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Regularity of Lipschitz Minima.

CRISTINA MOSNA (*)

The existence of Lipschitz minima was the fundamental step in Hil-
bert’s proof of Dirichlet Principle (see [6] and [7]). Hilbert’s Lemma in
today’s language would be written: «For any open, bounded set Q c Rn
and any Lipschitz function y : satisfying the B.S.C (Bounded
Slope Condition), there exists a unique Lipschitz function w E Lip (W)
satisfying (1) and (see [5]).

Its validity for a general F was remarked by A. Haar [8] in the 2-di-
mensional case. The results of Hilbert and Haar opened an interesting
problem about the regularity of the minimizing functions according with
the regularity of the function F. Hilbert conjectured (see the XIX Pro-
blem in [1]) that the Lipschitz minima are analytic if F is so.

E. Hopf [9] and C. B. Morrey [10] proved that the Hilbert conjecture
was true for the C-minima.

The gap, from Lipschitz to C 1, was filled by the famous regularity re-
sult established by E. De Giorgi in 1957 [2].

What we do here, is to apply De Giorgi’s method directly to the proof
of Hilbert conjecture.

I wish to thank Mario Miranda, I am indebted to him for his advice. I
am grateful to the Dipartimento di Matematica dell’Universita Degli
Studi di Trento for financial support and access to its facilities.

NOTATION. Throughout this paper the symbol Q means an open,
bounded set in with n ~ 2. By Lip (Q , we denote the set of Lip-

(*) Indirizzo dell’A.: c/o Mario Miranda Dipartimento di Matematica, Univer-
sita degli Studi di Trento, Via Sommarive 14, 38050 Povo (TN).

E-mail: miranda@science.unitn.it; http://degiorgi.science.unitn.it/~miranda/
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schitz functions f : Q - Rk and by Lip,(S2, Rk) the set of functions in
Lip ( ,S~ , Rk) with compact support in S~ .

If k = 1 we write Lip (Q), for Lip ( S~ , R) and R).
In this paper we shall prove the following:

THEOREM 1. If F : II~ is a strictly convex function of class C2
and w E Lip (Rn) satisfies

for all then w has Hölder-continuous first derivatives in Q.

PROOF. We shall divide the proof in six steps.

STEP 1. We prove that the differential quotients of w satisfy the in-
tegro-differential equation (7), whose coefficients are defined by (7) and
have the property (10).

The convexity assumption on F implies that (1) is equivalent to the
following identity:

For any and I  dist ( spt aS2 ), we
get

and

If we subtract (2) from (3), we obtain

Since
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we have

where

are bounded, Lebesgue measurable functions for all i , j = 1, ... n.

Thanks to (5) the integral equation (4) becomes

Dividing by t # 0, we obtain the following integral equation

where

is a differential quotient of w.
Putting

with se[0, 1] and denoting by K the Lipschitz constant of w , we

have
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From (6) and (8), since F is of class C 2 and strictly convex, we
obtain

where

REMARK 2. For any E &#x3E; 0, put
&#x3E; ~ ~, we have that

is a family of bounded functions (where the bound is the Lipschitz con-
stant K of w) that satisfies the integro-differential equation

are defined by (6) and satisfy (9).
For notational convenience the same letter Q will be used to denote

the set 

STEP 2. As consequence of (10) and (9) we obtain the so-called Cac-
cioppoli inequalities (see [2]), i.e. for all y E S~ , 0  g 1  e 2  dist ( y , 

and k E R, we have
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where

We restrict ourselves to the proof of (lla), since (11b) can be derived
from the application of (lla) to the function - u .

Let be

where t7 E The function V5 is in moreover it vanishes in

A(k). Hence substituting in the integral equation (7) the function cp
in the place of we obtain

that is,

By a simple computation, we get

Since the matrix A is symmetric, we have

then by (9),
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Making for 17 the following choice

we get

that is (lla).

STEP 3. Here we recall the definition of «perimeter of a set» follo-
wing [3] and prove two inequalities which will be useful later.

Let E be a Lebesgue measurable set and A an open set in Rn, we defi-
ne the perimeter of E in A as

If A = we shall write P(E ) for P(E, R").
It is useful now to remember the global and local isoperimetric ine-

qualities (see [3], [4], [5]).
For any Lebesgue measurable E c Rn

and (see [2])

with

where is the Lebesgue measure of the unit ball of RB
The following Lemma establishes a connection between the gradient

and the perimeter of level sets of Lipschitz functions.
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LEMMA 3. For all f E Lip (Rn) and for all o , t E II~ with Q &#x3E; 0 we

have

PROOF. Given E &#x3E; 0, let us denote with £(r) the function defined
by

Let us observe that

for almost all

and

for almost all

Hence we have

The functions h (x) E for all E &#x3E; 0 . Moreover it is obvious
that

and

where X A(t) is the characteristic function of A(t).
Let g E be such that g(x) ~ ~ 1. Then

Sinee
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we get

On taking the supremum over all such g and recalling (17), we have

Lemma 3 leads us to two important inequalities (see [2]).

FIRST INEQUALITY. For all f E and for all k , A, o 
with

we have

where i(k, ~, o) = min { o) ~ , , Q) } and P I is the con-
stant in the isoperimetric inequality (14).

PROOF. The isoperimetric inequality (14b) implies

then it follows from Lemma 3 that

If
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the inequality (19) becomes

The function is a non-increasing function of t and
then

for all k, with 

Using this inequality and integrating (21) with respect to t from k to À
(k  A), we get

&#x3E;

Since is a non-increasing function of t, we have

If

considering the non-decreasing function
ceeding as before, we obtain

If neither inequality (20) nor inequality (23) are satisfied then there
must exist t E [ 1~ , ~, ] such that
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and

Applying (22) over the interval [t, A] and (24) over [k, t], we obtain again
(18).

SECOND INEQUALITY. For all f E Lip and for all k, o E R
with

we have

where

PROOF. Lemma 3 and the isoperimetric inequality (14b) imply

Since

we have by (25) and (27)

so that

If we integrate this last inequality with respect to t over the interval
( k , + oo ), we get
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that is,

Being

we can apply (28) to the function [( f(x) - k) V 0]2, obtaining

Since

we have

Now, using Schwarz-Holder inequality, we get

then

By taking the square, we can conclude

where
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STEP 4. What we are going to prove now is an estimate for the oscil-
lation of the differential quotients u, directly derived from (lla) and
(llb).

LEMMA 4. For all (0, 1 ) we define

and

where fi 2 is the constant in (26) and y is the constant in Caccioppoli
inequalities. Then if k e 

we have

PROOF. Putting

for all integer h ~ 0, we have

and

The definition of 0 implies

then
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that is the condition for using inequality (26),

Writing (1Ia) for we have

Combining these two last inequalities, we obtain

Noting that

and

from (34) we obtain the following two inequalities

Thanks to these and the definitions of 0 and c, it is easy to prove, by in-
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duction on h , that

Then (35) implies

(37)

that is

Considering - u and proceeding as before, we obtain (31). m

STEP 5. We can study now the behaviour of the oscillation of u on
B(Q) as Q - 0.

LEMMA 5. There exists a number 1] = r~(n, y) &#x3E; 0 such that, for all
geR with

we have

where

PROOF. Let us put

and
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At least one of the following two inequalities must be true:

Assume that (39ac) is true. If (39b) is satisfied we would use the same ar-

guments for the function - u .

For all I S ~’ , we put
4

From the Schwarz inequality we have

Noting that

and recalling (18), we obtain

Since 2 0 ), we have

then applying ( 11 a) with we get

Combining this last inequality with (40) and (41), we obtain

Now, let h = h( n , y) e N be the first integer such that
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and put

For all A = with m = 1, ... , h we have I S ’o , then from (43) it

follows 
4

forallm=1,...h.
To simplify the notation, let us put

Being the disjoint and contained in B( 2 ~o ), we
have

then, recalling (44), we obtain

from which

Being

we have
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It follows then from Lemma 4

where from (46),

Since

we have

then

STEP 6. We are finally able to prove the following:

LEMMA 6. There exists a number a = a( n , y) E (0, 1 ) such that, for
all d E R with

we have

where K is the Lipschitz constant of w.

PROOF. Let xl, X2 E=- By(d) and consider the ball of
2
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radius e = I X2 - I centered in xl. Let m be an integer such that

then Lemma 5 implies

From (48) we get

that is

Hence, recalling (49), we have

Put a = - where t7 is the constant defined in Lemma 5 from
(45), we obtain

from which it follows (47).

We can conclude that the differential quotients

are Holder-continuous in every ball with 0  2 d 2
for all and t e R - ( 0 ) sufficiently small.

Moreover the Holder constant and exponent are independent of t and e.
Therefore from (47), letting we obtain

for all x2 E By d and for all
B ~ /

This completes the proof of Theorem 1.
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