RENDICONTI del SEMINARIO MATEMATICO della UNIVERSITÀ DI PADOVA

VLADO CIGIĆ

Some new partially symmetric designs and their resolution

Rendiconti del Seminario Matematico della Università di Padova, tome 99 (1998), p. 99-103

http://www.numdam.org/item?id=RSMUP 1998 99 99 0>

© Rendiconti del Seminario Matematico della Università di Padova, 1998, tous droits réservés.

L'accès aux archives de la revue « Rendiconti del Seminario Matematico della Università di Padova » (http://rendiconti.math.unipd.it/) implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

$\mathcal{N}_{\text{UMDAM}}$

Article numérisé dans le cadre du programme Numérisation de documents anciens mathématiques http://www.numdam.org/

Some New Partially Symmetric Designs and their Resolution.

VLADO CIGIĆ(*)(*)

ABSTRACT - In this note we study a resolution (a generalisation of a parallelism) in the (new) partially symmetric designs of the type $\mathcal{S}=\varnothing\backslash\varnothing'$ where \varnothing' is a tight (Baer) subdesign in the symmetric $2-(v,\,k,\,\lambda)$ design \varnothing (with $\lambda>1$).

1. - Introduction.

Throughout this note let \varnothing be a symmetric $2-(v,k,\lambda)$ design (with $\lambda > 1$) and let \varnothing' be a symmetric $2-(v',k',\lambda')$ subdesign of \varnothing . By Jungnickel [4] \varnothing' is a *tight* subdesign of \varnothing iff each block of $\varnothing \backslash \varnothing'$ meets \varnothing' in a constant number x of points. Furthermore if $\lambda = \lambda'$ (and then x = 1) we say \varnothing' is Baer subdesign of \varnothing .

By Hughes [2] a square 1-design \mathcal{S} is a partial symmetric design (a PSD) if there exist integers λ_1 , $\lambda_2 \ge 0$ such that two points are on λ_1 or λ_2 common blocks; two blocks of \mathcal{S} contains λ_1 or λ_2 common points and all such that \mathcal{S} is connected. We say then \mathcal{S} is PSD for $(v_1, k_1, \lambda_1, \lambda_2)$ (where v_1 is the number of points (blocks) in \mathcal{S} and k_1 block (point)-size of \mathcal{S}).

The concept of a divisibility and resolution (a generalisation of the parallelism) we take as in [3] (pp. 206, 154) and [1] (pp. 45, 39).

(*) Indirizzo dell'A.: Strojarski Fakulteit, University of Mostar, Matice Hrvatske b.b., 88000 Mostar, Bosna i Hercegovina.

AMS (1980) Subject Classification 05B25.

2. - Results.

2.1 PROPOSITION. Let \varnothing' be a Baer subdesign of \varnothing . Then $\mathscr{S} = \varnothing \backslash \varnothing'$ is a PSD for $(v_1 = v - v', k_1 = k - 1, \lambda_1 = \lambda - 1, \lambda_2 = \lambda)$ and the relation \parallel (for arbitrary blocks b and c in \mathscr{S})

 $b \parallel c \text{ iff } b \text{ and } c \text{ lie on the same point in } \emptyset'$

is an equivalence relation and, in this sense, I is divisible.

PROOF. It is clear that \mathcal{J} is a square 1-design with $v_1 = v - v'$ points (blocks) and with point (block)-size k-1. Each point in $\emptyset \setminus \emptyset'$ is exactly on one block of \emptyset' and thus two points in $\emptyset \setminus \emptyset'$ lie exactly on $\lambda - 1$ or λ blocks of $\emptyset \setminus \emptyset'$. Further any two blocks of $\emptyset \setminus \emptyset'$ lie exactly on 0 or 1 points in \emptyset' and their integers in $\emptyset \setminus \emptyset'$ are $\lambda - 1$ or λ .

The partition of the set of all blocks in $\mathcal S$ onto subsets of blocks passing through some point from $\mathcal O'$ is disjoint and therefore the \parallel is an equivalence relation.

2.2 REMARK. By 2.1, $\mathcal{S} = \mathcal{O} \setminus \mathcal{O}'$ (where \mathcal{O}' is a Bear subdesign of \mathcal{O}) is a PSD with a divisibility. But, in general, \mathcal{S} cannot have a resolution. For instance $\mathcal{S} = \mathcal{O} \setminus \mathcal{O}'$, where \mathcal{O} is a symmetric 2 - (16, 6, 2) design with a symmetric 2 - (4, 3, 2) subdesign \mathcal{O}' .

But we have

2.3 PROPOSITION. Let $\emptyset = PG_2(3, q)$ (q a prime power). Then \emptyset has Baer 2 - (q + 1, q + 1, q + 1) subdesign \emptyset' and the $\mathcal{S} = \emptyset \setminus \emptyset'$ has a strong resolution.

PROOF. By [4] \mathscr{Q}' exists. Any class of blocks are all blocks in $\mathscr{J} = \mathscr{Q} \setminus \mathscr{Q}'$ through any point in \mathscr{Q}' . Two different classes are disjoint.

Each of these classes have exactly $m=q^2+q+1-(q-1)=q^2$ blocks and any two blocks in the same class have exactly $\lambda-1$ points in common. Two blocks in the different classes have exactly λ points in common. Finally, each point in $\emptyset \setminus \emptyset'$ lies exactly on $\lambda-1$ blocks of any one class. Thus, $\mathcal L$ have a strong resolution.

In general, let $\varnothing = PG_{2d}(2d+1,q)$ $(d \ge 2)$ be the design of points and hyperplanes of the (2d+1)-dimensional projective space over GF(q). Then, by [4], \varnothing has a tight (c,c,c)-subdesign \varnothing' with $c=q^d+\ldots+q+1$.

In general, we cannot say anything of the relation $\|$ (as in 2.1 and 2.3) in $\mathcal{S} = \emptyset \setminus \emptyset'$. Namely, the partition of \mathcal{S} , corresponding to $\|$, is not

disjoint. Further, we cannot say anything of a inner (outer) constant (for $\|$). But we have

2.4 Proposition. Let $\emptyset = PG_{2d}(2d+1, q)$ $(d \ge 2)$ and let \emptyset' be a tight (c, c, c)-subdesign. Then $\mathcal{S} = \emptyset \setminus \emptyset'$ is a PSD having a strong resolution.

PROOF. The parameters of \varnothing and \varnothing' are $v=q^{2d+1}+\ldots+q+1$, $k=q^{2d}+\ldots+q+1$, $\lambda=q^{2d-1}+\ldots+q+1$ and $c=q^d+\ldots+q+1$. It is not difficult to check that any point in $\mathscr{S}=\varnothing\backslash\varnothing'$ is exactly on x blocks of \varnothing' where $x=q^{d-1}+\ldots+q+1$. Thus \mathscr{S} is a square 1-(v-c,k-x,k-x) design. Further we have:

from
$$1+(x(x-1))/\overline{\lambda}_1=c$$
 we get $\overline{\lambda}_1=q^{d-2}+\ldots+q+1$;
$$k-c=\ldots=q^{d+1}\cdot(q^{d-1}+\ldots+q+1)=q^{d+1}\cdot x$$

and

$$\lambda - c = \dots = q^{d+1}(q^{d-2} + \dots + q + 1) = q^{d+1}\overline{\lambda}_1$$
.

Here there is an automorphism $y\mapsto y+u$ exchanging the points resp. the blocks (pointwise) in \mathscr{Q}' (Singer cycle in \mathscr{Q}' , generated additively with u in Z_v). Thus we conclude that the blocks in \mathscr{Q}' ($\cong PG_{d-1}(d,q)$) have x sets, each of these sets has exactly q^{d+1} points (in $\mathscr{Q}\setminus\mathscr{Q}'$) and any two blocks in \mathscr{Q}' have exactly $\overline{\lambda}_1$ sets in common. We are calling these sets "points". So any two points of $\mathscr{Q}\setminus\mathscr{Q}'$ are in one or in two "points". Therefore through two points in $\mathscr{Q}\setminus\mathscr{Q}'$ pass, according with this, x or $\overline{\lambda}_1$ blocks from \mathscr{Q}' . Thus, on two points of \mathscr{I} lie $\lambda_1 = \lambda - x$ or $\lambda_2 = \lambda - \overline{\lambda}_1$ common blocks. By [4] (2.1), we get this for the intersections of the blocks in \mathscr{I} . Thus, \mathscr{I} is a PSD for

$$(v-c, k-x, \lambda_1 = \lambda - x, \lambda_2 = \lambda - \overline{\lambda}_1) =$$

= $(q^{2d+1} + \dots + q^{d+1}, q^{2d} + \dots + q^d, q^{2d-1} + \dots + q^d, q^{2d-1} + \dots + q^{d-1}).$

Any resolution-class in \mathcal{S} is formed from all blocks in \mathcal{S} passing through any block in $2 - (c, x, \overline{\lambda}_1)$ design \mathcal{O}' . One has exactly

$$\frac{k-c}{x} = \frac{q^{d+1}x}{x} = q^{d+1}$$

blocks in each resolution-class and exactly

$$\frac{v-c}{q^{d+1}} = \frac{q^{2d+1} + \ldots + q + 1 - (q^d + \ldots + q + 1)}{q^{d+1}} = \ldots = c$$

(disjoint!) classes. There are exactly $(\lambda - x)/x = \dots = q^d$ blocks from each resolution-class passing through any point in $\mathcal{S} = \mathcal{O} \setminus \mathcal{O}'$.

Finally, our resolution is strong with inner and outer constant $\lambda - x$ and $\lambda - \overline{\lambda}_1$ respectively.

AN ILLUSTRATION. $\mathcal{Q} = PG_4(5, 2)$ (with a tight subdesign for (7, 7, 7)). The initial block in \mathcal{Q} (in the form of a difference set) is

$$1_0 = 0, 1, 2, 3, 4, 6, 7, 8, 9, 12, 13, 14, 16, 18, 19, 24, 26, 27, 28,$$

(All blocks 1_i are formed by (mod. 63) addition of the 1, 2, ..., 62 respectively.) The points in \mathcal{O}' are 0, 9, 18, 27, 36, 45, 54.

The resolution-classes are:

$$(0) \land (9) = (0) \land (45) = (9) \land (45) =$$

$$= \{1_{7}, 1_{31}, 1_{37}, 1_{39}, 1_{44}, 1_{56}, 1_{59}, 1_{60}\},$$

$$(0) \land (18) = (0) \land (27) = (18) \land (27) =$$

$$= \{1_{11}, 1_{14}, 1_{15}, 1_{25}, 1_{49}, 1_{55}, 1_{57}, 1_{62}\},$$

$$(0) \land (36) = (0) \land (54) = (36) \land (54) =$$

$$= \{1_{22}, 1_{28}, 1_{30}, 1_{35}, 1_{47}, 1_{50}, 1_{51}, 1_{61}\},$$

$$(9) \land (18) = (9) \land (54) = (18) \land (54) =$$

$$= \{1_{2}, 1_{5}, 1_{6}, 1_{16}, 1_{40}, 1_{46}, 1_{48}, 1_{53}\},$$

$$(9) \land (27) = (9) \land (36) = (27) \land (36) =$$

$$= \{1_{1}, 1_{3}, 1_{8}, 1_{20}, 1_{23}, 1_{24}, 1_{34}, 1_{58}\},$$

$$(18) \land (36) = (18) \land (45) = (36) \land (45) =$$

$$= \{1_4, 1_{10}, 1_{12}, 1_{17}, 1_{29}, 1_{32}, 1_{33}, 1_{43}\},$$

$$(27) \land (45) = (27) \land (54) = (45) \land (54) =$$

$$= \{1_{13}, 1_{19}, 1_{21}, 1_{26}, 1_{38}, 1_{41}, 1_{42}, 1_{52}\},$$

This is the 4-resolution with the constants 12 and 14.

REFERENCES

- [1] TH. BETH D. JUNGNICKEL H. LENZ, Design Theory, Bibliograph. Inst., Manheim-Wien-Zürich (1985).
- [2] D. R. HUGHES, On Designs, Lect. Notes in Math., 593 (1981), pp. 44-67.
- [3] D. R. HUGHES F. C. PIPER, Design Theory, Cambridge University Press, Cambridge (1985).
- [4] D. JUNGNICKEL, On subdesign of symmetric designs, Math. Z., 181 (1982), pp. 383-393.

Manoscritto pervenuto in redazione il 30 maggio 1996.