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Level Sets of Gauss Curvature in Surfaces

of Constant Mean Curvature.

FEI-TSEN LIANG (*)

ABSTRACT - For an embedded surface M in IC~.3 with nonempty boundary aM, con-
stant mean curvature H and Gauss curvature K, we consider the sets Eo (k) _

K(x)  A;},E’i(/c) = K(x) K(x) =
= k }, (where M = M U If k is not a critical value of K, such that is not

empty, then one and onLy one of the following cases occurs: (1) At least one
component of r(k) is a Jordan arc with two distinct endpoints on aM ;
(2) El (k) is simply-connected, enclosed by T(k) and containing a unique um-
bilical point. T(k) is a simple closed curve, on the other side of which Eo (k) is
situated. Eo (k) is of the same connectivity with that of M and enclosed by r(k)
together with aM; (3) Each component of T(k) is a simple closed curve inside
M, adjacent to which and on two sides of which a component of Eo (k) and a
component of El (k) are situated, respectively; each of them either is diffeo-
morphic to a planar annulus or is of the same connectivity with that of M and
is enclosed by this component of T(k), together with either another compo-
nent of r(k) or components of aM . This result then yields the convexity of M if

r z 8M) is positive and M is simply-connected.

For an embedded surface M in with boundary aM and Gauss cur-
vature K, we may consider the sets

and

(*) Indirizzo dell’A.: Institute of Mathematics, Academia Sinica, Taipei, Tai-
wan. E-mail: liang@math.sinica.edu.tw
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The main purpose of this paper is to characerize the topological proper-
ties of the leval sets Eo(k), El (k), and r(k) in case M is of constant mean
curvature by means of Gauss-Bonnet theorem and some applications of
the Hopf differential. We shall show that one and only one of the cases
listed in Main Theorem 2 below occurs. From this, we draw the impor-
tant conclusion that M is convex, in case x E 3M I is positive
and M is simply-connected. Indeed, it is the attempt to verify the last
result which motivates the investigations made in this paper. We note
also that famous examples, (e.g. Delaunay surfaces), show the necessity
of the conditions of simply- connectedness in this result.

This convexity result is related to Hopf s conjecture which in fact is a
consequence of the intuition that closed immersed surfaces in of con-

stant mean curvature are necessarily convex. Wente’s couterexample
[11] and subsequent discovery of ab undant examples of such immersions
violate this intuition on convexity. In contrast, Huang and Lin prove in
[8] via a variational approach that for a nonparametric surface M, the
negatively curved set, (that is, the set of points at which K is negative), if
exiats, must extend to the boundary aM of M . From this, the convexity
of M follows in case x E is positive and M is nonparame-
tric, (which is a special case of the above mentioned result obtained in
this paper via an entirely irrelevant approach). Furthermore, Huang and
Lin introduce in [8] the notion of extremal domains , and prove that for
parametric surfaces immersed in I~.3 , the negatively curved set, if exists,
must be at least as large as an extremal domain. This result has not
been surpassed via the approach used in this paper.

For nonparametric surfaces of constant mean curvature with capil-
Lary boundary conditions, the convexity problem has been investigated
in Finn [4] [5], Korevarr [9], and Chen-Huang [3]. On the other hand,
Brascamp-Lieb [1] and Cafferelli-Friedman [2] obtain some convexity
properties of solutions to certain linear elliptic Dirichlet boundary value
problem.

Related results for higher dimentional parametric surfaces can be
found in Korevarr-Lewis [10] and Huang [7].

Introduction.

Gauss-Bonnet theorem says that, for diffeomorphic to the unit
disk or a connected plane bounded domain by ml circles (~ ~2), there
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holds

respectively, where Kg is the geodesic curvature along dA is the

area element of M and ~~ is the arc length of aEo(k). Likewise, we
have

provided is diffeomorphic to the unit disk or a connected plane do-
main bounded by m2 circles. In this connection, we note that, if M has no-
nempty boundary aM, we may set

then, if k is not a critical value of K such that

then the boundary of or coincides with 7"(&#x26;).
Recall also that, at non-umbilic points, the Gauss curvature K of a

surface M of constant mean curvature H satisfies the partial differen-
tial equation

where £1 is the Laplace-Beltrami operator on M.
In Section 1, we shall first present some preliminary results on the

Hopf differential 0 = H 2 - K, by means of which (5) is easily
derived in the end of Section 1 and the geodesic curvature Kg along r(k)
is calculated in Section 2. In particular, for each component of 

we obtain precise formulae for in terms of [ and

, where V denotes the covariant differentiation on M . Name-

ly, we shall prove in Section 2 the following

MAIN THEOREM 1. Suppose M is an embedded surface in R3 with
constant mean curvature H and suppose k is not a critical value of K
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on M . For a of r(k) which is a simple closed curve insi-
de M, denote n as the unit outward normal with respect to the domain
at the left of r(k) is traversed counterclockwise. is de-

scribed counterclockwise so that a component of is at the

left of r(k), then there holds

while, if a component El (k) of El (k) is at the left of r(k) instead,

Here 0 denotes the covariant differentiation on M.

In consideration of the fact that 10 ( 2 takes the constant value H 2 - k
along we may reformulate previous results as follows.

MAIN THEOREM 1 *. Assume k and M satisfy the same conditions
as in Main Theorem 1. For a component r(k) of r(k) which is a simple
closed curve, there holds

if the former case in Main Theorem 1 occurs, while

if the latter case in Main Theorem 1 occurs.

Suppose the boundary of M consists of m components, namely

For each i , 1 ~ i ~ m , if there exists a number ki , for which a component
T* (ki ) of ~’* (ki ) is a simple closed curve intersecting at a finite num-
ber of points and not enclosing a simply-connected region inside M, then
we set 81 M = U if, however, for a2 M, no such a number ki exist,



5

Figure 1

then we set = Denote M * as the domain contained in M and
enclosed by at M U ... U 8j§§M. (See Figure 1). We then set

and

Delete small neighborhoods of umbilical points on M first and then
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after a simple limiting procedure, we obtain the following results by vir-
tue of Main Theorem 1, the partial differential equation (5) and Green’s
identity.

COROLLARY 1. Assume k and M satisfy the same conditions as in
Main Theorem 1. Consider a component Eo (k) of Eo (k) or a components

whose boundary consists o, f q components 0,
together components 1, each of which is a simple clo-
sed curve. If, for such a component boundary is de-

scribed counterclockwise so that at then we

have

if, on the other hand, for such a component Ei (k), its boundary a Ei (k)
is described counterclockwise so that the left we

then have

Corollary 1 and the Gauss-Bonnet formula (3.1) yield the following
result.

THEOREM 1. Assume k and M satisfy the same conditions as in
Main Theorem 1. Then a component which is of the type
indicated in Corollary 1 must be diffeomorphic to a planar annulus;
and hence the component Eo(k) of Eo(k) (defined in ( 1.1 )) containing
Eo*(k) either is diffeomorphic to a planar annulus or is of the same con-
nectivity with that of M .

Also, by Lemma 2 and Lemma 3 in Section 1 below, together with the
fact that 95 vanishes precisely at umbilical points, we have
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LEMMA 1. For each simple closed curve r on M traversed counter-
clockwise, we have

where m is a positive integer.

Lemma 1, Corollary 1 and the Gauss-Bonnet formula (3.2) enable us
to infer the following

THEOREM 2. Assume k and M satisfy the same conditions as in
Main Theorem 1. Then a component Ei(k) of Ei (k) which is of the type
indicated in Corollary 1 must be diffeomorphic to either a unit disk or
a plan nar annulus. In the former case, Ei(k) coicides with a compo-
nent E1 ( k ) of contains a unique umbilical point and

f 2 z. In the latter case, the component El (k) of El (k) con-
3El (k) 

as

taining Ei (k) either is diffeomorphic to a planar annulus or is of the
same connectivity with that of M .

Theorem 1 and Theorem 2 then yield

THEOREM 3. Suppose M is simply-connected and either a complete
surface of constant mean curvature H without umbilical points or a
minimal surface, i. e. H = 0 . Suppose k is not a critical value of K on M .
Then each component of Eo (k) or component 21 (k) of El (k) which
contains a component k* (k) of Eo (k) or a component Ei (k) of Et (k) of
the type indicated in Corollary 1 must either be diffeomorphic to a pla-
nar annulus or is of the same connectivity with that of M .

Also we obtain from Theorem 1 the following result.

THEOREM 4. Assume k and M satisfy the same conditions as in
Main Theorem 1. If no component of r(k) is a Jordan arc with two di-
stinct endpoints on aM and if a simply-connected component of E1 (k)

N /V

is enclosed by a of r(k), then, adj acent to T(k) and on
the other side of there situates a component of Eo(k) which either
is diffeomorphic to a planar annulus or of the same connectivity wit h
that of M.
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Figure 2

We shall, however, prove in Section 3 the following result.

THEOREM 5. In Theorem 4, the component of Eo(k) indicated there
cannot be enclosed by two components of r(k); in other words, this com-
ponent of Eo(k) is enclosed by a component of r(k) and one or more
component of aM.

Assuming the truth of Theorem 5, we have, by virtue of Theorem 1,
Theorem 2, Theorem 4 and Theorem 5, the following

MAIN THEOREM 2. Assume k and M satisfy the same conditions as
in Main Theorem 1. If I(k) is not empty, one and only one of the follo-
wing cases occurs.

(1) At least one component of r(k) is a Jordan arc with two di-
stinct endpoints on aM. (See Figure 2).

(2) El(k) is simply-connected, enclosed by r(k) ccnd containing a
unique umbilical point. r(k) is a simple closed curve, on the other side
of which Eo(k) is situated. Eo(k) is of the same connectivity with that of
M and enclosed by r(k) together with aM. (See Figure 3).

(3) Each component of 1’(k) is a simple closed curve inside M, ad-
jacent to which and on two sides of which a component of Eo(k) and a
component of El (k) are situated, respectively; each of them either is dif
feomorphic to a planar annulus or is of the same connectivity with that
of M and is enclosed by this component of F(k), together with either
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Figure 3

another components of T( k ) or one or more components of aM . (See Figu-
re 4).

As a consequence of Main Theorem 2 and Theorem 3, we have

Figure 4
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MAIN THEOREM 3. Suppose M is simply-connected and is either a
complete surface of constant mean curvature without umbilical points
or a minimal surfaces. Suppose k is not a critical value of K and M.
Then either (1) or (3) in Main Theorem 2 must occur.

We may observe that Main Theorem 2 yields the following

MAIN THEOREM 4. If M is simply-connected and if Ko defined in
(4) is positive, then K &#x3E; 0 inside M ; i. e. M is convex.

Indeed, if Ko is positive, for each number k  0, case (1) in Main
Theorem 2 cannot occur. Moreover, as M is simply connected, case (3) in
Main Theorem 2 cannot occur for any number I~ . Thus, case (2) in Main
Theorem 2 occurs for some number k ; 0. This amounts to the truth of

Main Theorem 4.

1. Preliminary results.

Let M be an oriented two-dimensional connected surface and

x : M -~ IE~3 be an isometric immersion of M into I~3 . At a neighborhood of
any point of M, we may adapt an isothermal coordinate z = ~ 1 + i~ 2 in
such a way that the first fundamental form is, for some scalar

~,&#x3E;0,

Let us set

and define the unit normal vector field by

We may define 1-forms wi , w12 , i =1, 2 , by the following formulae



11

Then, writing, for i = 1, 2,

we have h12 = h21, and the mean curvature of M is given by

Furthermore, setting

there holds

where K is the Gauss curvature of M.

The following result is a consequence of the Codazzi equation.

LEMMA 2. (Hopf [1], page 37) There holds

From Lemma 2, we immediately obtain the following result.

LEMMA 3. (Hopf [1], page 38) M has constant mean curvature if and
only if the function ~, 2 ~ is an analytic function of z .

Hence, at a non-umbilic point of the surface M of constant mean cur-
vature, we have

On the other hand, by the Gauss equation

These last two identities can be combined to yield (5).
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2. Geodesic curvature Kg along the level curve F(k) of K; Proof of
Main Theorem 1.

and choose such that is a smooth

curve

where s is the arc length of as a curve on a surface M of constant
mean curvature H . Let, henceforth, subscripts denote the variables with
respect to which partial differentiation is taken and

stand for the unit normal to M . Also, throughout this section, let dot de-
note the partial differentiation with respect to s , and then, along T( k ),
the geodesic curvature

where the last equality follows from the fact that

Along T(k), ~ ~ ~ 2 = constant H2 - k, which yields

This identity enables us to express the right hand side of (7) in terms of
~ ~ ~ 2 and its differentiation with respect to z and ~.

2.1. To motivate our calculation, we assume, first of all, that
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Then, by (9), along 

i.e.

Thus

by (10), where, as

we have
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and

Inserting (12) and (13) into (11), we obtain

2.1.1. To proceed further, we note that, along ro(k), as

constant,

We emphasize here that the calculations performed in this subsection
is valid no matter whether (10) holds. We aim at deriving (27) below,
which, together with the discussion made in 2.1.2 and the beginning of
2.1.3 will yield Proposition and hence Theorem 6 in the end of 2.1.3.
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Suppose first that, along T(1~), there holds,

that is, is described in such a way that a component Eo ( k ) of Eo ( k )
(defined in (1.1)) situates at the left of T(I~). Then, observing that

we have, by (15) and (16),

and

which gives

We may observe that, as (15) yields

we have
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and

By (19), we have

Thus, in consideration of (20.1) and (20.2), we obtain

Likewise, we have
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We may observe

and also

Inserting (23.1 ) and (23.2) into (21) and (22), we obtain

and also
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And hence, as

we have

For the first term in the bracket in the right hand side of (25), we
have
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by (24). Inserting (26) into (25), we obtain

2.1.2. Assume again that (10) holds and hence so does (14). Inserting
(27) into (14), noting

and observing that, by (17) and (18),

we obtain

2.1.3. Under the assumption of (10), in case (16) fails to hold along
F(k), then there must hold along 

which will reverse the positive and negative signs in the right hand side
of (17) and (18). Thus, the signs in (27) and (28) will both be reversed,
and hence (29) is still valid in case (30) holds along 
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2.2. Now assume that (10) fails to hold; i.e. at some point of

r(k),

In case

at some point of T(k ), then, by (9), there must also hold ( 1 ø 2 )v = 0; hen-
ce 1 Bl K I = 0 at this point of T(k). This says that k is a critical value of K
and I = 0 at every point of T( k ).

On the other hand, if v = 0 and ( 1 q5 |2)u # 0, then, by (9), there also
holds it = 0, contradicting (8). Thus, it remains to consider the case

Differentiating (9) with respect to s , we have

In consideration of (31), this gives us

in which

Inserting (31) into (27), we obtain, by (33),

in case (16) holds. (We recall that, as emphasized in the beginning of
2.1.1, (27) holds without the assumption (10).) By (31) and (32), we have,
however,
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and, in case (16) holds, by (17) and (18),

Inserting (34) and (36) into (35), we see that (29) is valid in case (16) hol-
ds. The same observation with that made in 2.1.3 shows that (29) is valid
in case (30) holds instead. Thus, we may formulate

PROPOSITION 1. If k is not a critical value o, f K, then setting

and

there holds, at every point of F(k)

We may note that, by (24), for f and g defined in (37) and (38), re-
spectively, we have

Also, we may define 0(s) by

Then f(s) = cos 2 0(s) and g(s) = sin 2 0(s), which yield

In this connection, we may denote x and y being real-
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valued function of s and observe that the unit outward normal to the cur-

ve 195 2 = constant in the (x, y)-plane is which, if a componentI I 1

of r(k) is a simple closed curve, coincides with

if a component (defined in (1.2)) situates at the left while
I I

is if a component (defined in (1.1)) situa-

tes at the left of r(k). Hence, by (3 9), (40) and (41), we obtain the
following

THEOREM 6. Suppose k is not a critical value and a component
of r(k) is a simple closed curve. Then, if is so described that a

component of Eo(k) situates at the left of we have

while, if is so described that a component of El (k) situates at the
left of r(k), we have

where arg 0 denotes the argument of 0.

2.3 We now proceed to calculate the sum of the last two terms in (7)
in terms of ~ ~ ~ 2, namely

Assuming that 0 ;d 0 on T(1~), i.e. no umbilical point is on T(1~), we ha-
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ve, by (6) in Lemma 2 and the fact that H is constant,

and hence, there holds

and

Hence

in which

But

and
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Hence

Thus, (44) yields

and then (43) yields

Inserting this into (42), we obtain, along r(k),

In virtue of this identity, (14) and Theorem 6, we thus complete the
proof of Main Theorem 1.

3. Proof of Theorem 5.

Assume that Theorem 5 is false. That is, assuming k and M satisfy
the same conditions as in Main Theorem 1, a component T1(k) of T(k) en-
closes a simply-connected component of E1 ( k ), adjacent to which

IV N

situates a component E0(k) of Eo ( k ) enclosed by and another com-

ponent T2 (1~) of r(k), being a simple closed curve. (cf. Figure 5).
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Then, by Theorem 2, Main Theorem 1, and the location of 2?i(&#x26;), we
have

where nl denotes the unit outward normal of r1 (k) with respect to El (k).
Likewise, by Main Theorem 1 and the location of we have

where n2 denotes the unit outward normal of T2 (k) with respect to Eo (k).
However, by Green’s Theorem and the partial differential equation
(5),

(Delete small neighborhoods of umbilical points inside exists,
first and then perform a limiting procedure to obtain this.) Thus, by (4.5)
and (4.6)

contradicting (3.1) and the fact that Eo ( k ) is diffeomorphic to a planar
annulus.
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