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Functionals Depending
on Curvatures with Constraints.

MARIA GIOVANNA MORA (*) - MASSIMILIANO MORINI (*)

ABSTRACT - We deal with a family of functionals depending on curvatures and we
prove for them compactness and semicontinuity properties in the class of clo-
sed and bounded sets which satisfy a uniform exterior and interior sphere
condition. We apply the results to state an existence theorem for the Nitzberg
and Mumford problem under this additional constraint.

1. Introduction.

In this paper we are dealing with geometrical functionals of the

form

where cp : Rn - 1 ~ R is a given convex function, E varies in a class of suf-
ficiently regular closed subsets of Kl , ... , Kn - 1 denote the elemen-
tary symmetric curvatures of aE (see (4.1)), and 9C~~ is the (n - 1 )-di-
mensional Hausdorff measure.

In [3] BELLETTINI, DAL MASO, PAOLINI studied the functional F in
the case n = 2 and = 1 + where K denotes the curvature of aE ,
and remarked that F does not have the right compactness properties in
its natural class of definition, composed of all closed sets E whose boun-

(*) Indirizzo dell’A.: S.I.S.S.A., via Beirut 2/4, 34014 Trieste (Italy).
E-mail: mora@sissa.it; morini@sissa.it
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dary is of class W 2 ~ p : simple examples show that there exist sets of class
C °° , except for a finite number of cusp points (the functional then is not
naturally defined on them), which can be approximated by a sequence of
sets of class C °° , whose boundaries have bounded curvature. Moreover,
they show that the lower semicontinuous envelope, F, of F with respect
to the L ’-topology cannot be represented as an integral of the form

and that the fact that a set E belongs to the domain of F depends on the
global structure of E . For instance, if aE is smooth except for a finite
number k of cusp points, then F(E)  + oo if and only if k is even.

The idea of this work is to modify the domain of F by introducing so-
me suitable constraints.

Fixed R &#x3E; 0, we choose as domain of F the class

( 1.2) closed and bounded: 

where B(q, R) denotes the open ball centred at q of radius R ; we will
say, equivalently, that UR is the class of all closed and bounded subsets
of which satisfy the exterior and interior sphere condition with
radius R at every point of the boundary. Note that the introduced con-
straint has a nonlocal effect on the thickness, which cannot be too small,
and a local effect on the curvatures, which are bounded from above by a
constant depending only on R . Remark also that this upper bound on the
curvatures goes to infinity, when R tends to 0.

In the class the pathological phenomena described above cannot
occur; indeed, they are related to the existence of approximating sequen-
ces of sets having regions with vanishing thickness or different connec-
ted components whose distance goes to 0.

In Section 2 we study the regularity of sets belonging to UR , showing
that the functional in (1.1) is well defined. In Sections 3 and 4 we prove
compactness and semicontinuity results for F in UR . In Section 5 we con-
sider the case n = 2 and we apply the theorems of Sections 3 and 4 to
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show the existence of a solution to the variational problem

where Q is a bounded subset of II$2 , a, y are positive parameters,
2-1 1

Ei’ : = Ei B , U Ej, g is a function in L2(Q). This functional was proposed
J = 1

by NITZBERG and MUMFORD as a variant of the MUMFORD and SHAH ima-
ge segmentation model, allowing regions to overlap (for further informa-
tion about this model, see [9]). In this framework the constant R can be
interpreted as a resolution parameter of the segmented image: the thic-
kness of the reconstructed objects has to be greater or equal to 272. We
conclude the section by giving an example of non trivial minimizer for a
functional of the form as in (1.3).

2. Preliminary results.

In this section we investigate the regularity of sets belonging to the
class UR introduced in (1.2) and we show that the functional (1.1) is well
defined in this class.

Let us fix first some notation. If E belongs to UR and p e aE, we de-
note the centres of the interior and exterior balls associated to p by p ’
and p" respectively, as in (1.2); moreover, we call 8§ the class of all coor-
dinate systems centred at p such that the coincides

with the n-th vector of the coordinate basis. 
2R

PROPOSITION 2.1. There exists a constant o &#x3E; 0 (depending only on
R), such that for every E E UR and , for every po e aE , if we call C the

~~~}x]-72,72[ expressed with respect- to a

coordinate system belonging to then aE n C is the subgraph of a
function f belonging to W 2 ~ °° ( ~ x E If~.n -1: ~ ~~~}). Moreover, the

W2, °° -norm of f is bounded by a constant depending only on R (inde-
pendent of Po, of E and of the choice of the coordinate system in 
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PROOF. We first perform the proof in the case n = 2 showing that
g = %iR/2 is a good choice.

Let E be in and let po belong to aE . Let us consider a coordinate
system belonging to We can reduce to work in the cylinder C + : _
= [0, B~R/2[ x ] - R, R[. For the proof we need the following lemma.

LEMMA 2.2. Let ~ro = (x, y) be in aE n C + . If we call a(p) the angle
in [0, n[ between the x-axis and the tangent line to and

B(p", R ) at p, then

Moreover, either Bo5’, R) or R) contains the whole segment

PROOF. Let us suppose by contradiction that (2.1) does not hold;
hence,

The point q : (x - R sin a(p), ?/ + R cos a(p)) must coincide either with p’
or with pB To get the contradiction it is enough to show that

(2.3) and 

indeed, if (2.3) is true, B(q, R ) intersects both R) and B(~o , R),
while it must be contained either in E or in the complement of E . Let us
compute the distance between Pó and q :

Using the estimate , the absurd as-

sumption and (2.2), we obtain
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By similar computations one can estimate the distance between po and q .
Let and let us suppose that

We want to check that

which, by easy computations, is equivalent to

By assumption we know that

where the two last inequalities follow by the hypothesis ~ I  ý3R/2
and by (2.4).

Fixed x, in [0, ~B/3~/2[, let us suppose by contradiction that the strai-
ght line x = xl intersects aE n C + in two distinct points PI and ql. Then,
if we call PI the point with smallest y-coordinate, by Lemma 2.2 it follows
that either B( p1 , R ) or R ) must contain the point ql and this is im-
possible. Therefore, we can conclude that aE n C + is the graph of a fun-
ction f.

Since f is between the functions - R + YR2 - X2,
which are both differentiable at x = 0 with null derivative, f is dif-
ferentiable at x = 0 with derivative equal to 0. By a change of

coordinates, we can repeat the same argument at every point belonging
to [0, ý3R/2[; therefore, f is differentiable in [0, ý3R/2[ and the

tangent line to the graph of f at any point coincides with the tangent
line to the spheres associated to the same point. From here, we
obtain by Lemma 2.2 the following bound on the norm of the derivative
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of f :

for every x E [ o , 
To conclude the proof of the proposition in the case n = 2, it is suffi-

cient to check that the derivative of f is Lipschitz with constant depen-
ding only on R . First, we observe that, by (2.5),

for every x E [o, ~R/2[. Given P, = (xl, and P2 = (x2, f(x2)), we
consider the following change of coordinates:

which transforms the point PI in the origin and the tangent line to aE at
PI in the x-axis. With respect to the new coordinates, aE is locally the
graph of a function f and the point P2 has coordinates (x2 , f (x2 ) ); then,
by (2.6),

if

If we denote by L the Lipschitz constant of f in [0, ~B/3~/2[, we have
that
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Therefore, the condition (2.8) is satisfied if

By the relation

by (2.7), and (2.9), it follows that

By the boundedness of the derivative of f, we can conclude that there
exists a positive constant c, depending only on R , such that, if xl -
-x2|A, then

In the case x1 - X2/ &#x3E; A, we can find a finite number of points yo : =
= xl  yl  ... :=X2 such that ] % h for every

j = 0 , ... , k - 1. Then, we obtain

The proposition in the case n = 2 is proved.
In the case n a 3 we can reduce to the 2-dimensional one by a slicing

argument. For simplicity we sketch the proof only for n = 3; the general
case can be treated in the same way.

From now on, we will write the coordinates of a point as a pair
(x, z) E x R. Given E E UR and p E aE , we denote by 17 E the projec-
tion on the plane which is tangent at p to the balls B(p’, R) and
B(p", R).
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If q E aE we define

LEMMA 2.3. There exist two constants 6 &#x3E; 0, M &#x3E; 0 such that, for
every E E UR and for every p, q E 3E with q) I  ~ , it results
that &#x3E; M .

PROOF. Let us suppose by contradiction that for every hEN there
exist Eh E UR, qh E aEh such that

, ;

Up to rototranslations, we can suppose that p = (0, 0), pg = (0 , - R),
and ( o , R ). If we denote by zh ) the coordinates of qh , we obtain
that

Since by (2.11 ) the right-hand side tends to 2 R 2 as h -~ ~ , for h large
the ball B(pf:, R ) intersects R), which is impossible.

Now we are in a position to prove the crucial lemma which allows us
to perform the two-dimensional reduction.

LEMMA 2.4. &#x3E; 0 and M &#x3E; 0 as in Lemma 2.3. Let E be in UR,
p E aE and choose a coordinate system in Then, for every (x, 0) with
I x I  d the section of E with any vertical plane y passing through
(x, 0) satisfies in y the exterior and interior condition with
radius MR at every point of aE n C, where x ~ ]  3 ) x
x ~ _ R , RC.

PROOF. Let y be a vertical plane passing through (x, 0 ) and let (v, 0 )
be a unit normal vector to y . Let q E aE n C n y . By Lemma 2.3, we have
that
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hence, if we call a the angle in [ 0, -r[ between q " - q ’ and (v, 0),
then

Then the point q satisfies the exterior and interior sphere condition in y
with radius R sin a , which by (2.12) is greater than MR .

Now we can prove the proposition in the case n = 3.
Given we choose a coordinate system in S~

and we call C the cylinder {x E R2: |x| I where 3 :=
= min 16, ~MR/2 ~, and 6, M are as in Lemma 2.3. Applying the 2-di-
mensional result to the sections of E with the vertical planes passing
through the point ~, by Lemma 2.4 we obtain that aE n C is the graph of
a function f defined in I x E R2: ] r ]  3).

To show the differentiability of f , we can repeat the same argument
as in the 2-dimensional case. Moreover, Lemma 2.3 gives a uniform
bound on the norm of the gradient of f.

Using Lemma 2.4, the 2-dimensional result, and Lemma 2.3, we can
find and N &#x3E; 0 such that in x ~ I  g ) the restriction
of f to any straight line is a function of class W2, 00 with W 2 ~ ’-norm less
than N .

To conclude, we define the function

for a.e. x = x2 ). By the above remark, g is defined a.e. and belongs to
L °° with L °° -norm less than N . Using the absolute continuity of ax, f on
the straight lines X2 = constant, it is easy to check that g coincides with
the second distributional derivative f. Analogously, we can prove that
there exists ~2 f in the distributional sense, and that it belongs to L °°
with L 00 -norm less than N. To show that 3Xl’3X2 f exists and belongs
to L ’ with L °°-norm less than N, one can argue in a similar way, by
considering the restriction of f to the straight lines xl - x2 =
= constant .

LEMMA 2.5. Let sequence of connected sets in UR such
that lim diam (Eh ) _ + on . Then

h - oo
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PROOF. Since lim diam (Eh) = + oo , for every h E N we can find
h - oo

... , where mh is the integer part of such

that for every i ~ j . We clearly have that

{J5((p~)B R ) ~i =1, ... , mh is a family of disjoint balls all contained in Eh ;
hence,

and the second term goes to infinity as ..

3. The compactness result.

In the sequel, if f fj Ij is a sequence in W 2 ~ °° (Q) and f is a function in
W2, oo (Q), we mean by the notation in W*_W2,, (Q) that the se-

quence f fj Ij converges to f in the weak*-topology of W2, oo ( S2 ). Given E c
we denote the characteristic function of E by x E . If 3E is sufficiently

regular, we denote the unit outer normal vector to 3E at the point p by
v 3E(P).
We start by recalling two notions of set-convergence.

DEFINITION 3.1. Let f Eh Ih and E be measurable subsets We

say that the sequence converges to E a. e. a. e., and that

f Eh Ih converges to E in L 1 if in 

DEFINITION 3.2. Let f Eh Ih and E be closed subsets of W. We say
that the sequence f Eh Ih converges to E in the sense of Kuratowski (and
we write Eh -~ E) if

It is well known that on the space of equibounded compact sets, the
Kuratowski convergence is induced by the Hausdorff distance.

THEOREM 3.3. Let }h be an equibounded sequence of sets belon-
ging to ‘1.1R. Then there exist E E ‘1.IR and a subsequence such
that 
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c) there exists a constant 1] E ]o , 1 [ (depending only on R), such
that for every p E aE , if we call CrJ the E If~n -1: ~ 1 x I ~ 27R I x
x [ - ~R , expressed with respect to any coordinate system belonging
to a, and ,S’~ the section C’’ n (z = 0 ~, then 3E n C’’ is the graph of a
function f E W2, oo (SrJ), and 3Ehi n C’’ is definitively the graph of a fun-
ction fj E W 2’ °° (S7). Moreover, in w*-W2, 00 (S,7).

PROOF. Since lehlh is equibounded, there exist a compact set E and
a subsequence, which we denote again by lEh Ih, such that

Let us prove that E E UR .
First of all, we remark that if is a sequence such that

dist (p , Eh) &#x3E; c &#x3E; 0 for every h E N, then every limit point p of lPh Ih be-
longs to Indeed, let us suppose by contradiction that there exists

which converges then, by ii) in Definition 3.2, for every
there is qh E Eh such that I qh Ih converges to p and so, I qhk - p --~

~ 0 , in contradiction with the initial assumption.

CLAIM 1. Every point p E aE is the limit of a sequence lPh Ih such
that ph E aEh for 

Let p E aE. By ii) in Definition 3.2 there exists Ph E Eh such that Ih
converges to p; clearly, it is enough to show that aEh ) -0.
If by contradiction there exists a subsequence lphk Ik such that

&#x3E; c &#x3E; 0 for every then the ball B( phk , c ) is contai-
ned in Ehk . Since for every q c) we can find qk E=- B(Phk c) such that
qk ~ q , then by i) in Definition 3.2, q E E . Therefore B(p, c ) c E , hence
peIntE’, which contradicts our initial assumption.

CLAIM 2. If Ph E aEh for every h E N and there is a subsequence
converging to a point p, then p E aE . Moreover, there exist p ’ , p "

such that

Since Ehk e UR for every k E N, there exist pic , pl’ such that the balls
R ), R) are contained respectively in Ehk and in Up to

subsequences, we can suppose that (pi )~+ and converge to p’ and
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p" respectively. Therefore,

and, since , we have that

If q E B(~ro’ , R), then q is the limit of a sequence such that qk E
E R ) c by (3.1) and i) in Definition 3.2, it follows that q E E ; this
means that B(~ ’ , R ) is contained in E.

Let R ) and let = q - ~ " - ~rok for every It is clear

R ), there exists a constant c &#x3E; 0 such that dist ( qk , Ehk) =
= c , and the converges to q . Thus, as remarked before,

We can conclude that B(p ", R ) is contained in the complement
of E .

By (3.2), it follows that p E aE and this concludes the proof of the
claim.

By Claim 1 and 2, we can deduce that E E UR and also

To show the convergence in L 1, it is enough to prove the pointwise
convergence of to x E for every p g aE ; indeed, by the regularity of
E , we have = 0 . If p e Int E , then by (3.1 ) and (3.3) there
exists Ph E Int Eh such that dist aEh ) &#x3E; c &#x3E; 0 and Ph - p . Then p defi-

nitively belongs to c ), which is contained in Int Eh ; hence, =

=1 for h large and so, obviously converges to X E (p ). IfpeCE’
and by contradiction there exists a subsequence such 

then by i) in Definition 3.2 peE’, which is absurd.
Let us prove the third part of the proposition.
Let p E aE. By (3.3), there is a sequence such that Ph E aEh for

every hEN and From now on, we will work in a coordinate

system belonging to By Proposition 2.1, there exists cS E ]o , 1[, depen-
ding only on R , such that, if we set lxl ] 
- R, R[, then aE n C is the graph of a function f defined on the base of C
and of class W2 ~ °° . Let us denote by Ch the cylinder obtained by transla-
ting the centre of C in Ph and by rotating the axis of C in such a way that
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it is directed along v 3Eh (Ph). By Proposition 2.1, aEh n Ch is the graph of a
function fh defined on the base of Ch and of class W 2 ~ °° . We recall
that

(see the proof of Proposition 2.1). Since is parallel to the vector
Ph - converges converges to p" (see the proof of
Claim 2), and is parallel to the vector p"-pB we have that

By the convergence of to p and by (3.5), it follows that for h suf-
ficiently large Ch contains the cylinder C’’ _ ~ x E IE~n -1: ~ x ~ I 
x [ - i7R, where t7 e ]1 - ~B/1-~ ~ [. Using (3.5), (3.4) and the equi-
boundedness one can easily check that for h large enough
aEh n C’’ can be expressed as the graph of a new function f h defined on
the base of Cr¡.

Using again (3.5) and the equiboundedness in W2, °°-norm, it
is easy to see E W2 ~ °° (,S’’ ) and the W 2 ~ 00 -norm is bounded by
a constant depending only on R . Then there exist a subsequence 
and a function f E W2, oo (Sn) such that If hk Ik converge to f in w*-
W2, oo (Sn) (and then in C 1-norm). It remains to prove that f coincides
with f on S ".

CLAIM 3. It results that

and

Let ~k E graph f hk and let be a subsequence converging to a
point . The point ~k has coordinates (Xk, f hk (Xk» with 17R; up to
subsequences, {xk}k converges to a point x such that 17R. By the
uniform convergence of the functions, we obtain that tends to the

point ( x , , f ’ ( x ) ), which belongs trivially to graph f . Then property i) in
Definition 3.2 is proved. Let p = (x, f (x)) E graph f with r¡R. The
point := (~, belongs to graph f hk converges to p;
hence, property ii) in Definition 3.2 is verified.
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Since C7 is closed and by (3.3), property i) in Definition 3.2 is trivial.
By (3.3) property ii) is easily verified for the points belonging to aE n

(x, z) with x ~ I = 1JR and I z I ~ 1JR, then
it is enough to take the sequence ph = aEh n 3CI7.

By Claim 3, since graph f hk = it follows that graph f coin-
cides with aE n C ° . Then, f = f on C7 and the whole con-

verges to f in w*-W2~ °° (,S’~) .
Let us prove the second part of b).
By point c), for every p E aE there exists a cylinder C centred at p,

with base a (n - 1 )-dimensional sphere ,S, such that aE n C is the graph
of a function f E W 2 ~ °° (,S ), for h large aEh n C is the graph of a function
fh E W 2 ~ °° (S), and fh ~ f in w*-W2, 00 (,S ). We can recover 3E with a finite
number of these cylinders Ci, ... , Cm . Let us call fh the function such
that graph fih = aEh n Ci , and f the function such that graph f = aE n
n CZ .

Let E &#x3E; 0 be such that

We can consider a partition of unity associated to the recovering
... , C,,, 1, i.e. a family of (i = 1, ... , m) such

that 

By (3.3), for h large Then,

Using the Area Formula and the C ~-convergence of I fh’lh to/B it is easy
to see that for every i = 1, ..., m
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Therefore,

4. The semicontinuity result.

Given E E UR, we think aE oriented by the outer normal field (all the
results we will state still remain true if we choose the opposite orienta-
tion). We denote the principal curvatures (i.e. the eigenvalues of the se-
cond fundamental quadratic form) of aE at the point x by with i =

= 1, ... , n - 1, and the p th-elementary symmetric function of the principal
curvatures, called pth-elementary symmetric curvature, by

for p = 1, ... , n - 1. We also use the notation

for the mean curvature and the Gauss curvature respectively. In the case
n = 2 we simply denote the curvature by K.

It is well known from differential geometry (see [10]) that 
mentary symmetric curvature is the coefficient of the term of degree n -
- 1 - p of the characteristic polynomial of the second fundamental quadra-
tic form. If aE is locally the graph of a function f, then the second funda-
mental quadratic form is given by the product G -1 B , where G = is

the matrix defined by

while B = is the matrix
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By induction, it is easy to prove that for every p = 1, ... , n - 1 there
exists a continuous function ip p = ~), linear with respect to ~, such
that

where M(V2f(x» is the vector of the determinants of all the minors of
V2f(x).

In the sequel we will consider functionals of the form

where cp : Rn - 1 ~ R is a given convex function. Functionals of this type
arise in different contexts; for instance:

,. ~ the Willmore’s functional (see [5, 11]), F(E) =

VLj

= 1 + x, we find the functional considered in [3]:

THEOREM 4.1. Let cp : 1 ---&#x3E; R be a convex function. If E E UR
and Ih is a sequence in UR such that Eh ~ E in L 1, then

For the proof of the theorem we need the following lemma.

LEMMA 4.2. Let 0 : Rn x ll~n -1-~ [ 0, + 00 [ be globally continuous
and convex in the last n - 1 variables. Let Q be an open bounded subset
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and If then

PROOF It is not restrictive to assume that Q is smooth.

As remarked above, for every p = 1, ... , n - 1 and for every x E Q we ha-
ve that

where ip p is globally continuous and linear in the second variable.
Using the Area Formula, we can write

where

for every and Let us define the fun-
ction

for every x E Q, s E and ~ E n . Since q5 " is positive, globally conti-
nuous and polyconvex in E, by Theorem II.1 in [ 1 ], it follows that
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that is

Using the uniform continuity of 0’ on bounded sets and the uniform con-
vergence to f, we have that

By (4.2), (4.3), and (4.4), the thesis easily follows.

PROOF OF THEOREM 4.1. First of all, we observe that the sequence
is equibounded; indeed, let M &#x3E; 0 be such that E c B( o, M) and let

Eh be the union of all the connected components of Eh which intersect
M). By the L ’-convergence to E , it is clear that

Recalling that, if E;e 0 belongs to UR , R ) ), we
deduce that for h large Eh = Eh, i.e. all the connected components of Eh
definitively intersect B( o, M). The equiboundedness easily follows by
Lemma 2.5, and allows to conclude that the sequence satisfies a),
b), c) of Theorem 3.3. (Note that we have incidentally proved that in the
class UR, L ’-convergence and Kuratowski convergence are actually
equivalent).

Let us suppose for the moment that cp is positive. By Theorem 3.3, for
every p E aE there exists a cylinder C centred at p, with base a (n - 1 )-
dimensional sphere S, such that aE n C is the graph of a function
f E W 2 ~ °° (S ), for h large aEh n C is the graph of a function fh E W 2 ~ °° (S),
and fh ~ f in w*-W 2 ~ °° (S ). We can recover aE with a finite number of
these cylinders Cl’..., Cm. Let us call ~ the function such that

graph f/ = aEh n Ci , and f the function such that graph/" = 3E n Ci .
We can consider a partition of unity associated to the recovering

{C1, ... , C,,, 1, i. e. a family of functions Oi E Coo0(Ci) (i = 1, ... , m) such
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that 

Then

where we used Lemma 4.2 and (4.5).
If cp is bounded from below by a constant c E R, we can apply the pre-

vious argument to the function cp - c, to conclude that

where we used property b) in Theorem 3.3.
Finally, if cp is a generic convex function, let us set

which is finite by the equiboundedness of curvatures (see Proposition
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2.1 ). If we define (p : = cp V c, we have that q is a convex function bounded
from below; hence,

In the following proposition, we study the asymptotic behaviour of F
when R goes to 0, in the case n = 2 and cp(x) = 1 + showing the re-
lationship with the relaxed functional introduced in [3].

PROPOSITION 4.3. Let the family of functionals

otherwise in 

where p &#x3E; 1, and ~ is the class of measurable bounded sets in R2. Then,
FR, as r-converges ( for the definition and the properties of r-
convergence, see [6]) with respect to the L ’-topology to the lower semi-
continuous envelope, Fo, of

otherwise in 

PROOF. For every E E in L we have
to check that

We can suppose that
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and we can extract a subsequence such that FRhk (Ehk ) is finite

and

Since Ehk belongs to by Corollary 3.2 in [3] it follows that

and then,

hence, the liminf inequality is proved.
To obtain the limsup inequality, fixed E E 3K and 0, we have

to find a sequence in L 1 such that

We can assume F’o(E) finite; then, there exists a sequence such

that Ak is in C 2 , converges to E in L 1, as k -~ ~ , and

The smoothness of Ak implies that there is rk &#x3E; 0 such that Ak belongs to
the class Let us define by induction the following sequence of
indices:

and the sets

It is easy to verify that is the required sequence.

5. A variational problem in Image Segmentation.

In this section we apply the results of the previous ones to state an
existence theorem for the NITZBERG and MUMFORD problem in the class
UR . For every k E N and for every ... , Ek E UR let us define the fol-
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lowing functional:

where a , y are positive parameters, is a given fun-

ction in L 2 (,SZ ), cp : R - R is a given convex function, and K denotes the
curvature of 8E. If we take

we obtain exactly the original model proposed in [8].

THEOREM 5.1. For every R &#x3E; 0 and for problem

admits a solution.

PROOF. For the sake of simplicity, we perform the proof only for
k = 1; the general case follows by a similar argument, involving only so-
me further difficulties of notation.

Let be a minimizing sequence in for the functional Gi . We
can suppose that all non-empty connected components of each Em meet
,S~ ; indeed, if we call Em the union of the connected components of Em
which intersect S~ , we have that and then, we can re-
place Em by Em . By Lemma 2.5 the sequence results equibounded.

Applying Theorems 3.3 and 4.1 to the sequence we obtain a

subsequence and a set E E such that

i) Emh ~ E in L 
1 and a.e.;
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We observe that

hence, applying the Dominated Convergence Theorem to both addends,
we can conclude that

Analogously,

At this point it is clear that

and that E minimizes the functional.

As explained in [9], the integer k is the number of depth levels of the
reconstructed image; denoting by (El , ... , Ek ) the solution of (5.2), the
set Ei represents all the objects at the i-th level. If 1~ is not a priori fixed,
we can consider the variational problem studied in the following theorem.

THEOREM 5.2. For every R &#x3E; 0 the problem

admits a solution.

PROOF. ... , be a minimizing sequence. Since for
every 1 E {I, ... , 1 1 - 1 ~ and A1, 9 ... , Al- 1 E UR we have that

we can suppose that for every m and for every j e {1..., and

so,
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therefore, the must be bounded and so admits a

constant subsequence: now we can conclude by applying Theorem 5.1.

If we are interested not only in detecting contours, but also in clea-
ning and regularizing the image, we can consider the following variatio-
nal problem:

where k is fixed in N, 3 is a positive parameter and we use the same no-
tation as before.

THEOREM 5.3. Let g be a function in L 00 (Q). Then, for every R &#x3E; 0

and for every kEN the problem in (5.3) admits a solution.

PROOF. We first look for a solution (u, El , ... , where

E 1, ... , be a minimizing sequence for the functional
in (5.3). By a truncation argument we can suppose that and,
as in the proof of Theorem 5.1, we can assume that is equibounded
for every i = 1, ... , 1~ . By Theorem 3.3 there exist El , ... , Ek belonging
to UR such that, up to subsequences,

Arguing as in the proof of Theorem 3.3, one can easily check that if U is

an open subset compactly contained in ,
k

then for h large U is

compactly contained in

Since fuhlh is equibounded in WI, 2 (U), up to subsequences, there
exists U E such that in w-W 1 ~ 2 ( U). By the weakly lower
semicontinuity of the L 2-norm, by Theorems 3.3 and 4.1, we obtain
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Let us construct a sequence of open subsets compactly contained in
k

QB U aEi’ and increasing to it; the previous argument combined with a
z= i

diagonal procedure allows us to conclude that there exists u E
i n ,

such that ( minimizes the functional.

Since the regularity theory for elliptic equa-

tions ensures that for every p  oo , hence u E

Let us suppose now that 1~ is not a priori fixed: arguing as in Theorem
5.2, we can prove the following result.

THEOREM 5.4. Let g be a function in L 00 (Q). Then, for every R &#x3E; 0

the problem

admits a solution.

We conclude this section by giving an example of non trivial (i.e. non
empty) minimizer.
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EXAMPLE 5.5. Let us set g : = R) and assume R &#x3E; 1. For a sui-

table choice of Q and of the parameters a , f3, y , B(0, R) minimizes the

functional

PROOF. It is known (see Theorem 5.7.3 in [4]) that for every smooth
closed curve y , it results that

y

Holder inequality and (5.5) imply that for every E e ’UR, E # 0 , the follo-
wing inequality holds:

so that

Since 2 JtR and R &#x3E; 1,

Finally,

for a suitable choice of S~ and of the parameters.
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REFERENCES

[1] E. ACERBI - N. Fusco, Semicontinuity Problems in the Calculus of Varia-
tions, Arch. Rational Mech. Anal., 86 (1984), pp. 125-145.

[2] S. AGMON - A. DOUGLIS - L. NIRENBERG, Estimates near the boundary for
solutions of elliptic partial differential equations satisfying general boun-



199

dary value conditions, Comm. Pure Appl. Math., 12 (1959), pp. 623-727.
[3] G. BELLETTINI - G. DAL MASO - M. PAOLINI, Semicontinuity and Relaxation

Properties of a Curvature Depending Functional in 2D, Ann. Scuola Norm.
Sup. Pisa, XX (1993), pp. 247-297.

[4] M. P. Do CARMO, Differential Geometry of Curves and Surfaces, Prentice-
Hall, Englewood Cliffs, New Jersey (1976).

[5] B. Y. CHEN, Total Mean Curvature and Submanifolds of Finite Type,
Series in Pure Mathematics-Volume 1, World Scientific Publishing Co Pte
Ltd., Singapore (1984).

[6] G. DAL MASO: An Introduction to 0393-convergence, Birkhäuser, Boston

(1993).
[7] J. M. MOREL - S. SOLIMINI, Variational Models in Image Segmentation, Bir-

khäuser, Boston (1995).
[8] M. NITZBERG - D. MUMFORD, The 2.1-D Sketch, International Conference on

Computer Vision. Computer Society Press, IEEE (1990).
[9] M. NITZBERG - D. MUMFORD - T. SHIOTA, Filtering, Segmentation and Dep-

th, Springer-Verlag, Berlin (1993).
[10] M. SPIVAK, A Comprehensive Introduction to Differential Geometry, Publi-

sh or Perish, Berkeley (1979).
[11] T. J. WILLMORE, Note on embedded surfaces, An. Stiint. Univ. «Al. I. Cusa»

Iasi Sect. I, a Mat., vol. II (1965), pp. 443-446.
[12] T. J. WILLMORE, Mean Curvature of Immersed Manifolds, topics in Diffe-

rential Geometry, edited by H. Rund and W. F. Forbes, Academic Press,
London (1976), pp. 149-156.

Manoscritto pervenuto in redazione 1’1 ottobre 1999.


