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Free Products with Amalgamation of Finite Groups
and Finite Outer Automorphism Groups of Free Groups.

BRUNO ZIMMERMANN(*)

ABSTRACT - Our main result is a characterization of groups which contain a free

product with amalgamation of two finite groups as a subgroup of finite index.
As application, we present a method to construct maximal finite subgroups
(that is not contained in a larger finite subgroup) of the outer automorphism
group Out Fr of a free group Fr . We construct these groups in a geometric
way as automorphism groups of finite graphs, and algebraically as finite quo-
tients of free products with amalgamation of finite groups.

1. - Introduction. 
’

It has been a problem of considerable interest in geometric group
theory and topology to characterize the finite extensions of groups be-
longing to various reasonable classes of groups. For example, every
torsionfree extension of a free group or of the fundamental group of a
closed surface or a Haken-3-manifold is again of the same type; also, ar-
bitrary finite extensions of such groups can be characterized. Our main
result is the following characterization of finite extensions of certain
free products with amalgamation of two finite groups.

THEOREM 1. Let Eo = A *u B be a nontrivial free product with
amalgamation of two finite groups where U has different indices p and
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q in A resp. B (we call Eo an amalgam of index type (p, q) or just a
(p, q)-amalgam). Suppose that U is a maximal finite subgroup in both
A and B ( for if p and q are prime numbers). Let E be a group
containing Eo as a subgroups o, f finite index. Then E = A * U B where
A, B resp. U are subgroups of the same index in A, B resp. U such that

In particular, also E is a (p, q)-amaLgam.

At the end of section 3 we give some examples showing that Theo-
rem 1 does not remain true in this strong form if p and q are not differ-
ent or if U is not maximal in A or B.

As an application of Theorem 1, we present a method how to recog-
nize and construct maximal finite subgroups of the outer automorphism
group of a free group. Let Fr denote the free group of rank r &#x3E; 1 and

Out Fr : = Aut Fr/Inn Fr its outer automorphism group (automorphisms
modulo inner automorphisms). The maximal order of a finite subgroup
of Out Fr is 2’’r!, for r &#x3E; 2, and for r &#x3E; 3 there is, up to conjugation, a
unique subgroup of Out Fr of this order, isomorphic to the semidirect
product (Z2)r D Sr ([WZ]). The possible isomorphism types of finite
subgroups of Out Fr have been determined in [M]. Up to conjugation,
the maximal, finite subgroups (that is not contained in a larger finite
subgroup) of Out F3 have been determined in [Zl]; the method can be
applied to other small values of r but in general not much is known
about maximal finite subgroups of Out Fr .

Finite subgroups of Out Fr are most conveniently given in one of the
two following ways:

i) in a geometric way as automorphism groups of finite graphs;
each finite subgroup of Out Fr comes from an action of the group on a fi-
nite graph, by taking the induced action on the fundamental group of
the graph; conversely each automorphism group of a finite graph of
rank r &#x3E; 1 (the rank of its free fundamental group) without vertices of
valence one injects into Out Fr and thus defines a finite subgroup of

see [WZ], [Zl]; for example, the above finite subgroup of maxi-
mal possible order 2r r! comes from the full automorphism group of the
graph with a single vertex and r edges (a bouquet of r circles);

ii) in an algebraic way as finite quotients of fundamental groups
of finite (effective) graphs of finite groups, by torsionfree subgroups
(which are free groups); in fact each finite subgroup of Out Fr defines
a finite effective extension of the free group Fr , and by [KPS 1 ]
the finite extensions of f.g. free group are exactly the fundamental
groups of finite graphs of finite groups (see also [Z2]); conversely,
every finite effective extension E of a free group Fr defines, by
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taking conjugations of Fr with elements in E, a finite subgroup
of (isomorphic to E/Fr ).

The link between the two presentations is given by the Bass-Serre
theory of groups acting on trees which associates to each group acting
on a tree (or on a graph) a graph of groups by taking the quotient graph
and associating stabilizers of the action to its vertices and edges; con-
versely each graph of groups comes in this way from an action on a
graph (see [S], [Z2]).

Using Theorem 1 we are able to construct various infinite series of
maximal finite subgroups of Out Fr . If the full automorphism group of a
finite bipartite (p, q)-valent graph, where p and q are different prime
numbers, or of a finite p-valent graph operates transitively on the
edges resp. on the oriented edges then it induces a maximal finite sub-
group of Out Fr . For example, the automorphism groups of the com-
plete graph on n vertices and of the graph with 2 vertices and r + 1 con-
necting edges define maximal finite subgroups of Out Fr ; these groups
are isomorphic to the symmetric group Sn , where r = (n - 1 )(n - 2)/2,
resp. to the direct product Sr X Z2 .

As another application, suppose that the finite group Go is a surjec-
tive image, with torsionfree kernel isomorphic to Fr, of the modular
group PSL(2, Z) - Z2 * Z3 (ismorphic to the fundamental group of the
obvious graph of groups with a single edge). Then we show that the
corresponding subgroup Go of Out Fr is contained in a unique maximal
finite subgroup G of Out Fr; moreover the index of Go in G is small being
of the form 2i where 0 ; i ~ 4. Here we use in a crucial way also the
classification of all effective free products with amalgamation of two fi-
nite groups such that the amalgam has indices 3 and 3 resp. 2 and 3 in
the two factors ([G], see also [DM]).

2. - Preliminaries.

By [KPS1] (see also [Z2, Theorem 2.3.1]) any finite extension of a f.g.
free group is isomorphic to the fundamental group of a finite

graph of finite groups (7", g). Here T denotes a finite graph, and to the
vertices and edges of T are associated finite groups (the vertex resp.
edge groups of the graph of groups) together with monomorphisms (in-
clusions) of the edge groups into adjacent vertex groups. We call a
graph of groups minimacl if it has no trivial edges; an edge is called
trivial. if it has distinct vertices and the monomorphism from the edge
group into one of the two adjacent vertex groups is an isomorphism. By
contracting trivial edges, we can assume that the finite graph of groups
(r, g) is minimal (this does not change the fundamental group of the



86

graph of groups which is an iterated free product with amalgamation
and HNN-extension of the vertex groups over the edge groups).

The Bass-Serre theory of groups acting on trees associates to any
graph of groups (r, g) an action without inversions of its fundamental
group (r, g) on a tree T such that the action has (r, g) as its as-
sociated graph of groups.

To any action without inversions of a group E on a tree T is associat-
ed a graph of groups in the following way. The underlying graph is T : _
= T/E. Suppose for simplicity that r is a tree (this will be sufficient for
the cases we consider in the present paper). Then T can be lifted iso-
morphically to T, and we associate to the edges and vertices of T their
stabilizers in E. Note that we have also canonical inclusions of the edge
groups into adjacent vertex groups. The result is a graph of groups
(r, ~), and the main result of the Bass-Serre theory says that
E ==.711 1 (I’, ~).

In the following, we shall write also T/E = (r, ~) meaning that the
graph of groups (r, ~) is associated to the action of E on T.

LEMMA 1. Let E be the fundamental group of a , finite minimal
graph of finite groups, associated to an action of E on a tree T. Then
each maximal finite subgroup of E has a unique fixed point in T. The
conjugacy classes of maximal finite subgroups of E correspond bijec-
tively to the vertex groups of the graph of groups.

PROOF. Each finite group acting on a tree has a fixed point (consid-
er the invariant subtree generated by an orbit and delete externel
edges in an equivariant way). A maximal finite subgroup M of E has a
unique fixed point in T because otherwise the edges of the unique edge
path in the tree T connecting two different fixed points would also be
fixed by M; then M would occur also as an edge group and the associat-
ed graph of groups would not be minimal. By a similar argument, each
vertex group is a maximal finite subgroup of M. This finishes the proof
of the Lemma.

The Euler number of a finite graph of finite groups (T, ~ ) is definied
as

where the sum is extended over all vertex groups Gv resp. edge groups
G, of (F, 9).

By [SW, Lemma 7.4], [Z2, Proposition 2.1.1] the fundamental group
of a finite graph of finite groups (F, ~) has a free group Fr as a subgroup
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of some finite index n. Then one has the formula

see [KPS1], [Z2, Prop. 2.3.3]. In particular, the Euler number depends
only on the fundamental group of (r, g) and not on ( T, ~ ) itself.

3. - Proof of Theorem 1.

Now let Eo and E be as in Theorem 1. By [SW, Lemma 7.4], [Z2,
Prop. 2.3.3] the group Eo is a finite extension of a f.g. free group, and
consequently also E is a finite extension of a f.g. free group. Let ( T, ~ )
be a finite minimal graph of finite groups such that E = Then
we have an action without inversions of E on a tree T such that T/E =
= (T, ~). Now also the action of Eo c E defines a finite graph of finite
groups go):= T/Eo such that o). We have projec-
tions

The abelianized group E~ = E/[E, E] is finite because the same is true
for Eo and Eo has finite index in E. It follows that the graph r is a tree
(otherwise in E = Jr there would be at least one HNN-generator
and therefore E~ would be infinite). For the same reason also To is a
tree. Therefore we can lift F isomorphically to a subtree of Fo, and then
To isomorphically to a subtree of T. We denote the lifted trees by the
same symbols F c To c T and use these lifted trees for the construction
of the graphs of groups (F, fJ) and (Fo, go).

By assumption the graph of groups (r, g ) is minimal; in particular it
has no trivial vertices of valence one, that is vertices of valence one
such that the vertex group coincides with the single adjacent edge
group. This implies that the tree T has no vertices of valence one, and
then also the graph of groups (To , go) has no trivial vertices of valence
one.

In general, the graph of groups (To , go) will not be minimal; denote
by (F 1, gi ) the minimal graph of groups obtained by contracting all
trivial edges of (To , go), with Eo = Jl1 (F 1, gi ). Note that the vertices of
valence one in To remain different vertices in T1 because they are non-
trivial. By Lemma 1, Eo = A *U B has exactly two conjuacy classes of
maximal finite subgroups (represented by A and B), and consequently
T1 is a graph with a single edge (applying Lemma 1 to Eo =
= ~1 (T1, fJ1 )). It follows that Fo has exactly two vertices of valence one
and therfore is a subdivided segment. The two vertex groups of

(F 1, gi ) are conjugates A and B of A and B, respectively. These conju-
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gates are the stabilizers of the two vertices of valence one in roe T
which we denote by ac resp b; by choosing ro c T appropriately we can
assume A = A. By Lemma 1 resp. its proof a and b are the unique fixed
points of A resp. B in T (because the two vertices of valence one in
(r 0, are nontrivial).

In particular, we get a presentation

where U = A n B.
For each vertex of valence two of To («interior vertex»), at least one

of the indices of the two adjacent edge groups in the corresponding ver-
tex group is equal to one (otherwise the vertex would survive in T1 to-
gether with the two vertices of valence one in To ).

Now consider the projection Jr: ro - r.

LEMMA 2. The sum of the indices of all adjacent edge groups in a
given vertex group is preserved by the projection ;r. Moreover if ir is in-
jective on this set of edges (a local homomorphism at the vertex) then ;r
preserves the index of each edge group in the given vertex group.

PROOF. The Lemma follows from the following two observations.
For both To and T, the index of an edge group in a vertex group gives
the number of edges in T equivalent to the given edge under Eo resp. E
and adjacent to the given vertex. The sum of the indices at a vertex is
equal to the number of all edges in T adjacent to the vertex.

Continuing with the proof of the Theorem it follows now from Lem-
ma 2 that all edges of To are mapped to the same edge of r (because one
of the indices at each interior vertex of (FO, go) is equal to one and
(r, g) is minimal), and consequently T has only a single edge.
Thus

is also a free product with amalgamation of two finite groups.
Consider the presentations

Because the Euler number of Eo does not depend on the special presen-
tation, U and U have the same order.

The conjugate B of B fixes a unique vertex b in T; recall that a is the
vertex of To c T fixed by A. The vertices and b of T are connected by a
unique edge path y o in the tree T . Note that U = A fl B fixes all edges
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of y o . Moreover, as U is a maximal subgroup of A (note that we use this
here for the first time), it follows that the stabilizer of the first edge of
y o (that is the edge which has a as a vertex) is equal to U.
_ 

Now_also To is an edge path in ~’ from a to the unique fixed point b of
B, and U = A n B fixes each edge of r o. Because all edges emanating
from a are equivalent under the action of Eo and U and U have the same
order it follows that U is conjugate to U in Eo . Because also B and B are
conjugate we are now in the position to apply Lemma 1 in [KPS2]
which says that, under the above circumstances, there exists an ele-
ment x in A such that xBx -1 = B and = U. In particular we have

_ _a, x(b) = band = ro . Therefore we can assume that yo =
= Fro, B = B and U = U, and consequently

Now U is maximal also in B; this implies that all indices at the interior
vertices of (To , no) are equal to one (contract (To , no) to (T1, ~1 ), not-
ing that by the above U is the stabilizer of the first edge of To and con-
tained in the stabilizers of all other edges). There cannot be more than
one interior vertex in To because otherwise by Lemma 2 the group
E would be a (2, 2)-amalgam and thus E and then also Eo
would have rational Euler number zero which is not the case. If there is

exactly one interior vertex in To then again by Lemma 2 we have p = q
which we excluded.

It follows that also Fo has exactly one edge, therefore (rio, o) =
~1 ) and

This implies A c A, B c B and U c U. By Lemma 2 we have [A : 
= [A : U], [B : [B : U], and therefore also [A :A] = [B : B] = [U : 

This finishes the proof of Theorem 1.

If p ~ q or U is not maximal in A or B, Theorem 1 does not remain
true in the above strong form.

EXAMPLES. a) Let (T, g) be a finite graph of finite groups with
fundamental group

where U is a subgroup of index two in A (so T consists of a single edge).
Let

be the surjection such that q5(U) = q5(B) = 0. Let Eo be the kernel of q5.
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As above, the group E acts on a tree T with quotient T/E = (r, ~).
Then the action of Eo c E on T defines a graph of groups T/Eo = (To , no)
such that Eo o). Constructing the graph of groups (To , no)
explicitly one finds that To has exactly two edges and obtains the
presentation

(This is, in a very special case, the proof of the subgroup theorem for
free products with amalgamation using group actions on trees, see e.g.
[Z2, Theorem 1.4.2]: the vertices of the graph of groups (To , no) corre-
spond bijectively to the double cosets Eo xGv in E of Eo and the vertex
groups Gv of (r, ~), with associated vertex groups Eo n simi-

larly for the edges.) Obviously the graph of groups (F 0, no) is not mini-
mal. Contracting it to a minimal graph of groups we get

which has index type (p, p), where p = [B: U].

b) Now let (r, ~) be the finite graph of finite groups with funda-
mental group

Let

be the canonical map considering 8m and Am + 1 as subgroups of Sm + 1 in
the standard way; let

be the preimage of Sm c Sm + 1 in E. As above E acts on a tree T such
that 77E = (r, g), and constructing the quotient T/Eo = (T o , go) (or
equivalently, applying the subgroup theorem for free products with
amalgamation) we get the presentation

Again (Fo, geo) is not minimal; contracting it we have

and Am _ 1 is not maximal in 8m.
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4. - Finite maximal groups of outer automorphisms.

For r &#x3E; 1, each finite subgroup Go c Out Fr determines a group ex-
tension, unique up to equivalence of extensions,

which is determined by the following property: the given action of Go c
c Out Fr on Fr is recovered by taking conjugations of Fr by preimages of
elements of Go in Eo . The extension Eo can be defined as the preimage
of in Aut Fr under the canonical projection, noting that
Inn Fr = Fr . In particular, the extension Eo is effective, i.e. no non-
trivial element of Eo operates trivially on F~. by conjugation.

Conversely, any effective extension as above determines a sub-

group Go c by taking conjugations of F, by preimages of ele-
ments of Go in Eo .

The proof of the following Lemma is easy and left to the read-
er.

LEMMA 3. A finite extension 1 Go - 1 of a free group
Fr of &#x3E; 1 is effective (and thus defines Go as a subgroup of
Out Fr ) if and only if Eo has no nontrivial finite normal sub-

groups.

We start with a geometric method to construct maximal finite sub-
groups Go c by considering group actions on finite graphs. For a
proof of the following Lemma, see [WZ] or [Zl].

LEMMA 4. Let Go be a finite group acting effectively (faithfully)
on a hyperbolic graph L1, that is a graph of rank r &#x3E; 1 without
vertices of valence one. Then, by taking induced actions on the funda-
mental groups, Go injects into Out Fr .

For Go and L1 as in the Lemma, let Eo be the group of automorphisms
of the universal covering tree T of d consisting of all lifts of elements of
Go to T. Again we have an extension

where Fr denotes now the universal covering group of L1. Note that,
purely algebraically, this is the above extension belonging to the sub-
group Go c Out Fr .

Suppose that Go acts without inversions on L1, by subdividing edges.
As in section 2, the action of Eo on T defines a finite graph of finite
groups 4/G = T/Eo = no) such that Eo = o).
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In the following, we shall consider the case where the quotient
graph ro = ¿j/Go = T/Eo consists of a single edge with two different
vertices (a segment). Then Eo = no) is a free product with amal-
gamation A *u B of some index type (p, q). We call also (no, no) a seg-
ment of index type (p, q) or just a (p, q)-segment. Note that T is the
unique bipartite (p, q)-valent tree Tp, q ; this means that the vertices of
T can be partitioned into two disjoint sets of vertices of valences p and
q, respectively, and that every edge goes from one set to the other. In
particular, also L1 is a bipartite (p, q)-valent graph on which Go operates
edge-transitively.

THEOREM 2. Let L1 be a finite hyperbolic graph such that the full
automorphism group Go = Aut (d ) of d acts without inversions and
such that the quotient d/Go is a (p, q)-segment, where p ~ q. Suppose
that the edge group of d/Go = (To , is maximal in the two vertex

groups. Then Go induces a maximal finite subgroup of Out Fr .

PROOF. The fundamental group is an amalgam
A *uB of index type (p, q), where p # q, and by hypothesis U is maximal
in A and B.

Suppose that Go, considered as a subgroup of Out Fr, is contained in
a finite subgroup G of Out Fr . Then G defines an extension

and, purely algebraically, Eo = A *U B is a subgroup of finite index in E.
Then also

is a (p, q)-amalgam as in Theorem 1.
Now E is the fundamental group of a graph of groups (r, ~) with a

single edge. By the Bass-Serre theory of groups acting on trees the
group E = A ~U B acts on the bipartite (p, q)-valent tree
T = Tp, q such that TIE = (r, g). Then this defines also an action of the
subgroup Eo of E on T, with quotient TIEo = (To , no) (as in the proof of
Theorem 1). Denoting by F, c Eo c E the universal covering group of L1,
the group G = E/Fr acts on the graph L1 = T/Fr extending the action of
Go But Go was the full automorphism group of L1, therefore
G = Go and Go is a maximal finite subgroup of Out Fr . This finishes the
proof of Theorem 2.

COROLLARY 1. a) Let L1 be a finite bipartite (p, q)-valent graph
where p and q are different prime numbers. Suppose that the automor-
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phism group Go = Aut (L1) operates transitively on the edges of d. Then
Go induces a maximal finite subgroup of Out Fr .

b) Let A be a finite p-valent graph where p is a prime number
greater than two. Suppose that Go = Aut (L1) acts transitively on orient-
ed edges of L1. Then Go induces a maximal finite subgroup of
Out Fr.

PROOF. Part a) is just a specialization of Theorem 2. In the situ-
ation of part b), each oriented edge of L1 is equivalent to its reverse edge
under the action of Go (in particular, Go acts with inversions). Subdivid-
ing each edge of L1 by a new vertex we obtain a bipartite (2, p)-valent
graph L1’ (the first barycentric subdivision of L1). Note that Go is still
the full automorphism group of L1’ and that Go acts edge-transitively
and without inversions on L1’. Now part b) of the Corollary follows
from part a).

EXAMPLES. a) Let L1 = 4(r) be the (r + 1 )-valent graph of rank r
with two vertices and r + 1 edges connecting these vertices (a multiple
edge of rank r). Subdividing each edge by a new vertex we obtain the
complete bipartite ( 2, r + 1 )-valent graph which we denote also by L1.
The automorphism group of this graph is

To the action of Go on L1 (or, equivalentaly, to the action of the lift Eo of
Go to the universal covering T = T2, r + is associated a finite graph
of finite groups no) where .To = d/Go = T/Eo is a graph with a sin-
gle edge. Considering stabilizers in Go (or equivalently, in Eo ), we
have

The fundamental group or universal covering group Fr of L1 is isomor-

phic to the kernel of the canonical projection

By Theorem 2 the group Go = Aut (L1) induces a maximal finite sub-
group of Out Fr .

b) More generally, let L1 = L1 p, q be the complete bipartite (p, q)-
valent graph where p # q (so there is exactly one edge between each
vertex of valence p and each vertex of valence q, in particular L1 has p
resp. q vertices of valence q resp. p). The automorphism group Go of
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L1 p, q is the product Sp and the quotient 4/Go has fundamental
group

By Theorem 2 the group Go = Aut (A) induces a maximal finite sub-
group of Out Fr , for the appropriate r.

c) Now let L1 = A,, be the n-valent complete graph on n + 1 ver-
tices or, subdividing all edges, the corresponding bipartite (2, n)-va-
lent graph, of rank r = n(n - 1)/2. Its automorphism group Go =
= Aut (d n ) is the symmetric group Sn + 1. Again the quotient graph 4/Go
has a single edge, and the fundamental group of the corresponding fi-
nite graph of finite groups no) is

The fundamental or universal covering group Fr of L1 is isomorphic to
the kernel of the canonical projection

By Theorem 2 the group Go = Aut (d n ) induces a maximal finite sub-
group of Out Fr .

d) Let L1 be the first barycentric subdivision of the 1-skeleton of
the n-dimensional cube, with automorphism group the semidirect prod-
uct Go = (Z2)’ v, Sn . The quotient 4/Go has fundamental group

and again Go induces a maximal finite subgroup of Out Fr . In a similar
way, one may consider the 1-skeletons of other regular polytopes.

COROLLARY 2. The automorphism X Z2 and Sn of the
multiple edge of rank r resp. the complete graph on n vertices induce
maximal finite subgroups of Out Fr (where r = n(n - 1 )/2 in the second
case).

We call an amalgam Eo = A *u B of two finite groups effective if it
contains no nontrivial finite normal subgroups. Note that by Lemma 3
any surjection with torsionfree kernel from an effective amalgam Eo
onto a finite group Go represents Go as a subgroup of Out Fr (where Fr
denotes the kernel 

Let Go be the subgroup of Out Fr defined by a surjection, with tor-
sionfree kernel Fr , from an effective (p, q )-amalgam Eo so) =
= A *U B onto the finite group Go , and U is maximal in A and
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B. Note that Eo acts on the tree T = Tp, q such that TYEo = (To, go ), and
that Go = Eo /Fr acts on the quotient graph L1 = T/Fr .

By the proof of Theorem 2 we have the following

COROLLARY 3. The group Go is contained in a unique maxima
subgroup G of Out Fr which is induced by the full automor~phism group
G of the graph L1 = TIF,

Now we discuss a more algebraic method to construct maximal fi-
nite subgroups Go of Outfr. We shall consider the most basic case
where the extension Eo defined by Go is a free product with amalgama-
tion Eo = A *uB of index type (2, 3).

Suppose that Go is contained as a subgroup of index j in the finite
subgroup G of Then also Eo is a subgroup of index j in the exten-
sion E of Fr determined by G. By Theorem 1, the extension E is also a
(2, 3)-amalgam.

The effective (2, 3)-amalgams are completely classified. Each effec-
tive (2, 3)-amalgam A *U B contains an effective (3, 3)-amalgam B *uB
as a subgroup of index two (as in example a) in section 2). The effective
(3, 3)-amalgams have been classified in [G]; there are exactly 15 such
amalgams. From this it is easy to classify the effective (2, 3)-amalgams.
There are exactly 7 of them; they are described in detail in [DM, p.
206/7] and are as follows.

where D8 denotes a quasidihedral group of order 16 and K a group of
order 32.

Note that also GL( 2, Z) is an amalgam of type which
is not effective however because the center of GL( 2, Z) is isomorphic
to Z2 . In contrast, the amalgam E2 = D4 *D2 D6 is effective, and this
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determines uniquely the inclusions of the edge group into the vertex
groups.

We discuss the case of the amalgam Eo = Z2 ~ Z3 = PSL(2, Z).

COROLLARY 4. Let Go be the subgroup of defined by a
surjection

with torsionfree kernel Fr . Then Go is contained in a unique maximal
finite subgroup G of Out Fr , and the index j of Go in G is equal to 2i ,
where 0 ~ I 5 4. In particular, if Go is a simple group of order greater
than ( j - 1)! than Go is a normal subgroup of G.

PROOF. By Corollary 3, the group Go is contained in a unique maxi-
mal subgroup G of as a subgroup of some index j . Then also the
extension E of Fr belonging to G c Out Fr contains Eo as a subgroup of
index j . By Theorem 1, the extension E is an effective (2, 3)-amalgam of
the form E = where A, B and U are subgroups of index j in A, B
and U, respectively. Now also E is one of the above effective ( 2, 3)-
amalgams, and consequently j = 2i , where 0  i  4.

By considering left multiplication on the left cosets of Go in G we get
a homomorphism from G to the symmetric group whose kernel is
contained in Go . If Go is simple of order greater than ( j - 1 )! then the
kernel of this homomorphism is equal to Go and consequently Go is a
normal subgroup of G.

Similar results hold for the other effective (2, 3)-amalgams. For
example, any surjection with torsionfree kernel of E4 onto a finite

group Go defines Go as a maximal finite subgroup of 
There is a rich literature on the finite quotients of the modular

group PSL(2, Z) and of the extended modular group PGL(2, Z). Of
course any finite group which is generated by two elements of orders 2
and 3 is a quotient of PSL(2, Z). The finite quotients of the modular
groups occur in various circumstances as maximal symmetry groups,
and in the following we describe some of these.

Let [2, 3, n] denote the extended triangle group generated by the
reflections in the sides of a hyperbolic triangle with angles ~z/2, yr/3 and

(where n ~ 7), and denote by (2, 3, n) the subgroup of index two
consisting of all orientation preserving elements. Then the class of fi-
nite groups which are quotients of the modular group coincides with
the class of groups which are finite quotients of some triangle group
(2, 3, n) (because any map from PSL(2, Z) to a finite group obviously
factors through one of the groups (2, 3, n)), and similar for the extend-
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ed modular group PGL(2, Z) and the extended triangle groups
[2, 3, n]. The finite quotients of the triangle group (2, 3, 7) are called
Hurwitz groups; they occur as automorphism groups of maximal possi-
ble order 84(g - 1) of closed Riemann surfaces of genus g.

The finite quotients of the extended triangle groups [2, 3, n] are ex-
actly the automorphism groups of the regular (reflexible) triangular
maps on closed surfaces. The finite quotients of the group [2, 3, 7] oc-
cur as the automorphism groups of maximal possible order of closed
Klein surfaces. As shown in [C], for n &#x3E; 167 all alternating groups are
finite quotients of the triangle group (2, 3, 7) and of the extended tri-
angle group [2, 3, 7], and thus also also of P,SL( 2, Z) and PGL( 2, Z). It
is shown in [Si] that the projective linear groups PSL(2, F(q)) over fi-
nite fields F(q), with a few explicitely described exceptions, are quo-
tients of PGL( 2, Z). The quotients of PGL( 2, Z) are also exactly the au-
tomorphism groups of maximal possible order of compact Klein sur-
faces with nonemty boundary, and form a subclass of the finite diffeo-
morphism groups of maximal possible order 12(g - 1) of 3-dimensional
handlebodies of genus g, see the introduction of [Z3].

We close with the following

QUESTION. Which groups occur as maximal finite subgroups of
for some r?
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