consists of singular vectors. Any column of a matrix
g = G of the Chevalley group G of type EL, L = 6, 7, in the minimal
representation is singular. This fact will be crucial in § 5. Another appli-
cation of these equations is in the K-theory of exceptional groups. In
[Plll-[P131 E. B. Plotkin introduced a new stability condition, phrased in
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terms of these equations, which is a vast generalisation of Vaserstein’s
stability condition for orthogonal groups, depending on one quadratic
equation. For the case of E6 all 27 equations are explicitly listed in
[CC2]. For the case of E7 the 28 independent equations are listed in
[P13], up to signs.

Now we explain, how to find Equations (3) on Figures 1 and 2 and to
determine the corresponding signs. First, let O = E6 and A = A(w 1 ).
For each weight A E ll there are 10 orthogonal ones (distance 2). This
gives us 270 equations, but in this way each one of them is counted 10
times. Thus there are 27 equations. Indeed, the equations naturally cor-
respond to the weights v E ll as follows. For any two orthogonal weights
v , A there is a unique weightu such that ( , ,u , v ) form a triad. Thus for

any we define

Then I = 10 and for every A E there is a uinque fl E Q(v) such
that d(A, p) = 2 and this p will be denoted by A P. The equations have the
form I where the sum is taken over all unordered ~, ~ ~,

and the signs are explicitly determined by Theorem 3.

Now, let (P = E7 and ll = ~l(w 7 ). For each weight A E ~l there are 27
weights at distance 2 from A. This gives us 2’l ~ 56 equations, but in this
way each one of them is counted 12 times. Thus there are 126 equations.
Indeed, the equations naturally correspond to the roots a c= 0 as follows.
For any root a E=- 0 we define

Then I = 12 and for every A E Q(a) there is a uniqueu E Q(a) such
that d(~. , fl) = 2 and this p will be denoted The equations have the

where as above the sum is taken over all unordered

pairs I A, ~, ~ ~, A E Q(a), and the signs are explicitly determined by Theo-
rem 3.

For the sake of geometers, observe, Q(v) and S2 = Q(a) cor-

respond to certain objects of the building of G, namely the objects of
type 6 in E6 and of type 1 in E7. In fact, consider the subspace U generat-
ed by v ~, A E Q. Then U is one of the summands in the D5 branching for
E6 or the D6 branching for E7. In other words, the stabilizer P of U is a
parabolic subgroup with the Levi factor of type D5 or D6 , respectively. In
the case E6 there are two conjugacy classes of parabolic subgroups with
the Levi factor D5, but P is a P6 parabolic. In other words, P is conjugate
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to P6 in E6 or PI in E7, respectively, by an element of the Weyl group.
There are 27 weights of the form E W( E 6 ) ), which gives you ex-
actly 27 possibilities for P in the case of E6, the Weyl involution estab-
lishes a natural bijection with the weights of V. On the other hand, in the
case of E7 the fundamental weight ill 1 is the maximal root which gives
you 126 conjugates of P by the elements of W(E7 ).

The signs are explicitly determined by Theorem 3 and now we ex-
plain how one can read off the signs from the diagram. Let, as above,
Q = or Q = Q(a) and fix a pair A, AH E Q. Set the sign of the mono-
mial to be « + » . We want to determine the signs of the remaining
monomials Q, ~, , ~ ~. In this case p - A is a root and
switching A and /1 , if necessary, we may even assume that 

First of all, if p - A is a fundamental root, Theorem 1 immediately im-
plies that the sign of au all is « - ». Iterating this simple rule, we can de-
termine signs of some further monomials, in some cases of all monomials.
Thus, in the notation of § 5 we get for E6 equations

where a = 3 , e .
In general, Theorem 3 tells us that a, a,# p appears with the sign -

- NA, By (1) and the interpretation in § 2 this sign equals
c = - c~,, ~ _ ~, c~, d, ~, _ ~ _ - c~,, ~ _ ~, c,~ ~, ~ _ ~ . Now Theorem 2 gives us an algo-
rithm to compute this sign by looking at the weight diagram. For
example, let fl - À = a i + aj be a sum of two fundamental roots. Then the
sign c depends on whether the order of labels in the (,u - start-

ing at A and is the same, in which case c = -1, or inverted, in which
case c = + 1. One can proceed similary for other cases.

4- °. Proof of Theorem 3.

We subdivide the proof in several lemmas. Some of them are being
taken over and generalised in [V6] as they play a key role in the «decom-
position of unipotents» for the adjoint case.

LEMMA 8. Let a E Gv + be a vector in the orbit of the highest weight.
Assume that for some ~3 one has aj3 ~ 0 and a. = 0 for all y E ~,
(/?,/) =yr/3. Then a E Kv + , or, in other words, aa = 0 for all a E f,
a # B.
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PROOF. Let be such that w(3 = Q. Set b = wa . Then = 0

if and only if aa = 0 . Thus it suffices to prove the lemma for (3 = Q .
Let Q be the stabilizer of the line Kv + in G. Then Q is a maximal

parabolic subgroup of G with the Levi factor of type D5 or E6, respect-
ively. In particular, the unipotent radical UQ of Q - and thus also the
unipotent radical UQ of the opposite parabolic subgroup with the same
Levi factor - is abelian. Clearly ,S~ = UQ contains the big celL B - B and
hence is a dense open subset of G. Thus, X = Sw + = U4- Kv + is a dense
open subset of Gv + . In the above interpretation X consists exactly of
those root unipotents x = y E L, a., E K, for which a,, ;,-, 0 . As we
have just seen, if an x E X is conjugate to it must be conjugate to

already by an element of UQ .
Now U4- is a product of 16 or 27 commuting root subgroups, respect-

ively, which correspond to roots Y - (3, where ~ _ ~l3. This
means that for any U E U4-, u e at least one of the coefficients bY , y E ~,
(~3 , y) _ yr/3, in the product b = uv + is distinct from zero. By assumption
a = uEv+ for some U E E K and ay = 0 for all y E E, (B, y) = jr/3.
This means that a E Kv + which proves the lemma.

In the following lemma we take a product of the form u 
over all y e Z, (j3, y) = jr/3. Since u is conjugate to an element of UQ the
order of the factors may be taken to be arbitrary.

LEMMA 9. Take a root (3 E L such that af3;é 0. Set

where the product is taken over all y e Z, (/3, y) = yr/3 and let b = ua.
Then for any a orthogonal to f3 one has

where the sum is taken over all unordered d ~, y , 6 E f, such
that y+~=a+/3.

PROOF. By the choice of u one has y = uxu -1= y EL,
where b/3 = a/3, whereas by = 0 if y - {3 is a root, or, in other words, if g
forms angle with Q. A straightforward calculation shows that

where the sum is taken over certain roots forming angle Jt/3 with ~3 .
Namely, y must be such that a - y + y is itself a root (then it automati-
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cally belongs to ~). Moreover, if ~ = a - y + ~3 itself forms angle Jt/3 with
f3, only one of the roots y and 6 appears in the sum. Indeed, since conju-
gation by xY ( ~ ) makes by = 0, subsequent conjugation by xa ( ~ ) does
not alter ba .

As we know, NY _ ~, a = N~ _ Y, a . Thus, the above expression may be
rewritten in the form

7 r=- 0 is such that f3 + a, a - or are roots and, if, moreover, a - a = f3 + T
for some root only one of o~, T appears in the above sum. Using (1)
once more, we get N -a, a = and Na, j3 = N~, _ a , which proves the
lemma.

Nest we prove that the equations in Theorem 3 are in fact consist-
ent.

LEMMA 10. Equation (3) depends only on a + ~i .

PROOF. Obviously Equation (3) is symmetric with respect to a and f3.
Let y , 3 E L be another pair of orthogonal weights such that y + 6 = a +
+ Then (up to renaming y and 3 ) one has y = a - (7,5=~+(7 for some
root Equations (3) written in terms of 6 instead of a, f3 has the
same summands and the only prob-
lem is to check that the signs also coincide. By (1) one has N -a, aNa, j3 =
= N-,, so there is no problem with the summand, corresponding to
the pair ( y , 3).

Now, let ( E , p) be any other pair appearing in the right hand side of
(3), Then E=y- (z-a), p = 3 + (i-Q). By (1)
one has

and now applying (2) twice, and to 6 - y +,r - a = 0,
respectively, we get

It follows that Equations (3) depends only on the sum a 
Now we are in a position to establish Equation (3). Indeed, let a =

= ( aa ), a E 1; be in the orbit of v + . Let {a, ~i ~, (~, ~8) = Z/2, be
any pair of orthogonal weights. First, let 0. Take the same u as in

Lemma 9 and let b = ua . By the choice of u one has by = 0 for all y e Z
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forming angle Jt/3 with Then by Lemma 8 also ba = 0. Now Lemma 9
gives us Equation 4 for the pair ~ a , It remains to prove that the

same holds also when ap = 0. If aY = 0 for all y forming part of anoth-
er orthogonal pair (y , 3 ) such that y + 3 = a + f3, there is nothing to
prove, since in this case Equation (3) holds automatically. On the other
hand if ay ;: 0 for such a y we can apply the same argument as above to
the pair f y, 61 instead of the pair By Lemma 10 we still get the
required equation. This finishes the proof of Theorem 3.

4. Elements of root type.

In this section we introduce a class of elements which generalizes the
class of root unipotents and preserves most of their properties. The
property which is relevant for our purposes is that they satisfy an ana-
logue of the Whitehead-Vaserstein lemma.

1 °. ELement of root type versus root unipotents.

Recall that a long root unipotent x is a conjugate of an elementary
long root unipotent xa (~), where 6 is the maximal root and ~ E R .
When R = K is a field, long root unipotents can be defined by polynomial
equations. But when R is a ring, the class of long root unipotents as de-
fined above is usually too narrow to be useful.

To explain, where the problem lies, look at the root unipotents in
SL (n, K). In the natural representation they correspond to transvec-
tions, which are defined by the condition rk (x - e ) ~ 1, which amounts
to a set of polynomial equations: triviality of all minors of degree 2.

Namely, let y = x - e . Then rk (y) - 2 amounts to yih yjl = Yil Yjh for all
i , j , h , L = 1, ... , n. (The other condition in the usual definition of a
transvection over a field tr (x - e) = 0 follows from the fact that x E
E SL (n, K)). Over a field any solution of these equations is a conjugate of
the elementary transvection = e + ~el n . This is not necessarily the
case over a ring. Let n = 3 and take a Dedekind ring other than a dis-
crete valuation ring and let ~, generate a non-principal ideal I.
Then the matrix
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satisfies the above equations, but it is not conjugate to a matrix of the
form

(For if it were, this would mean that I is generated by ~, contrary to the
assumption.)
A class of elements which obviously satisfy the above equations are

the elements of the form 

a = ( a 1, ... , is a column of height n , f3 = ... , E nR is a

row of length n , and (3a 1 + ... = 0 . In the theory linear
groups over rings such elements are usually called transvections. Obvi-
ously the element t12 ( ~) t13 ( 8) considered above is a transvection (take
~ = 1, 9
a = ( 1, 0, 0)t and B = (0, C, 0)). Transvections have extremely nice

properties. First of all, a conjugate of a transvection by an element of
G = SL ( n , K) is again a transvection.

In general it is not obvious even how to define the «elements of root
type» which are analogues of transvections for other Chevalley groups.
Below we simply list elements of root type in some of the easiest cases,
namely the minimal representations of the classical groups, E6 and E7.
In [vPe] we define «transvections» in polyvector representations of SLn .
In § 1 of [VPe] one can find a much more detailed discussion of the ring
theoretic aspects of various definitions of a transvection.

For the classical groups these are the Eichler-Siegel-Dickson
transvections (the ESD-transvections for short). In these cases V car-
ries a non-degenerate bilinear form (,): V x V- R, which identifies V*
with V. Let E be the row corresponding to u under this isomorphism.
Thus in these cases we can define transvections in terms of two columns,
instead of a column and a row. In the symplectic case u and v will be ar-
bitrary orthogonal columns. In the orthogonal case V supports also a
quadratic form Q : V -~ ~ . In this case a column u called singular., if

Q(u) = 0. In the orthogonal case u and v will be singular orthogonal
columns. A typical ESD-transvections has the form
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In fact the above conditions can be relaxed, and a more general type of
transformations can be defined, without assumption that v is singular.

Now, let 0 = E6, V = V(w 1 ). In this case V is not selfdual, elements of
V will be represented by columns and elements of V* by rows. There is a
natural pairing (,): V* x given by multiplication. There are also
vector products V x V -~ V * and V* x V* - V defined by the trilinear
form F . Thus for two columns u , v the row u x v is defined by the equali-
ty (u x v) w = F(u, v, w). Assume that u is a singular column, v is a sin-
gular row and vu = 0 (these conditions can be relaxed, but we do not dis-
cuss this possibility here). Then for any ~ E R one defines a Freudenthal
transvection by its action on x E V as follows

These transformations indeed preserve the trilinear form F . This is

checked in [SI] for a more general type of transformations, the

Freudenthal-Springer transvections. See also [V2] for many further
references.

Finally, let 0 = E7, V = V(w 7 ). In this case, as in the classical cases,
V = V * so that we can define the transvections by two columns u , v E V,
rather than by a column and a row. Assume for simplicity that U and v
generate a singular subspace (this condition can be relaxed but this
leads to more complicated formulae). Then the element of root type

in G can be defined as

is the ternary product defined by the four-linear form F
and the symplectic form h as follows y ) = F( u , v , x , y ). Again
it can be checked that these transformations preserve both the symplec-
tic product and the form F and thus sit inside E7.

2°. Fake root unipotents.

For most purposes it is sufficient to work with the conjugates of the
elements of root type contained in U. First we take a field R = K and
look at the equations satisfied by the long root unipotents contained in
U. The following lemma shows that everything happens in the unipotent
radicals of the maximal parabolic subgroups.

LEMMA 11. Any Long root unipotent x E U is contained in the

unipotents radical Ur of a maximal parabolic subgroup Pr, 1 ~ r ~ L .



235

PROOF. Let x = gxa ( ~) g -1 for some Let g = uwdv, where
u, v E U, w E W, d E T , be the Bruhat decomposition of g. Since X6 is nor-
malised by the Borel subgroup, one =

= uxw(6) ( ~) u -1 for some E R . The case w(6)  0 is obviously impossible.
Let a = w( ~S ) &#x3E; 0 and let a = L mi a i be the expansion of a as a linear
combination of the fundamental roots. If mr;;é 0, then and

thus also uxa ( ~ ) u ~ ~ E Ur .
In the preceding subsections we considered an explicit form of the

equations which x E Ur has to satisfy to be a root unipotent in the special
case when L r is abelian. All of them are quadratic equations of the form

= 0, where the angle between a and f3 equals Jt/2 or 2 ~/3. Let
now Z be a set of roots such that all angles (a ~3) between E ¿ are

equal to yr/3. Then all of the above equations are void. Thus we get the
following fact.

LEMMA 12. Let K be a field and Z be a set of roots such that
(a , ~i) = yr/3 for all a, ~3 Then for any choice of Ua E K the product
11 Xa (ua), root unipotents.

In the paper [Cl] this lemma is expressed by saying that 11xa, a E¿
forms a (m - 1 )-dimensional subspace in the geometry of root sub-
groups, where m . Let now R be a ring. Then as the above example
of SL3 shows, the product E ¿, Ua E R, is not a root unipotent
anymore, but it can be checked that these elements and their conjugates
behave as root unipotents for all practical matters. This motivates the
following definition.

Let Z be a set of roots such that (a, ~3) = Jt/3 for all a, ~3 ] = m .
Then the elements of the form a E¿, Ua E R , are called elemen-
tary fake root unipotents of shape Am . Their conjugates are called fake
root unipotents of shape A~ .

These are the only fake root unipotents which we encounter in § 5.
However in the case (P = E8 (and in general in the study of the adjoint
representations) one needs a more general type of fake root unipotents,
the ones of shape D~ . Namely, let Z be a set of roots such that for all a E
e Z one has (a /3) = Jt/3 for all ~3 e Z except exactly one of them, denoted
by a * , whereas (a a* ) _ :r/2. First, let K be a field. As we have seen
above, to be a root unipotent a product fl xa (ua ), a E Z, Ua E K, has to sat-
isfy a single quadratic equation, of the form E ± ua ua * = 0 . Now, let R
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be a ring. A product a EI, satisfying the above equa-
tion is called a fake root unipotent of shape Dm + 1, where I I I = 2 m .

3°. Whitehead-Vaserstein lemma.

In this subsection we state without proof an analogue of the White-
head-Vaserstein lemma. This lemma is not used in the proof of the main
results of the next section. It is needed rather to show how these results

imply the main structure theorems for Chevalley groups over commuta-
tive rings. A similar result is valid for elements of root type, but to define
these elements and to prove the addition and commutation formulae for
them would require a much more detailed analysis of the geometry of
minimal modules, than what we are willing to offer in the present
paper.

Here we will need the result only in the following case. Let P be one
of the following parabolic subgroups in G : PI or Ps for W = E6 and P7 for
0 = E7. First, let ø = Es. After an appropriate renumbering of the ad-
missible base the matrices representing the elements of PI and Ps on the
minimal module have the following block forms, respectively:

where the boxed numbers are the degrees of the diagonal blocks. Clear-
ly, these degrees are just the dimensions of the irreducible summands of
the restriction of V to the Levi factor of P, which in both cases has type
D5 (these are the trivial, the vector and the half-spin modules of the
group Spin (10, R) - with PI and P6 giving contragredient half-spins).
The conjugacy classes represented by these two subgroups are fused by
the external automorphism of G( E6 , R ) and in the sequel we will speak
only of Pl.

In the case (P = E7 the group P7 on the module V = is repre-
sented by matrices of the form
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Here again the degrees of the diagonal blocks are the dimensions of the
irreducible summands of the restriction of V to the Levi factor of type E6
(two trivial ones and two contragredient modules of dimension 27).

There are I = 27 subgroups wPw -1 conjugate in G =
= G( E 6 , R ) to P = PI by an element w of the extended Weyl group W( E 6 ).
By the same token there are I = 56 subgroups 
conjugate in G = G(E7, R) to P = P7 by an element of the extended
Weyl group W(E7). Here is the version of the Whitehead-Vaserstein

lemma, we need.

PROPOSITION 2. Let G = G((P, R), ’wheTe 4$ = El, 1 = 6 , 7 . Further,
let P = Pl , P7 depending on whether 1 = 6 or 1 = 7 . Assume that

z E G(O, R) is a fake root unipotents of shape Am contained in a proper
parabolic subgroup wPw -1, w E W( ~ ). Then z E R).

In this form the proposition suffices to deduce from Theorem 4 nor-
mality of E(O, R) in G(O, R). But stronger statements concerning the
commutators of the relative elementary subgroups/congruence sub-

groups require explicit expressions of z as a product of elementary
transvections. There are indeed very pretty polynomial formulae which
express z as a product of elements of the unipotent radicals UP, UP of P
and the opposite parabolic. See [Vl ] for a uniform purely algebraic proof
of a slighly weaker result for all parabolic subgroups in groups of all
types. In [BV], § 6 one can find a very detailed geometric treatment of
the classical cases. In fact the maximal parabolic subgroups are only one
type of reducible subgroups, the ones stabilizing totally isotropic sub-
modules. For classical types other than A, there are also stabilizers of
non-degenerate submodules and in fact [BV] contains also other White-
head-type lemmas, like the Kopeiko-Taddei lemma, which allow to con-
clude that some further ESD-transvections, not contained in proper

parabolics, still belong to the elementary subgroup. The general case is
considered geometrically in a forthcoming paper by the author.

5. Decomposition of unipotents.

In this section we show that the results of the three preceding
sections suffice to complete the key step in the proof of the main
structure theorems (normality of the elementary subgroup, standard
commutator formulae, description of normal subgroups, centrality of
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K2, and the like) for the types E6 and E7 sketched in [VPS], [V2],
IVPI.

1 °. ,Statement of results.

The central step in the above proof was the possibility to find enough
root type unipotents stabilizing a column v of a matrix n( g), representing
an element g E G in a minimal representation ;r. The entries of these

unipotents had to be polynomials in the components of v with integral co-
efficients. For the classical types this is fairly easy, see [V2], §§ 10-12, or
[SV], which is specifically devoted to the case of GLn and other split clas-
sical groups. However our original proof for the exceptional groups was
purely computational and referred to the explicit tables of structure con-
stants, [GS]. We show that already Theorem 2 sufficies to give an ele-
mentary proof of the following result for the types E6 and E7.

THEOREM 4. Let 0 = E6 or E7 and , fix a g E G = G( ~ , R). Then the
elementary subgroup R) is generated by the elementary , fake root
unipotents z such that zv = v, as v runs over the columns g *03BC of the ma-
trix g = (gA03BC), À, fl 

To illustrate the significance of this result we observe that it imme-
diately implies normality of the elementary subgroup E((P, R) in the
Chevalley group G(O, R), and more. Indeed, take an element

R). By Theorem 4 the elementary subgroup E(O, R) is gener-
ated by the elementary fake root unipotents z such that z ’ = for

the p-th column of the matrix g -1. For such a unipotent z the fl-th col-
umn of the conjugate gzg -1 equals the p-th column of the identity matrix
v~ . Let P the same parabolic subgroup, as in § 4, i.e. P = PI for 0 = E6
and P = P7 for 0 = E7 . The above means precisely that gzg -1 is con-
tained in a conjugate of P by an element of W and thus Proposition 2 im-
plies that R) for every such fake root unipotent z. Since
they generate the elementary subgroup, it follows that R ) g -1 ~
~ E( ~ , R). For the explanation of how one can deduce other main struc-
ture theorems for Chevalley groups from Theorem 4 see [VPS], [V2] or
[SV].

Below we present the first complete proof of Theorem 4 in the case of
exceptional groups. In fact [VPS4] contained only the statement, where-
as in [V2] only a sketch of the proof for E6 was given, dropping the ex-
plicit technical check that the signs of the action actually agrees with the
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signs of the equations. Our present proof is based on the following
result.

THEOREM 5. Let (V, n) be a microweight module of a Chevalley
group G = R) of type E6 or E7 . Then for any singular vector
u = (uA), A EA(n), there exists a non-trivial elementary fake root unipo-
tent of shape Am such that zv = v . Moreover, one may
choose such a z so that its coordinates are equal to A EA(n).

As we shall see from the explicit construction of z below, m = 5 for
0 = E6 and m = 7 for (P = E7. This means that in both cases we use fake
root elements corresponding to a maximal «singular subspace» in the ge-
ometry of root subgroups, [Cl]. Namely, let P 1, ... , be a maximal set
of roots forming mutual angles g/3. In both cases one may find a re-
quired z of the form ..., m .

In other words, the proofs for E6 and E7 are based on the existence of
embeddings A5 c E6 and A7 c E7. As a matter of comparison observe that
the proofs for classical groups are based on the embeddings C2 c
c Cl, B2 c B, or D3 c B, and D3 c D, respectively (see [V2] or [SV]). Thus for
the classical groups one can find a required unipotent z in a very small
subgroup. Another feature of the proof for the classical cases is that no
equations are imposed on the columns, there are enough unipotents in a
classical group to stabilize any column.

The proofs for E s and E7 are more demanding: the unipotents come
from a fairly large subgroup and we can stabilize only singular columns.
But (as in the simply laced classical cases) the coordinates of the unipo-
tent z coincide with the components of u up to sign. The situation for
other exceptional groups is still worse: more complicated patterns are
required to stabilize a column, usually related to geometries of type Dm .
The coordinates of z are polynomials of degree two or three, which in-
volve up to six components of u. Even to check that the unipotent z which
we construct in this way is actually a fake root unipotent one has to use
equations.

2°. An A5-proof of Theorem 5 for E6.

Let us recall that in E6 the maximal number of roots every two of
which form the angle yr/3 is five. Now we fix such a set which is maximal
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with respect to the chosen order of positive roots. We take the following
roots

(Note that the notation we use in the present paper dramatically differs
from the notation of [V2], § 13). Since all of their differences are roots
too they form such a set. Now the products

are elements of long root type for all values of zl , ... , z5 E R . The action
of the elements ... , x~ 5 ( z5 ) on the 27-dimensional module V with
the highest weight ill 1 may be described as follows. Recall that we may
interpret the weights of V as the roots of ~ = ~ 7 = ~ 7 ( 1) in E7 . Consider
the following three series of weights:

Then a straightforward calculation shows that

if and only if

, if and only if

(6) The 27 weights y i , i  j , ~ _ ~ 1 + d 1 and
are all distinct.

This completely describes the action of z on an arbitrary vector
u = E V up to signs. Indeed, multiplies UYl by zi and adds it to
or subtracts it from Moreover, XPi(Zi) multiplies = d , E , by zi
and adds it to or subtracts them from Ug.

Now we take a singular vector u = E V and try to choose the co-
efficients zl , ... , z5 in the expression for z so that z stabilizes u . There is
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little doubt that if we want z to stabilize u we have to set zl = ±

± ~uY 1, ... , z5 = ± and the real problem is to choose the signs in such
a way that everything cancels. Indeed, in this case and add

and respectively to 
With the same choice of an admissible base, as in Theorem 1 we fix

the signs of zi as follows:

The canonical strings of the roots f3 i, i = 1, ... , 5 are as follows:

A straightforward calculation (7) based on Theorem 2 shows that with
this choice of signs one has

where 1 ~ i ~ j ~ 5 . In other words, the contributions of and

to always appear with opposite signs and, thus, cancel. Notice
that in terms of the structure constants this formula asserts that

NBi, yj = - NBj, yi if 1  i # j  4, but NB5, yj = NBj, y5 when i = 5 (this is ex-
actly why we had to set z5 = - 5 

to make the above contributions

cancel).
It remains to check that z does not change u8 and uE. In reality multi-

plication by z adds

to u~ where Q = 3 , e , and for an arbitrary column there is non reason to
expect that these sums are zeros. However we assume that the column is
singular.

In other words, we claim, that, always for Q = 3 or E, one has

It is almost the same as the equation in the statement of theorem
3, only that the coefficients in the right hand side should be

(7) This calculation and the similar calculation for W = E7 were performed by
hand and then checked using Mathematica 2.0 for DEC RISC.



242

instead of NP5, (!5Npi(!i. It remains to check that the

coefficients actually coincide.
But this almost immediately follows from the usual properties of the

structure constants and (4) above. In fact, applying (2) to + 0 5 - 
we get

(since A~~.~A~-~=0). Thus, it remains only to check that

. Applying (2) to and using (4) we

This finishes the proof of Theorem 5 for E6.

3°. An A7 -proof of Theorem 5 for E7.

Let us recall that in E7 the maximal number of roots every two of
which form the angle jr/3 is seven. We fix such a set which is maximal
with respect to the chosen order of positive roots. We take the following
roots

Since all of their differences are roots too they form such a set. As above
the products

are elements of long root type for all values of zl , ... , z7 E I~ . The action
of the elements ~(2:1)~ .... x~ 7 (z7 ) on the 56-dimensional module V with
the highest weight w7 may be described as follows. Recall that we may
interpret the weights of V as the roots of ~= ~8(1) in E8. Consider the
following series of weights:
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Let

be the maximal root of Eg . Then a straightforward calculation shows
that

if and only if i ~ j ,

(3) The 56 weights &#x3E;

are all distinct.

The four above series of roots (which correspond to the branching of
the restriction of the 56-dimensional module for E7 to may be de-
scribed as follows: y i are precisely the roots such that = 0;
y Q are precisely the roots such that m2 ( y ) = 1; are precisely the roots
such that = 2 and, finally, y * are precisely the roots such

that m,2 ( y ) = 3 .
This completely describes the action of z on an arbitrary vector u =

E V up to signs. Indeed, multiplies uY~ by zi and adds it to or
subtracts it from Moreover, multiplies by zi and adds it
to or subtracts them from 

Now we take a singular vector u = E V and try to choose the co-
efficients zl , ... , z7 in the expression for z so that z stabilizes u. As above
we have to set z ... , z7 = ± ~uY 7 . Indeed, in this case 

add 
J 
and respectively to 

With the same choice of an admissible base, as in Theorem 1 we fix
the signs of zi as follows:

The canonical strings of the roots {3 i, i = 1, ..., 7 are as follows:

Again a straingtforward calculation based on Theorem 2 shows that with
this choice of signs an analogue of (4) holds for all 1 ~ i ~ j ~ 7 and thus
the contributions of (Zj) to cancel.
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It remains to check that z does not change Uyi. In reality multiplica-
tion by z adds to uY i the following sum

where the i-th summand is omitted. We have to check, that these sums
are zeros. This could follow only from the equations defining a singular
column.

First, let 1 ~ i ~ 6. Then the condition that the above sum equals
zero coincides with the equation in Theorem 3 up to signs. In fact, we
claim that for all i ~ 7 one has

It is almost the same as Equation (3) in Theorem 3, only that the coeffi-
cients in the right hand side should be rather than

NfJ7, Yi7. But exactly the same calculation as in the case of E6 based on (2)
and the equality NfJ7, YJNfJJ’ Y7 = 1 - which is a special case of (4) -
shows that these two expressions do in fact coincide.

The case i = 7 is treated similarly, only that now we must get the
equation

This is indeed the same, as above, with the following modification: now it
follows from (4) that N,~ 6, y,~ N~~, y 6 = -1, 1 ~ j ~ 5 , which accounts for the
change of sign of the right hand side as compared with (5). This finishes
the proof of Theorem 5 for E7.

4 °. Proof of Theorem 4.

Let H = H(g) be the group generated by the elementary fake root
unipotents such that zv = v for some column v = g *,~ of the matrix g =
= A, Il E A (.7r). Let g -1 A, Il EA(n), be the inverse matrix.
The following fact is obvious from the definition.

LEMMA 13. Let 0 be a simply laced root system. Then E(O, R) is
the smallest subgroup containing an elementary root subgroup Xa , for
some a E 0, and normalized by the extended Weyl group W .

Now we prove that H satisfies the conditions of this lemma. Indeed,
Theorem 5 immediately implies the following result. Here we return to
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the notation of the preceding subsections, in particular, 0 = = 6, 7,
and f3 1 has the same meaning as in the above proof of Theorem 5.

LEMMA 14. Let g E G(~, R). Then the group H = H(g) contains the
root subgroup 

PROOF. Let v~ = g *~ be the column of the matrix g = (gAu),
,1,,u EA(n). Let, as usual m = 5 for 0 = E6 and m = 7 for W = E7. Then
by the proof of Theorem 5 we know that for any ~ E 1~ the product

is an elementary fake root unipotent, stabilizing vft. Set ~ = g~Y 1 ~, where,
as usual, is the entry of the inverse matrix g -1 = À, p in

the position (03BC, y 1 ) and E E R is arbitrary. We claim that the product
equals x~ 1 ( ~). Indeed, belonging to a singualr subspace in

the geometry of root subgroups all X{3~’s commute and by commutativity
of R one = (the product of a
row of a matrix by the column of the inverse matrix). This shows that
x~ 1 ( ~ ) E H for and thus X~ 1 ~ H .

But since this is true for any matrix g e G, the group H = H(g) must
be the whole elementary subgroup. This immediately follows from the
next lemma.

PROOF. Take an arbitrary z E H(wg). Let, for example, z(wg),~~ for
some p E Then

This means that w -1 zw E H(g), so that, in particular, w -1 H(wg) w ~
~ H(g). But then also H(g) 

Now we are in a position to finish the proof of Theorem 4. Indeed,
take an arbitrary g E G and an arbitrary w E W . By Lemmas 14 and 15
one has H( w -1 g ) thus = 1 w -1 ~ H(g ).
This means that H(g ) contains all elementary root subgroups Xa , a E 0,
and thus coincides with the elementary group E(O, R).
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