
RENDICONTI
del

SEMINARIO MATEMATICO
della

UNIVERSITÀ DI PADOVA

VIATCHESLAV N. OBRAZTSOV
On a question of Deaconescu about
automorphisms. - III
Rendiconti del Seminario Matematico della Università di Padova,
tome 99 (1998), p. 45-82
<http://www.numdam.org/item?id=RSMUP_1998__99__45_0>

© Rendiconti del Seminario Matematico della Università di Padova, 1998, tous
droits réservés.

L’accès aux archives de la revue « Rendiconti del Seminario Matematico
della Università di Padova » (http://rendiconti.math.unipd.it/) implique l’accord
avec les conditions générales d’utilisation (http://www.numdam.org/conditions).
Toute utilisation commerciale ou impression systématique est constitutive
d’une infraction pénale. Toute copie ou impression de ce fichier doit conte-
nir la présente mention de copyright.

Article numérisé dans le cadre du programme
Numérisation de documents anciens mathématiques

http://www.numdam.org/

http://www.numdam.org/item?id=RSMUP_1998__99__45_0
http://rendiconti.math.unipd.it/
http://www.numdam.org/conditions
http://www.numdam.org/
http://www.numdam.org/


On a Question of Deaconescu about Automorphisms. - III.

VIATCHESLAV N. OBRAZTSOV(*)

1. - Introduction.

A theorem on embeddability of every countable set of
countable groups without involutions in a simple 2-generator group G
in which every proper subgroup is either a cyclic group or contained in
a subgroup conjugate to one of the embedding groups G~ was proved
in [2], and the generalizations of this theorem to the case of arbitrary

of groups without involutions were given in [3] and [4].
Recently an embedding scheme of a set of arbitrary groups (without
mentioning the absence of involutions) into a simple group with a
«well-described» lattice of subgroups and a given outer automorphism
group was established in [5]. These constructions have given an oppor-
tunity to obtain minimal extensions of the subgroup lattices of the re-
sulting groups G in comparison with the subgroup lattices of the em-
bedding groups which has been used for construction of infinite groups
with prescribed properties.

In this paper we concentrate on groups G satisfying the property
that Aut H = NG (H)/CG (H) for all subgroups H of G. Such groups were
referred to in [1] as MD-groups. At the Second International Confer-
ence on Algebra in Barnaul (Siberia, Russia, 1991) M. Deaconescu
posed a problem on the existence of infinite MD-groups. It is easy to
prove that the infinite dihedral group has the MD-property. J. C.
Lennox and J. Wiegold showed in [1] that the only nontrivial finite MD-
groups are Z2 and ,S3 , and Theorem 2.1 of the same paper gave a com-
plete classification of infinite metabelian MD-groups. This classifica-

(*) Indirizzo dell’A.: Department of Mathematics and Statistics, The Univer-
sity of Melbourne, Parkville VIC 3052, Australia.

Supported by a grant from the Australian Research Council.



46

tion was extended in [8] to the case of radical groups. Recall that a
group G is a radical group if the iterated series of Hirsch-Plotkin radi-
cals reaches G. (Thus, for instance, locally nilpotent groups and hyper-
abelian groups are radical.) In fact, H. Smith and J. Wiegold proved
in [8] that if G is an infinite radical MD-group, then G is metabelian and
is thus an extension of a torsion-free locally cyclic subgroup A having
finite type at every prime p by a cyclic group (x) of order 2, such that
xax -1 = a -1 for all a E A. As a consequence, the authors of [8] obtained
that every infinite locally soluble MD-group is, in fact, metabelian.
Moreover, it was also proved in [8] that Z2 and S3 are the only periodic
MD-groups which are nontrivial.

First of all we note that if there is a simple infinite MD-group L,
then L is complete, that is, it has trivial centre and no outer automor-
phisms. Theorem A [5] does not provide us with examples of simple in-
finite MD-groups, since by assertion 13 of this theorem (with H =  1 ),
L contains infinite cyclic subgroups A with NL (A) = CL (A). But J.

Wiegold noted that if we obtain a modification of Theorem A [5] with-
out such subgroups A, then it might work in our case.

be an arbitrary set of nontrivial groups. We denote by
S~ 1 the free amalgam of the groups E I, that is, the set U Gu with

G~ n Gv = ~ 1 ~ whenever v. We say that the mapping g: is
an embedding of Q into G if it is injective and its restriction to every
G~ is a homomorphism

Let Then a mapping/: ~ 2.0 is
called generating on the set ,S~ if the following conditions hold:

1) if C c G~ for then f(C) _ ~C)B~ 1 ~;

2) if C f G, for eachu E I and C = ~ a, b ~ c S~, where a and b are in-
volutions (such a subset C will be called dihedral), then f(C) = C;

3) if C is a finite non-dihedral subset of ,S~ and for eachu E I,
then f(C) = B, where B is an arbitrary countable subset of S~ such that
C c B and if D is a finite subset of B, then f(D) c B;

4) if C is an infinite subset of SZ and C ~ G~ for each p E I , then
f(C) = U f(A), where T is the set of all finite subsets of C.

For example, a generating mapping f on Q can be defined in the
following way: if C E 2QB{0} and C = U i C, , where Cu = C n Gu,
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We denote by G( 1 ) the free product of the groups G,~ , ,u E I. A group
G having the presentation

is called (diagrammatically) aspherical if every diagram on a sphere
over (1.1) is either non-reduced or consists entirely of 0-cells. (All
necessary information about diagrams can be found in [6].)

Let G = (Q), f an arbitrary generating mapping on S~. We say that X
is a minimal word (over the alphabet ,S~) in G if it follows from
X = Y in G that I YI, where I Z I denotes the length of the word Z.
Let W be the set of all non-empty words over the alphabet S~ written in
the normal form, that is, every element X in W is written in the
form Xl ... Xk , where each XL , 1 ~ 1 ~ k, is a nontrivial element of 
,u(L) E I, and + 1) for 1 = 1, ..., k - 1. Then a mapping
F: 2w BI 0 1 ~ 2~ is defined in the following way: if C c W and C ~ 0,
then let V( C) be the set of all letters occuring in the expressions of
words of C. Then we set F(C) = f(V(C».

The main result of this paper is the following modification of Theo-
rem A [5].

THEOREM A. Let Q 1 be the free amalgam of a I of
nontrivial groups, g, : H a set of arbitrary homomor~phisms of the
groups Gu into a group H with kernels E I, such that either H is a
torsion ; free group and a s ystem of subgroups I gu I generates H
or the group H is trivial, let I1 c I, be the set of nontrivial
groups of the set I Q 1 the free amalgam of the groups E II.
Also suppose that the set Q = Q 1 B~ 1 ~ contains an involution, and let f
be an arbitrary generating mapping on Q with the property that if
C ct G Il for each J1- E I , then f(C) contains an involution. If the set

contains either three groups or two groups of which one has
order -&#x3E; 3, then the free amalgam ,SZ 1 of the groups G Il can be embedded
in an aspherical group G = (Q) with the following properties:

1) the free amalgam Sz 1 is embedded in a normal simple infinite
subroup L of G such that G/L = H;

2) if X E L and is not conjugate in G to an element of any group
G Il ’ J1- E I, then either X is an involution or X is of infinite order and is
a product of two involutions in L;

3) if XY = YX in G for some X, Y E G, then either X and Y are in
the same cyclic subgroup of G or X and Y lie in a subgroup conjugate to
some group J1- E I ;

4) every subgroup M of G is either a cyclic group or infinite dihe-
dral, or M n L = 1 and the homomor~phic image of M in H = G/L has
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an element not conjugate to an element of any group g~ (G #), /1 E I, or if
M is not cyclic or infinite dihedral, then M is conjugate in G to an ex-
tension GC, H’ of a group H’ by a normal subgroup Lc (that is,
GC, H’ILC = H’), where H’ ~ H and L, and if every element of Lc
is a minimal word in G, then C = F(Lc 1 ~ ) or C = 0 in the case
Lc f 11;

5) Lc = Rc f1 L, where Rc = (C) for C E 2,Q Bf 0 1 or Rc 11 in the
case C = 0, and if C V Gu for each ,u E I, then GC, H’ ~ Rc, Lc is a simple

NG (LC) = Rc and 

6) if for each /1 E I, then Aut Lc = Re and Out Lc = Rc /Lc
(in particular, Aut L = G and Out L = H), and if X ERe BLc, then the
mapping g: X -1 1 LCX is a regular automorphism of Lc (that is,
g(a) = a if and only if a = 1 ) if and only if there is no ,u E I such that

and [X, c] = 1 for some where 

- ~ i B~ 1 ~~
7) if C f G,~ , for each ,u E I, then for each a E C fl Q 1, we have that

Lc = ( cbab -1 c -1, b, c E C) (in particular, L = ( cbab -1 c -1, b, c E Q),
where a is an arbitrary element of Q 1) ; r

8) if X is a minimal nontrivial word in the group G, then X E Rc
if and only if F(IXI) c f(C);

9) if I J c I, is a set of all groups having nontrivial inter-
sections with a subgroup Rc of G and X E Z -1 Ro Z, where Z is of mini-
mal length among all words in and G~ Z, /1EJ, then 
g F(~X~);

10) if each /1 E I and M is a subgroup of G in which
every element is a minimal word in G, then (Lc, M) f1 L = LeI, where
C1 = F(C U (MB ~ 1 ~ )) ;

11 ) if N~ = 1 for some ,u E I and the homomorphism gv : H
is trivial for each v E then G is the semidirect product of H
and L ;

12) if a subgroup M of G is contained in some group G~ , ,u E I,
then NG (M) = NG~ (M) and CG (M) = CG # (M);

13) if a subgroup M of G is infinite dihedral and is not conjugate
in G to a subgroup of any group E I, then NG (M) is infinite dihe-
dral and CG (M) = 111;

14) if an infinite cyclic subgroup M of L is not conjugate in G to a
subsgroup of any group Gu, ,u E I, then NG (M) = Z2 .

As an immediate consequence of Theorem A (with H 11), we
have
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THEOREM B. Let I G, I be an arbitrary set of nontrivial MD-
groups containing either three groups or two groups of which one has
order ; 3 such that the free amalgam Q 1 of the groups E I, con-
tains an involution, and also let f be an arbitrary generating sapping

1 B { I} with the property that if C f G Ii for each p E I, then f ( C)
contains an involution. Then the free amalgam S~ 1 can be embedded in
a simple infinite MD-group L = (Q) such that every proper subgroup. .

of L is either contained in an infinite dihedral subgroup of L, or conju-
gate in L to a subgroup Rc = (C) for some C E 2Q BI 0 1, and a E Rc f1 Q
if and only if a E f ( C).

REMARK. It is possible, but unknown to the author, that every non-
trivial MD-group has an involution and thus the condition in Theorem
B that the free amalgam of the groups E I , contains an involu-
tion is redundant. It was noted by H. Smith that this conjecture is true
for any nontrivial MD-group G whose cardinality does not exceed all
the cardinals obtained from No by related exponentiation cv times, that
is, does not exceed 2~o, 2 2’0 1 .... In fact, by the observation in [1],
there are no Z x Z subgroups in such a group G. It follows from 1.2 [1]
and Theorem 2 [8] that either G is finite and is therefore isomorphic to
Z2 or ,S3 , or G contains an element x of infinite order. In the second case,
there exists y E G inverting x. Then y 2 centralizes x, but G has no Z x Z
subgroups, so some even power of y is a power of x and is therefore
both centralized and inverted by y, which completes the proof of the
assertion.

All infinite MD-groups constructed in [1] and [8] are metabelian and
countable, and there were no examples of uncountable or simple infi-
nite MD-groups. Now we have

COROLLARY 1. For each infinite cardinal number a, there exists a
simple MD-group L of cardinality a.

PROOF. It is sufficient to to be a set of the groups of
order 2 with 1 I I = a and L as a group in Theorem B for this set of
groups and an arbitrary generating mapping f.

Another application of Theorem B is devoted to finitely generated
infinite MD-groups. It follows from Corollary [8] and Corollary 2.4 [1]
that the only infinite finitely generated locally soluble MD-group is the
infinite dihedral group.

CQROLLARY 2. There exists a continuum of pairwise non-isomor-
phic 2-generator simple infinite MD-groups in which every maximal
proper subgroup is infinite dihedral.
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PROOF. Let G~ _ (a,~) be the group of order 2 for each 11 r= 11, 2, 3 1.
We define a generating mapping f on S2 = fal, a2 , in the only possi-
ble way: if C such that C f G, for each 11 e f 1, 2, 3 } and C is not di-
hedral (thus C = S2), then f(C) = S2. Then Theorem B applies to Q1 =
= S2 U 111 and this mapping f and yields a simple infinite MD-group G =
= (aI’ a2, a3) in which every maximal proper subgroup is infinite dihe-
dral. It follows from assertions 2 and 3 of Theorem A that G =
= (a1 a2, a3). That there exists a continuum of pairwise non-isomorphic
groups with necessary properties can be proved in a way as in the proof
of Theorem 28.7 [6].

The proof of Theorem A will be heavily based on the results
from [4]-[7]. Unless otherwise stated, all definitions and notation may
be found in [6] and [7].

2. - Construction of the group G.

As in [6], we introduce the positive parameters

where all the parameters are arranged according to «height», that is,
each constant is chosen after its predecessor. Our proofs and some defi-
nitions are based on a system of inequalities involving these parame-
ters. The values of the parameters can be chosen in such a way that all
the inequalities hold. We then use the following notation:

We assume that h and n are integers. We also use the notation intro-
duced in § 1.
We may assume that I is a well-ordered set. We also may assume

that S21 is a well-ordered set such that 1 is the maximal element of 1

and if a E G /1 B { I} and b E Gv B ~ 1 }, where p  v, then a  b . On a set

~2 b E Q and if ~ a, b } c G /1 for someu E I , then a = 1 }
we introduce an order in the following way: ab 5 cd if and only if either
b  d or b = d and a ~ c (with respect to the ordering of S~ 1 ).

By the statement of Theorem A, there is a homomorphism of the
free product G( I ) of the groups G,~ , ,u E I, onto H such that its restric-
tion to every group G/1 is equal to g/1. Suppose that the kernel of this ho-
momorphism is N.

Let D1 = 0, and suppose, by induction, that we have defined the set
of relators Di - 1 c N, i ~ 2, and set
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A word X (over the alphabet ~) is called free in rank i - 1 if X is not
conjugate in rank i - 1 to an element of SZ 1, that is, to an image in
G( i - 1 ) of an element of one of the free factors G~ . A non-empty word
Y is said to be simple in rank i - 1 if it is free in rank i - 1, not conju-
gate in rank i - 1 (that is, in G(i - 1)) to a power of a shorter word and
to a power of a period of rank k  i and not conjugate in rank i - 1 to
the subword p _ 1, cA’ of a relator of the form (2.10) for a
period Ap of rank  i . 

+ ’ p

Now let Pi denote a maximal set of words of length i which are sim-
ple in rank i - 1 with the property that A, B E Pi and A 0 B ( « --_ » &#x3E;

means letter-for-letter equality of words of the same length) implies
that A is not conjugate in rank i - 1 to B or B -1. The words in Pi are
called periods of rank i. A special role in construction of the group G(i)
will be played by the set Pi of all periods of rank i which are not equal in
rank i - 1 to a product of two involutions (of G(i - 1)). (For short, ele-
ments of Pi will be called non-dihedraL periods of rank i.) We may as-
sume (see Lemma 4.18 below) that if a, c E ,~ 1, b, e, g and d, 
such that a is of infinite order (if such an a exists), {a, b ~ ~ G~ , ~ c, 
f Gv for each p, fg, and

fge -1 d -1 ~ c in the case c 2 = 1, then the words

are non-dihedral periods of some ranks for each &#x3E; n 7 and m,
[ &#x3E; 

For each period A E Pi n N, we fix a maximal subset YA such
that

1) if then 1 ~ ITI ;

2) each double coset of the pair (A), (A) of subgroups of G(i) con-
tains at most one word in YA and this word is of minimal length among
the words representing this double coset;

We may assume (see Lemma 4.18 below) that if a power Ft of a per-
iod F of some rank is conjugate to a word BCm for some m &#x3E; n, where C
is a non-dihedral period of rank i not equal to Ao or Bo, B ~ I 
 and Ci:1 1 in G ( i ), then t = 1.

For each period A E Pj’ f1 N, we introduce the ordering of the set of
natural numbers (or a finite segment of it) on the set YA such that the
first element of the set YA belongs to Q1 (it follows from the statement
of Theorem A that YA n ~i ~ 0) and if A = Am or A = Bm , where m = 0
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or Iml I &#x3E; 1~ 3 n 7 , then the first element of the set YA is a or min(c, h)
(with respect to the ordering of ,S~ 1 ), respectively, where h = d if d E
e Q 1, otherwise h = 1. We denote this order by ~A .

For each period A E Pi n N, i ~ 7, we now construct some relations.
If A = A , Iml I &#x3E; k 3 n 7 , for some a E Q1 and b E Q such that ~ a, 
for each U E I and a is of infinite order, then for 1 % 3n, we
introduce a relation

If A = B , Iml [ &#x3E; 1~ 3 n 7 , for some and such

that {c, e ~ ~ G~ , ~ c, for each fl, v e I , fg, de E and
d -1 ~ c in the case C2 = 1, then for each 1, 3n  l ~ 5n, and T =

= &#x3E; n 7 , we consider a relation

and if 61 = min ( c, e), b2 = min ( de, fg ) (with respect to the ordering of
S~2) and Tj = (cfg)-1 [c, = 1, 2, then we set

for each j, 1 ~ j ~ 2. Let T E YA and T ~ a in the case A = A~, Iml I &#x3E;

&#x3E; the minimal element of the set YA and T ~ a, then we intro-
duce a relation

and if T = c~, then it follows from the definition of the set Pi that there
exists b E F({A}) such that {a, for each y E I , and we consider a
relation

If a is the first element of the set YA , and T#
~ ( cfg ) -1 [ c, &#x3E; n 7 , in the case A = I &#x3E; k 3 n 7 , then we
introduce a relation

and if T = a, then, as above, we set

for some b e F({A}) such that {a, for each a E I. And if T E YA,
then let 7B be the minimal element of the set such that
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T A T1 (if such an element T1 exists). Then we consider a relation

The relations (2.1)-(2.8) are taken from the definition of the group G
in Theorem A [5]. We can ensure assertions 2 and 14 of Theorem A by
imposing relations of the form SAS -1 = A -1, where A is a non-dihedral
period and the conjugating word S is an involution and contains long
(compared to A) 1-aperiodic subwords for small values of 1.

Let C be a finite non-dihedral subset of Q such that C = C -1, where
C -1 = ~ a -1, and C ~ G,~ for each Lemma 4.1 gives a se-
quence ~2, c , ... of non-empty 7-aperiodic reduced words over the
alphabet S~ with I = I + 2 and V(fQj,cl) = C for all j =
- 1, 2 , ... , where V( ~ Z ~ ) denotes the set of all letters occuring in the ex-
pression of the word Z over the alphabet S~. Let a, b be arbitrary fixed
elements of C such that {a, for each p E I. For j ~ 2, we define
auxiliary words Sj, c by the formula

where r( j ) is chosen to be a sufficiently large number such that if we
set = 0, then r(j) &#x3E; r( j - 1) + n 2 and c I &#x3E; n 4 j 2 .

Let A E Pj’ n N, where i ~ 2. It follows from the definition of the set
Pi that C = V({A}) U V( ~A ~ ) -1 is a finite symmetric (that is, C = C -1 )
non-dihedral subset of ,S~ which is not contained in any group I.
Also suppose that is the minimal positive integer such that Sk, c has
not been involved in the definition of the group G(i - 1), and set j =
= max(i, 1~). It is obvious that the family ~Al = A, A2, ..., At~, t ; 1, of
all elements of Pj’ n N with U = C, 1 ~ ~ro ~ t, is fi-
nite. By the statement of Theorem A, f(C) contains an involution a E
E Q 1. Now for each p, 1 ~ ~ro ~ t, we introduce a relation

It is convenient to consider (2.9) with its consequences

for each p, 1 ~ ~ro ~ t, and 1#0.
Let A E Pi . If A e P/ n N, then we denote by r(A ) the length of the

subword Si + p - 1, in the relation (2.9) for Ap = A, otherwise
we set r(A ) = n . 

’

The left-hand sides of the relations (2.1)-(2.10) form the set Ui of re-
lators of rank i. All relators of the form (2.9) and (2.10) are called rela-
tors of the second type while the others are called relators of the first
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type. For each i ;::: 2, we set Di = Di - 1 U Ui , and the group G(i) is de-
fined by its presentation:

Finally, we define

3. - Cells and maps.

By a diagram of rank i, where i ~ 2, we mean a diagram over the
presentation (2.11). Cells of the first type of rank i correspond to the re-
lators (2.1)-(2.8) in Ui and cells of the second type of rank i to the rela-
tors (2.10) in Ui . Contours of cells, in the diagrams under consideration,
split into sections according to (2.1)-(2.10). Those sections of a cell II of
the first type of rank i with labels (A n + s ) ± 1 are called Long sections of
the first type of rank i while the others are called short sections of II. If
the label of a section p of a cell II of the second type of rank i is equal to
Sj + c , then we say that this section is a special section of
rank i, and if q corresponds in (2.10) to a subword Ap l , then we say that
q is a nonspecial section of rank i. A nonspecial section q of rank i is
called long if I q I &#x3E; n 2 i . Further, if, with the preceding notation, 
% I q I then p and q (q and p) are called a Long section of the
second type of rank i and a short section of II, respectively.

The definitions of the type of a diagram L1 over G( i ) or over G, the
compatibility between cells of the first type (that is, the notion of a j-
pair) and the A-compatibility of sections of the contour are the same as
in § 41 [6] and § 13 [6]. Also we will use the definition of self-compatible
cells in L1 from [6, p. 462], with the words «long sections» replaced by
«special sections » .
We now consider cells of the second type lI and II’ with contours

sl tl s2 t2 and such that

(We should remember that 
in G( 1 ), since a is an involution.) We define the notion of compatibility
between a special section of rank i and a section of a contour of
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a diagram and between si1 and where i1, i2 E {1, 2}, in the same
way as in [6, p. 461 ].

If 11 and II’ are distinct cells of the second type with some sections
compatible in L1, then we say that (II, II’ ) is a cancellable pair (or an i-
pair) in the following sense. Cutting along a compatible path, making a
0-refinement and excising a subdiagram T with two cells II and 11’ from
L1, we make a hole in d such that the label of its boundary is equal in
rank 1 to a word B. Consider the following cases.

1) If special sections, say Sl and si , of the cells H and II’ are com-
patible in L1, them by (3.1), B is equal to 

’Ap + + p -1, c) Ap + 1 in G( 1 ), which corresponds to (2.10)
when 1~ + 1 ;e 0. Hence, in pasting one cell of the second type (or a 0-cell)
in place of two cells II and Il’, we decrease the type of L1.

2) If the cells II and II’ have nonspecial sections, say t1 and ti ,
compatible in L1, then by (3.1), lk  0 and B is equal in G(I) to

where S = Sj + P -1, c and 1+k=ll+~.
Now, in pasting at most two cells of the second type (corresponding to
the relations (2.10) for the powers Apl and Ap when lj # 0, j = 1, 2 ) with-
out nonspecial sections compatible in L1 in place of 11 and 17’, the type of
L1 does not increase.

In this way, we can interpret equations and relations of conjugacy
using reduced diagrams (over G( i ) and over G), that is, diagrams with-
out j-pairs.
A map L1 is called a N-map if the following conditions hold.

Nl. For cells of the first type and their sections, d satisfies con-
ditions B1, B2, B4 and B6-B 10 in the definition of a B-map (see [6,
p. 225]).

N2. The length of any long section of the first type of rank j is
less than 6hnj.

N3. Every subpath of length - max ( j , 2) of any nonspecial sec-
tion of rank j is geodesic in L1.

N4. Let T be a contiguity submap of p to q with ( p, T, q) ~ ê,
where p is a special or long nonspecial section of a cell of the second
type, q is a long section of the first type of rank j or a nonspecial section
of rank j. Then q I  (1 + y ) j . If p is a special or long nonspecial
section of rank k, q is a section of a cell of rank j and ( ~, T, q) ~ E, then
k j.

N5. The r-contiguity degree of a special or long nonspecial sec-
tion of a cell of the second type or any long section of the first type to a
special section of a cell of the second type is less than e for any submap T.
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N6. If T is a contiguity submap of a long section q1 of the first
type of rank j to a nonspecial section q2 of rank k with j # k and
( q1 ~ j’~ q2 ) ~ ~, then [  ( 1 + Y ) 1~ .

N7. If q is a long section of the first type of rank j or a nonspecial
section of rank j and the r-contiguity degree of a cell Jr to q is greater
than 1/3, then I  (1 + y ) j .

N8. If q is a special section of a cell of the second type of rank j,
then q ~ I &#x3E; n 6 j 2 .

N9. Long sections of a cell of the second type have equal
lengths.

As in [6], we also introduce the notion of a smooth section of a con-
tour. A subpath q of a contour of a N-map L1 is declared a smooth section
of the first type of rank i if it has the following properties.

Fl. For cells of the first type, conditions S2 and S4 in the defini-
tion of a smooth section in a B-map (see [6, p. 226]) are true for q.

F2. For a contiguity submap T of p to q, where p is a special or
long nonspecial section of a cell of the second type of rank j, it follows
from ( ~, T, q ) ~ E that j  i and [  (1 + y ) i.

F3. If the r-contiguity degree of a cell .7r to q is greater than 1/3,
then IFAql I = t1 t2 ~3 ~ where , I t31 [ ~2! I and
every subpath of length - max ( i, 2) in t2 is geodesic in L1.

A section q of ad is called a smooth section of the second type (of
rank i) if the contiguity degree of a special or long nonspecial section of
a cell of the second type or any long section of the first type to it is less
than E.

In the definition of a contiguity submap T of a cell II to a section q of
another cell or to a section q in 3A (respectively, to a cell 17’) (see [6,
pp. 220, 221]), we assume that ql , ... , qu (respectively, so , ... , sl) are all
special and long nonspecial sections of the contour of II (respectively, of
the contour of Il’) if II (respectively, 17’) is a cell of the second

type.
The definitions of a N-map and its smooth sections enable us to ap-

ply to them the results in § § 20-24 [6] (with B-maps replaced by N-
maps). But we need to insert some amendments in their statements.
The assertions 2 and 3 of Lemma 20.3 [6] have now the following form:
2) if a subpath p of a smooth section of the first type of rank j (respect-
ively, of a smooth section of the second type) of a contour of a N-map is
a section of a contour of a submap T, then p is a smooth section of the
first type of rank i (respectively, a smooth section of the second type) in
aT; 3) if a subpath p of a long section of the first type of rank j or of a
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nonspecial section of rank j of a cell 77 (respectively, of a special section
of a cell 17 of the second type of rank j ) is a section of a contour of a
submap T in a N-map and 17 does not occur in T, then p is a smooth sec-
tion of the first type of rank j (respectively, a smooth section of the sec-
ond type of rank j) in are In the statement of Lemma 20.4 [6] we require
that q is a long section of a cell 17 of the first type and add the phrase
«and if q is a long section of a cell 17 of the second type, then 2 q ~ I 
 ~ 4 q ~ ». We claim that assertion 1) of Lemma 21.1 [6] is also true
for a nonspecial section qi of a cell of the second type, and this lemma
has now the additional assertion: 3) 1 Pl I = [ = 0 if q1 is a special
section of a cell of the second type or a smooth section of the second
type. In the statements of Lemmas 21.2 [6], 21.4 [6], 21.10-21.16 [6], 23.7-
23.11 [6], the words «a long section of a cell» should be replaced by «a
special or long nonspecial section of a cell of the second type or a long
section of the first type». The conclusion of Lemma 21.16 [6] is true if q2
is a short section of a cell of the first type. The conclusions of Lemmas
22.3 [6], 22.4 [6] and 23.17 [6] should be corrected as in Lemmas 40.19-
40.21 [6], respectively.

In the definitions of a C-map (see [6, pp. 244, 245]) and of a D-map
(see [6, p. 257]) we demand that every section of the first kind (respect-
ively, every long section) is a smooth section of the first type of rank j
and consider the following additional cases.

By a we also understand a circular or annular N-map d
whose contours have the form PI tl t2 Sl t3 ... 1 ~ l ~ 4,
(in the case of a circular map) or Sl t1 ... = 1, 2 or 1 = 4, and q
(in the annular case), where §1..... ~ are called long sections of the
first kind, t1, ... , tl + 3 , p1, P2 short sections, and q a long section of the
second kind; all sections are assumed reduced and, for some j, the
following conditions hold.

C1’. Every long section of the first kind is a smooth section of
rank j and lsll I &#x3E; n 2 j .

C2’. The length of one of the long sections of the first kind is
greater than n 4 j .

C3’. The long section q of the second kind is either smooth or
geodesic.

C4’. Every short section is either a smooth section of rank j or
geodesic.

C5’. The length of any short section is not greater than n 2 j .
C6’. The same as C7 (see [6, p. 245]).
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By a D-map we also mean a N-map d on a sphere with one, two or
three holes and with contours q1, q2 and q3 (q1 and q2 or only ql ), where
for each ~e{l,2,3}, either I - 1, or ~3, qr =

... , sl and are called Long sections, to , ... , t and qr
are called short sections, and for some j, the following conditions are
satisfied.

D 1’ . The length of one of the contours is greater than 1.

D2’. Every long section is a smooth section of rank j.
D3’ . The length of one of the long sections so , ..., s, is greater

than ~nj and I &#x3E; 

D4’ . The short sections to , t, and qr’ are geodesic and the
length of every short section ts , 0 ~ s ~ L, (respectively, of ~’) is less
than max (dj , t I So 11/3) (respectively, than dj ).

The changes in the definition of a C-map imply the corresponding
corrections in the statements of Lemmas 23.1 [6] and 23.2 [6]. Lemmas
23.18-23.20 [6] and 24.3-24.5 [6] are stated only for C-maps satisfying
conditions C1-C7 (see [6, p. 245]) and for D-maps with conditions D1-D6
(see [6, p. 257]), respectively.

Now we fix these alterations.

LEMMA 3.1. With the aLterations mentioned above, all the results
in §§ 20-24 [6] are true for N-maps.

PROOF. All the proofs of the listed results work in the case of N-
maps if we use the definition of a N-map and make the following
changes.

1) In the proof of Lemma 21.6 [6], it follows from N5 and the defi-
nition of a smooth section of the second type that q is not a special sec-
tion of a cell of the second type or a smooth section of the second type. If
q is not geodesic in ad or it is not a short section of a cell of the first
type, then by N7, N1, N3 and F3, we have that where

t I t21 , and t2 = t’ t" such that t’ is a geodesic path and It" I 
 . Hence

2) As in [6, p. 232], we introduce the weight function on the edges
of a N-map L1. If q is a long section of any ordinary or special cell of the
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first type or q is a special or long nonspecial section of any ordinary or
special cell of the second type, then for any edge e in q we set v( e ) =

- I q I 1~3 . The weights of all other edges in L1 are assumed to be zero. The
weight of a path, a cell, or a submap is defined as in [6, p. 232].

3) In the proof of Lemma 21.8 [6], we note that any long section of
a cell of the second type is either special or long nonspecial. It follows
from N5 that p is not a special section of a cell of the second type. Hence
by N 1, N4 and N6, if p is not a short section of a cell of the first type,
then [ 

4) In the proof of Lemma 21.13 [6], it follows from N4 that II1 is a
cell of the first type. If II2 is a cell of the second type, then by N2, N8
and the definition of a long nonspecial section of a cell of the second
type, we have that

5) In the proof of Lemma 21.17 [6], we also consider a distin-
guished contiguity submap T of a short section qi of a cell II of the sec-
ond type of rank j with q1 ~ ~ n 2 j to q2 , where q’ is a special or long
nonspecial section of a cell of the second type or a long section of the
first type. Set a( qi , T, q2 ) _ and let E1 denote the sum of all
the v( q2 ) as T runs through all such submaps in L1. By Lemma 21.1 [6] for
F, we have that

By summing over all r for short section q’ of a fixed cell 77 of the second
type of rank j, where I ~ n2j , and using N8 and N9, we deduce the
following estimate for the corresponding part En of the total sum

E1 :

where s, and S2 are special sections of Il. By the definition of the weight
function, we have that En  whence 

6) The weights of the edges belonging to the contours of cells in a
C-map L1 is now defined as in 2).

7) In the proof of Lemma 23.9 [6] we note that, by F2 and the defi-
nition of a smooth section of the second type, II is a cell of the first
type.

8) In the proof of Lemma 23.12 [6], one more possibility arises
when p is a short section of a cell II of the second type of rank 1~ and

It follows from Lemma 21.1 [6] and Theorem 22.4 [6] that



60

9) In the proof of Lemma 23.13 [6], if a C-map L1 satisfies condi-
tions C 1’ -C5’, then as in 8), we have that v( q2 )  (5~c ’~/c)~, and by
C2’ and C5’,

10) In the proof of Lemma 23.16 [6], if II is a cell of the second
type, then it follows from N4 that the sum of the lengths of the contigu-
ity arcs of the form is less than .

11) In the proof of Lemma 24.2 [6] for D-maps with conditions
D1’-D4’ we should use the argument in the proof of Lemma 5 [7].

4. - Main lemmas.

We start this section with

LEMMA 4.1. that C is a finite non-dihedral subset of Q
such that C = C -1 and for each p E I. Then there is a sequence

Q2, C, ... of non-empty 7-aperiodic reduced words over the alpha-
bet Q with I = I + 2 and V(fQj,cl) = C for all j =
* 1&#x3E; 2&#x3E; ....

PROOF. Let W be a 6-aperiodic word in a 2-letter alphabet, ?/}.
By the statement of the lemma, there exists !1 E I such that C n Gu =
-~al, ...,at~~~,CBG~=~bl, 

t

r - fl (aj b1 ... aj bs), y - a1 bs yields a word Q which is at least 7-aperi-
odic relative to SZ. It is clear that V({Q}) = C. Thus our assertion fol-
lows from Theorem 4.6 [6].

LEMMA 4.2. 
and C is a finite non-dihedral subset of Q such that C = C -1 and C V G Ii
for each p E I. Then 1) a subword in ,S’ Sl, C¡ then j = 1
and C = Cl ; 2) and 3) are as assertions 3) and 4) in the statement of
Lemma 41.1 [6]; 4) ,S is a 200-aperiodic word.

PROOF. We can repeat the proof of Lemma 41.1 [6]. The last as-
sertion of the lemma follows from the definition of the words 
(see § 2). 

’



61

Lemmas 4.3 to 4.21 are verified simultaneously by induction on the
rank which, thanks to Lemmas 4.19-4.21, enables us to use the results
on N-maps in the previous section.

. Lemmas 4.3-4.6 are stated and proved in exactly the same way as
Lemmas 41.4 [6], 41.5 [6], 26.1 [6] and 26.2 [6], respectively, if in the
statements of Lemmas 26.1 [6] and 26.2 [6] we replace the words «of the
second type» by «of the first type» and «of the form (2) in § 25» by «of
the form (2.1)-(2.8)». The statements of Lemmas 4.7-4.12 are the same
as for Lemmas 25.5-25.10 [6] with the corrections from [7], respectively,
but in Lemmas 4.7 and 4.12 we also must add the condition I
for the coordinating path t. Lemmas 4.7 to 4.15 are proved for a fixed
i ~ 0 by simultaneous induction on the sum L of the lengths of the peri-
ods. In the proof of Lemma 4.7 we also require one addendum to the
proof of Lemma 25.5 [6], the notation of which will be used below.

In order to apply Lemma 22.1 [6] in part 3) of the proof of Lemma
25.5 [6], we must show that there are no self-compatible cells in L1’.

Suppose that L1’ has a self-compatible cell II. First of all we may as-
sume that such a cell II is unique in L1 " since otherwise let II1 and 172 be
self-compatible cells in L1’ corresponding to the relators (2.10) for Bt,
and Bt2, where Br is a non-dihedral period of rank ir 5 i and tr is a non-
zero integer, r = 1, 2. Hence = in some rank k 5 i for a
word X and an integer m such that I and nl a

~ max (r(B1 ), r(B2 )). Then by Lemma 4.15 (which can be applied, since it
follows from Lemma 23.17 [6] for L1 and the definition of relators of the
second type that L ’ - ~ IB11 [ + [  7y = 2 ~), B1 = B2 and X = ,SBi
in G( i ), where either S = 1 in G( i ) or S is the subword

Si + ~ -1, of the relator (2.9) for B1. It is obvious that I t11 I =
= I t2 1. The diagram L1’ splits into three annular diagrams d 1, d 2 and J 3,
where A 2 consists of the cells II1 and II2 and the annular subdiagram
A4 of A’ with contours corresponding to nonspecial sections of II1 and
II2 such that A 4 does not contain these cells. Now excising the subdia-
gram d 2 (in the case when t1 = - t2 ) or A 4 together with II2 (if tl = t2 )
from L1’ and pasting together the corresponding contours ofJiorof77i 1
and A 3, we obtain (after cancellation of j-pairs) a reduced annular dia-
gram d with T(L1 í)  i(d’ ) whose contours are the same as the con-
tours of L1 ’. Thus we may assume that L1’ contains the only self-compati-
ble cell.

The diagram L1’ splits into three annular diagrams d 1, A 2 and J 3,
where A 2 is the cell II, and the contours u and v of A 2 have labels of the
form B :tk . By Lemma 4.20 and the reducibility of L1’, the contours u and
v of the cell II are smooth sections in L1’ . We can join a vertex ol of the
path PI to a vertex 02 on q’ by a path where w2 is a special sec-
tion of II and by Lemma 22.1 [6], I  ( 1 /2 + I + lu I) and
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~ w3 ~ [  ( 1 /2 + I + p2 ~ ) + y I q’ I BY Theorem 22.4 [6] and the def-
inition of relations (2.9) and (2.10), we have that v ~ I = lu I 
 ({3’) -11 and applying the estimates for q’ ~ , ~ I p, I and I P21 (see part
3) in the proof of Lemma 25.5 [6]), we deduce that

By Lemma 23.17 [6], the perimeter of every cell in L1 is less than

y -l1A I. We note that in the course of cancelling cells II and II2 of the
second type in L1’, they may be replaced by a cell Jr with longer perime-
ter, but the special sections of 7r are of the same length as those of Ill 1
and II2. Thus

The labels of the paths w1 1 q2 and W2 W3 are related in G(i), by Lem-
ma 11.4 [6], by an equation of the form ~(w1 1 q2) _ 
where 1 is an integer, that is, we obtain a reduced circular diagram J 4 of
rank i with contour where 0(si) = Ø(W1), 0(t) = 0(’U)l, Ø(S2) =
= Ø(W2)Ø(W3) and Ø(t2) = o(q2 1). By (4.1)-(4.3), we have that

Excising cells of the second type with long nonspecial sections compati-
ble with t from L14, we obtain a diagram A 4 with contour in

which, by Lemma 4.20, t1 and t2 are smooth sections of ranks B ~ I and
[A[ , respectively. It follows from Theorem 22.4 [6] and (4.4), (4.5)
that

and
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By (4.3) and the definition of relations (2.9) and (2.10), we also obtain
that

By Lemma 22.5 [6], we can excise from L14 a subdiagram L15 with
contour s/ tí S2 where t/ and t2 are subpaths in ti and t2 , respectively,
such that | s’2| [ [ and 
= Y 1 ( ~ sl ~ [ + IS21 [ + Now we deduce from (4.4)-(4.8) that

Now we note that if L14 has a cell of the second type with a long nonspe-
cial section compatible with t, then I t11 [ &#x3E; 2r(B), and it follows from
(4.7) and (4.10) that

Finally, by applying Lemmas 4.14 and 4.13 to L15 (it is possible since
L. B ~ + ~ A ~  L = 2 1 A , by (4.8)), we deduce from (4.9)-(4.11) that
A --- B. This contradicts the simplicity of A in rank i and the inequality

.

Now we should explain the possibility of use of Lemmas 4.7-4.12 for
the study of contiguity submaps in the diagrams under consideration
and complete their proofs, since Lemma 4.20 gives a complicated form
for smooth sections of the first type. For this purpose we introduce
E-diagrams.

By an E-diagram we understand a reduced circular diagram L1 with
contour 9 where qr = sOrt1rs1r ... + 1 r Sk(r) + lr 9 r -
=1,2, such that

E 1. L1 is a N-map;
E2. the label of tll is an A,-periodic word, where Ai is either a

period of rank i or a simple word in rank i (possibly I = 0);
E3. the label of t,2 is an A2-periodic word, where A2 1 is a period

of rank k 5 i (possibly [ - 0 ) ;
E4. q1 and q2 are smooth sections of the first type in L1;
E5. ~ Iq21 &#x3E; 
E6. r(L1)  k;
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E7. if ISlll [ &#x3E; 0 for some 1, ...,A;(1) + f1

n Nand is a subword of Sl, where Sl is the subword
of the relator (2.9) for the period 

E8. if [ &#x3E; 0 for some 1, ... , k( 2 ) + 
n N and Ø(SZ2) is a subword of ,S2 , where ,S2 is the subword

~’~ + ~ - ~, c aS~ + ~ - ~, c of the relator (2.9) for the period A2 1;
E 9. ~ I = I Sr I for each L E ~ 1, ... , 1~( r) ~ ( r = 1, 2);
E 10. there is no a contiguity submap of a section of qr to a dis-

tinct section of qr , r = 1, 2;
Ell. for each indexes ... , k( 2 ) - 2 ) ... , 1~( 1 ) +

+ 1 ~, there are no contiguity submaps 7"p, p = 0, 1, 2, of sl + p2 to a section
ts1 such that ( st + p2 , rp, &#x3E; 1 - a ;

E 12. ~ IPrl [  dk for each r = 1, 2.

LEMMA 4.13. In an E-diagram L1, we have that 1) &#x3E; 0, then
k( 2 ) &#x3E; 0, Ai =~2~~ 1 and the exist sections sl1 and St2 compatible in L1,
where ... , 1~( 1 ) ~ and ... , ~(2)}; 2) if k( 1 ) = 0 and 1~ = i,
then I~(2) = 0, and if, in addition, t12 ( &#x3E; r¡nk, then = A2:t 1, and it
follows from Ai = A2 (respectively, from Ai = A2) that t11 and t12 are
AI-compatible in L1 (respectively., A1-anticompatible in L1 and Ai is a
product of two involutions in rank ~i~ -l);3)z/’&#x26;=z, A2 1 E Pk n N
and I q21 [ &#x3E; cr(A2 1 ), then there exist sections of q1 and q2 compatible in

I 2iand , I 
k  i and qi = then [  1000i; 6) if k  i, A2 1 E Pk n N, q2 ~ [ &#x3E;

&#x3E; ar(A2:t1) and then I q11 I  and , I SIll [  .

PROOF. We proceed by induction on i(d ). All sections sir and tzr,
r = 1, 2, are called long, and the definitions of the distinguished conti-
guity submaps and of the weight function in L1 are exactly the same as
those in the case of a D-map. Now we can obtain the assertion of Lem-
ma 24.1 [6] for L1, but we require the following addendum to the proof of
this result. The important role in the proof of Lemma 24.1 [6] is played
by the fact that the number of long sections in 3J is bounded by a con-
stant (2(h + 2 )) . Suppose that L1 contains a D-cell Tl with a section p such
that there exist contiguity submaps of p to 10 distinct long sections of
aL1. Then we obtain a subdiagram r of A with contour where/i
and 12 are subpaths of qr for some 2} and respectively, fi con-
tains a subpath t of some section sLr such that t I &#x3E; and

[ 1 I  2 hE -1 ~ pi, by Lemma 21.1 [6]. If Tl is a cell of the first type,
then by E 6 and the definition of relators of the first type, we have that
I p I  6hnk, and we arrive at a contradiction to Theorem 22.4 [6] and
the inequality I Sr I &#x3E; ~2 6 ~ 2 . If Tl is a cell of the second type, then, again
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by Lemma 21.1 [6] and E6, III I , Il21  dk, and hence T is an E-diagram
with i(T )  i(L1). Now the case when 1121 ~ I is impossible, by
Theorem 22.4 [6], and we arrive at a contradiction to the induction hy-
pothesis and the inequality r(n)  k (by E6). Thus if p is a section of a
cell in L1, then there are contiguity submaps of p to at most 9 distict long
sections of 3J, but that is all we need for the proof of the assertion of
Lemma 24.1 [6] for L1.

Suppose that long sections tlr and sir contain nlr | tlr I and I
outer edges. Then by Lemma 24.1 [6], we have that L’ + L’ &#x3E;

&#x3E; ( 1 - a /2)(L1 + L2)~ where 

L1 = E |tlr|2/3 and L2 = E|slr|2/3.
Consider the case when &#x3E; 0. We distinguish the subset J of the

index set such that I for each (l, r) E J. It is obvious, by
the definition of long sections, Theorem 22.4 [6] and E9, that

hence

where L1 = L1 - L3 and L4 = 2: I tlr ( 2~3 . Then there exists an index
(l, r) ~ J

(l, r) such that either &#x3E; 1 - a or &#x3E; 1 - a and (l, r) (t J. Consider
these cases.

a) In the first case, by E 10, there is a contiguity submap r of slr to
q3 - r such that (sl,, r, q3 - r) &#x3E; 1 - a. It follows from Corollary 22.1 [6],
Lemma 4.21 and the definition of a smooth section of the second type
that r(r) = 0. Suppose that I I &#x3E; 400i. Then by Lemma 4.2
and the inequality I I &#x3E; 400i &#x3E;- 400k, we have that there
exists a section for some index t such that sl, and St3 - r are compati-
ble in L1. By Lemma 4.2, we also have that A1 = If 1 = 0 or 1 =

- k( r) + 1, then it is obvious that t = 0 or t = k( 3 - r) + 1, respectively,
and we can proceed by induction on the number of long sections in
3J.

b) Suppose that 0 11 &#x3E; 1 - a and I Sll I  £181 I. Then there exists a
contiguity submap T of sii to q2 such that r(r) = 0. It follows from Lem-
ma 4.2 and (4.12) that we can neglect the value of |sl1|2/3 in our
considerations.

c) Suppose that 0 12 &#x3E; 1 - a and IS21 ~ 400ni. We show, by in-
duction on k(2), that there exists an index (l, r) such that either 0 lr &#x3E;

&#x3E; 1 - a, r = 1 and |slr| &#x3E; l|S1| or nlr &#x3E; 1 - a and (l, r) E J. By (4.12) and
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b), this assertion is obvious when there are no indexes 11, ~2 l3 E
E {1, ... , /c(2)} such that e h 2 , 8 ~ 2 , e L3 2 &#x3E; 1 - a (in particular when
k( 2 )  3). But if such indexes exist, then there are contiguity submaps
rt, t = 1, 2, 3, of S42 to q1 such that (Sft2’ q1) &#x3E; 1 - a and = 0,
and by Ell and Lemma 4.2, two of these contiguity submaps define a
contiguity submap r of q2 to q1 which is an E-diagram with &#x3E; 0 and
a smaller number k( 2 ), and by induction hypothesis, our assertion is
true for r and therefore for L1.

d) Now we consider the second case when there is a contiguity
submap T of tlr with &#x3E; I to q3 _ r such that (tzr, r, q3 - r) &#x3E; 1-
- a. If r = 2, then by Lemma 21.1 [6] and the previous considerations, we
can apply Lemma 23.14 [6] to F (with T A tZ2 is the long section of the
second kind) and obtain, using Lemma 4.2 and Theorem 22.4 [6], that
r A q1 contains a subpath t of a section t~l for some index s with I t I &#x3E;

&#x3E; T A /2. Then by Lemma 4.12 and the definition of the sets of peri-
ods in G, either A1 = A2 1 and it follows from A, = A2 1 (respectively,
from Al = A2) that ts1 and tl2 are Ai-compatible in L1 (respectively, A1-an-
ticompatible in L1 and Al is a product of two involutions in rank IA11 -
- 1), or T A I  2i, k  i and we can neglect in (4.12) the weight of the
edges in are But in the first case, it follows from k( 1 ) &#x3E; 0 that Al = A2 1
and L1 consists of three subdiagrams d 1, r and J 2, and proceeding by
induction on the number of long sections in 3A and using Lemma 4.2,
we obtain the assertion of the lemma.

Let r = 1. If k = i, then we can repeat the previous considerations in
the case when r = 2. Suppose that k  i. Using Lemma 21.1 [6], we
again can apply Lemma 23.14 [6] and (4.12) to the contiguity submap r,
where r A til is a long section of the second kind. Now we note that, by
Lemmas 4.12 and 4.2, if r’ is a contiguity submap of a section s of q2 to th
such that I &#x3E; ~ -1 ~ A2 ~ , , then T’ A I  200 i . Using this fact,
Lemma 21.1 [6], Theorem 22.4 [6], (4.12) and Ell, we arrive at a contra-
diction to the inequality I &#x3E; n 3 i.

Thus the assertion of the lemma is proved in the case k( 1) &#x3E; 0. If
= 0, then 0 ~ k(2) - 2 (by Lemma 4.2 and Eel1), and the remaining

assertions of the lemma follow easily from assertion 1 of the lemma,
Lemmas 23.15 [6], 4.12 and 4.2 and Theorem 22.4 [6].

LEMMA 4.14. Let L1 be a reduced diagram which is t1 and
t2 subpaths of some contours of L1 such that the label of tr is an Ar-peri-
odic word, where Ar 1 is a period o, f rank ir , i2 =::; i1 =::; i, and also let the
diagram d’ and the sections t’ and t2 of some contours of L1’ be ob-
tained from A t1 and t2 , respectively, by excising all cells of the second
type having long nonspecial sections compatible with t1 or t2. If r is a
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circular subdiagram of 4 ’ with contour where qr is a subpath
of tr , 9 I  di2 , r = 1, 2, and q2 ~ &#x3E; ~ni2 , then T is an E-diagram
(with the standard partition of the contour) such that k(l) = 0.

PROOF. We use the notation in the definition of an E-diagram. Con-
ditions EI-E3, E5, E7-E9 and E12 follow from the statement of the
lemma, condition E4 is implied by Lemma 4.20 and the statement of the
lemma and condition E6 follows from Lemma 23.17 [6]. We also derive
E10 from the reducibility of L1 and the argument in the proof of condi-
tion H7 in Lemma 4.19. The nonfulfilment of E ll implies the existence
of two special sections sl2 and sl + 12 of a cell Jr of the second type such
that there are the maximal contiguity submaps To and T1 of sl2 and sl + 12
to a section ts1 of q2 with = 0 and (sl + p2 , 1 - a, p = 0, 1.
If s~ ~ /2  tl + 12 ~ , then by Lemma 23.15 [6], we obtain a contiguity
submap T2 of ti + 12 to t~1 with (tl + 12, 7"2 1 - a. In any case, using
Lemma 23.15 [6], we obtain that there exists a contiguity submap T’ of
~ to in L1 such that T’ , ts1 ) &#x3E; 1/2 and r’ can be decomposed into

= 0, 1, 2, and at most two subdiagrams whose perimeters are
small compared to the perimeters of To and T1, where T2 is the maximal
contiguity submap of tl + 12 to ts1. By the definition of the set Pil 9 1 F’ A
A I &#x3E; il , and moreover, by the arguments in the proof of Lemma 4.13,
r 2 A ts1 does not contain a subpath t such that the label of t is a subword
of S2 and 1 t 1 &#x3E; II ~2!’ Repeating the argument in the proof of Theorem
26.2 [6] and using the definition of the relators of the second type, we
have that Al is conjugate in rank  i1 to the subword of the rela-
tor of the second type corresponding to Jr, which contradicts the defini-
tion of Pil.

Thus r is an E-diagram, and if k( 1 ) &#x3E; 0, then by Lemma 4.13,
k( 2 ) &#x3E; 0 and there exist sections sll and st2 compatible in L1, which con-
tradicts the reducibility of L1.

LEMMA 4.15. Suppose that G(k) and m =

), where Ar is a period of rank ir, r = 1, 2, i2 ~ i
and k ~ 1. If IZ11 I + I Z21  cm and m ~ max(r(A1 ), r(A2)), then A1 -
--- A2 and either Zr E in G(s ) or Zr is equaL in G(s ) to SA,4 , r = 1, 2,
where s = max ( k, and either Al is a non-dihedral period from N and
S is the subword Sj + p - 1 1 of the relator (2.9) for AI, or Al is a
products of two involutions X, and X2 in rank and ,S = X1.

PROOF. Let L1 be a reduced circular diagram of rank k for the con-
sidered equality with contour where --- Zr, r = 1, 2, and

Ø(t2) == A2-1n2. It is a N-map, by Lemma 4.19. Excising cells
of the second type with long nonspecial sections compatible with t1 or t2
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from L1, we obtain a diagram L1’ with contour where 
~ r = 1, 2. It follows from Lemma 22.5 [6] that L1’ contains a subdia-
gram r with contour pi q1 ~2 q2 , where q1 and q2 are subpaths and t2 ,
such that ~ I  ai2 and

r = 1, 2. By Lemma 4.14, ris an E-diagram with k( 1 ) = 0, and by Lem-
ma 4.13, A2 and there are subpaths of qi and q2 which are A,-com-
patible in T (respectively, A1-anticompatible in T and Al = in rank

for some involutions Xl and X2 ). Hence E (respectively,
in G(s), r = 1, 2, and the assertion of the lemma follows

from the fact that, by (2.9), SA1 (respectively, X1A1 
in G( i1).

LEMMA 4.16. Every word X is conjugate in rank i ; 0 to A, where
A is either a power of a period of i or a power of a word which
is simpLe in i, or an element of Q 1, or the subword

Sj + p -1, CaSj-+1p -1, capl of a relators of the form (2.10) for a period Ap of
rank j ~ i, and also in some diagram for the conjugacy of X and A ~ ,

I = 1 and the case is possible only if A is a power
of a non-dihedral periods, no cells are self-compatible.

PROOF. The first assertion of the lemma can be proved as Lemma
34.2 [6], taking into consideration the definition of a simple word in
rank i.

Suppose that a diagram L1 for the conjugacy of X and A has a self-
compatible cell II with the label of a nonspecial section equal to E i . By
the argument in the proof of Lemma 4.7, we may assume that such a cell
II is unique in L1. Then there exists a subdiagram d 1 of d for the conjuga-
cy of E and A with d 1 ( 2 ) ~ I  ~J(2) ~. It follows from the definition of
a simple word, Lemma 4.20 and Theorem 22.4 [6] that A is a power of a
period of rank j  i, and it follows from Lemma 4.15 (as it was shown in
the proof of Lemma 4.7) that E = A j:1 in rank i. Now a subdiagram d 2
of L1 for the conjugacy of X and E -L is required.

LEMMA 4.17. Let A be a period of i and B1 =

= Am TA 2m TA3m T, B2 = [A m , T],B3 = TA m , where a word T and an in-
teger m are chosen in such a way that TAT -1 ~ A 

j:1 in G(i), I T I 
 c2 I )1/3 and I &#x3E; n. Then Bs, s E ~ 1, 2, 3}, is not conjugate in
rank i to the subword S = Sj + ~ -1, cAp of a relator of the form
(2.10) for a period Ap of 1~ ~ i.
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PROOF. Assuming the contrary, we obtain a reduced annular dia-
gram L1’ whose contours have the form p’ = tlSl’t2 ... t4 and q =
= q1q2, where Ø(q1) == Sj + p -1, c. O(q2) = Ap-l, O(sj’) = A+mj or

Isj’l -0, j E {1,2,3}, and O(tr)=T±1 or I tr I -0, r E {1,2,3,4} (it
depends on the word Bs , 1 ~ s ~ 3). We may assume, by Lemma 4.16,
that 4 ’ has no self-compatible cells. Hence 4 ’ is a N-map, by Lemma
4.19. Excising cells of the second type with long nonspecial sections
compatible with sj’ , j = 1, 2, 3, from L1’, we obtain a diagram d from d’ in
which p’ and all sections sj’ are replaced by p and sj , j = 1, 2, 3, and by
Lemma 4.20, the sections sj are smooth in L1. Moreover, =

=1,2,3, and pasting some cells of the second type corresponding to rela-
tors (2.10) for some powers of Ap to the contour q, we may assume, by
Lemmas 4.20 and 4.21, that the sections q1 and q2 are also smooth in d .
Thus L1 is a D-map with long sections sj , 1 :::::; j :::::; 3, and q1, q2 . It follows
from Lemma 24.2 [6] that in d there is a system of regular pairwise dis-
joint contiguity submaps of long sections of the contours to long sec-
tions of the contours such that the sum of the lengths of the contiguity
arcs of these submaps is greater than I + I s21 I + I s31 I + I +
+ |q2|).

If r is a contiguity submap of a section sj to sj in which at least one of
the contiguity arcs has the length greater than ~ then in the case

~( ~’ ) = Bs , s E ~ 1, 3 ~, we obtain, by Lemmas 4.14, 4.13, 24.2 [6] and
3 [7], that TAT -1 = A ± 1 in rank i, which contradicts the choice of T. If
s = 2, then again using Lemmas 4.14 and 4.13, we have that A ~ is conju-
gate in rank i to an involution for some integer 1~, and we arrive at a
contradiction to Lemma 4.20 and Theorem 22.4 [6].

The existence of a contiguity submap r of sjl to a distinct long sec-
3},in which [ [ [

is impossible, since if o(p) = B1, then using Lemmas 4.14 and 4.13, we
can repeat the argument in the proof of Lemma 3.5 [5], and in the case
when q5(p’) = B2 , it follows from Lemmas 4.14 and 4.13 that =

= A ± 1 in rank i, which contradicts the choice of T.
If r is a contiguity submap of q1 to q2 , then, as in the proof of condi-

tion N7 in Lemma 4.19, [  400 ~ A~ ( .
Such small values do not affect the resulting estimates, thus we may

assume that in L1 there are no contiguity submaps of sjl to j2 E
E ~ 1, 2, 3}, and of q1 to q2 . It follows from Theorem 22.4 [6], Lemmas
24.2 [6], 21.1 [6] and 4.2 and the definition of the words Bs , 1 ~ S :::::; 3,
that for each j E ~ 1, 2, 3}, then is a contiguity submap of sj to q such
that the length of the contiguity arc of this submap to sj is greater than

I sj /2. Now if r is a contiguity submap of sj to q1, then by Corollary
22.1 [6], Lemma 21.7 [6] and N5, we have that r(T ) = 0, and it follows
from Lemma 4.2 that I F A sj I  200j . Hence by Lemmas 4.14, 4.13 and
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4.2, Theorem 22.4 [6] and Lemma 21.1 [6], we have that either there are
subpaths of the sections Sj which are A-compatible with q2 (of course, if

I &#x3E; 0) or I  10 ¿ I S I , j = 1, 2, 3. In the first case, if s = 1 or s = 2,
then I &#x3E; 0 and TAT -I = A ± 1, which contradicts the choice of T. If
s = 3, then, by Lemmas 4.14 and 4.13, we again arrive at a contradiction
to the choice of T, since A == Ap. In the second case, it follows from Lem-
ma 24.2 [6] and Theorem 22.4 [6] that there exist r E=- 11, 2} and a conti-
guity submap T of qr to p such that T A qr I &#x3E; /2, and using Lemma
21.2 [6], we arrive at a contradiction to Theorem 22.4 [6], which com-
pletes the proof of the lemma.

LEMMA 4.18. The choice of the set of periods of the group G is
correct.

PROOF. Using Lemmas 4.13-4.17 and 4.19-4.21, we can repeat the
proof of Lemma 3.1 [5]. But it might be suspected that a reduced annu-
lar diagram d for the conjugacy of B1 Ci and (B2 C2"~ ) -1 has a self-com-
patible cell II, where Cj is a non-dihedral period of rank ij not equal to Ao
andBo, I 
and B1 (B2 C2"~) -1 are conjugate to a period F. By Theorem 22.4 [6],
Lemma 23.16 [6] and the proof of Lemma 27.3 [6], these elements are
conjugate to F in rank  Hence we may assume that  .

But it follows from the proof of Lemma 4.16 that II is a cell of rank ,

and we arrive at a contradiction to our assumption about 

The following three lemmas will be proved simultaneously by in-
duction on the type of the diagram.

LEMMA 4.19. Any reduced diagram L1 + 1 on a disk, an-
nulus or sphere with three holes, and without self-compatible cells in
the last two cases, is a 

PROOF. Properties N2, N8 and N9 follow from the choice of
relators.

The verifications of N1 and N7 for a cell 1C of the first type are the
same as those for B 1-B4 and B6-B 10 in Lemmas 26.3 [6] and
26.4 [6].

In checking N3, let q be a subpath of a nonspecial section of a cell II
of the second type of rank j in L1 with q ~ ~ max ( j , 2), p a geodesic sub-
path in L1 homotopic to q. The case where II does not occur in a submap T
with contour p -1 q is treated like condition Bl in Lemma 26.4 [6]. When
17 is contained in T, we replace q by the path q1 complementing q in all
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and arrive at a submap T1 with contour p-1 qi not containing 17 (that is,
a N-map by induction). We show that such a submap T1 is impossible.
To prove this by contradiction, we consider a putative counter-example
with a minimal number of D-cells. It is obvious that T1 is a C-map satis-
fying conditions C1’-C5’ in which the long section of the second kind is
of the trivial length, since q1 contains special sections of II. We arrive at
a contradiction to Lemma 23.15 [6] and condition N4.

We can verify N6 in the same way as B2 in the proof of Lemma
26.3 [6].

In checking N5 we may assume, by the reducibility of L1 and Lem-
mas 4.20, 4.21 and 4.2, that the contiguity arcs and are

smooth in are Arguing by induction, we may also assume that T is a 0-
contiguity submap. Hence it follows from Corollary 22.1 [6], Lemma
21.7 [6] and Lemma 4.2 that p and q are special sections of cells of the
second type such that p and q are compatible in L1, since ( ~, T, q) a E. In
the case when p and q are sections of distinct cells of the second type,
these cells form a cancellable pair in A, contrary to the fact that L1 is re-
duced. If p and q are sections of the same cell of rank j % i + 1, then a
period Ap of rank j is of finite order in G(i + 1 ), and a diagram L1’ for the
equation Ap = 1 is of smaller type than d. Now using Lemma 4.20, we
arrive at a contradiction to Theorem 22.4 [6].

Verifying N4, we note that T is a N-map, since  i(L1), and it
follows from Lemmas 4.20 and 4.21 applied to T, condition N2 and the
reducibility of T that q1 and q2 are smooth sections in aT = If

p is a special section of a cell of the second type, then it follows from
Corollary 22.1 [6], Lemma 21.7 [6] and N5 that = 0, and the desired
inequality now follows from part 3) of Lemma 4.2. If p is a long nonspe-
cial section of a cell of the second type of rank 1~, then applying Lemma
21.1 [6] to r, we obtain that ~2 ~ [  2hE -1 c, where c = min (k, j ).
Then by Lemma 4.12 and the definition of the relations (2.9) and (2.10),
either I q2! [  (1 + y ) j or q1 and q2 are compatible in L1. But the second
case is impossible, since if q2 is a long section of the first type, then we
arrive at a contradiction to N2 and the definition of a long nonspecial
section, and the assumption that q2 is a nonspecial section contradicts
the reducibility of L1.

Let T be a contiguity submap of p to q with (~, T, q) ; E, where p is
a special or long nonspecial section of rank k, q is a section of a cell of
rank j. It follows from N5 for r that q is not a special section of a cell of
the second type. Again we may assume that q1 and q2 are either smooth
or gedesic sections in 9r = PI q1P2 q2 , and by the first part of N4, it re-
mains to consider the case when q2 is a short section of a cell of the first

type. Then by Theorem 22.4 [6], Lemma 21.1 [6] and the definitions of
special and long nonspecial sections of rank k and of the relations in G,
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we have that

therefore  j .
It remains to prove N7 when a is a cell of the second type of rank k

in L1. By induction, F is a N-map with 37"= It follows from
Lemmas 21.1 [6], 4.20 and 4.21 for T, the reducibility of L1 and the defini-
tion of the relators of the second type that r is a C-map with the long
section q2 of the second kind.

First we consider the case when T has the only long section of the
first kind. Then there is a decomposition q1 = tl s1 t2 , where t2 ~ [ 
 2n 21~ and s, is a subpath of a section of 7r with I sll I &#x3E; n s 1~ 2 ~2. Let r1 be
the maximal contiguity submap of s, to q2 (the existence of such a
submap T1 follows from Lemma 23.15 [6]). It is possible, by Lemma
23.15 [6] and the maximality of T1, to decompose r into three submaps

T2 and T3 with 3F2 = P1t1l1P3fi and ar3 = P4 4 t2 P2 f2 where 
and fl , f2 are subpaths of q1 and q2 , respectively, 14 1 ~ n 4 k, and
by Lemma 21.1 [6], 9 ... , ~ I P41 [  2h~ - i k. By Lemma 23.15 [6] and
Theorem 22.4 [6], we have that

v=1,2.
We note that, by the proof of N4, we could have a stronger form of

N4 if we replaced [  (1 + y)j by IF A ql [  (1 + 3y/4)j.
Hence

and it follows from (4.13)-(4.15) that

as required.
Passing to the case when r has at least two long sections of the first

kind, we consider a possible contiguity submap of Sl to s2 in L1, where



73

s, and S2 are distinct sections of n, such that -r is not contained in ll. Of

course, we may assume that ~1 is the maximal contiguity submap of s, to
s2 . It follows from Corollary 22.1 [6], Lemma 21.7 [6], Lemmas 4.20, 4.21
and condition N5 that if Sj is a special section of yr for some j E {I, 2},
then r(A) = 0. The diagram L1 has no self-compatible cells, hence if si
and S2 are special sections of ,~, then I  I and there exists a
submap of L1 with contour Zl + where t is a nonspecial section of jr
and is a subpath of s, , j = 1, 2. The case when 111 1 = 14 1 = 0 is impos-
sible, as it was shown in the proof of condition N5. By Corollary 22.1 [6],
Lemma 21.7 [6], condition N5, the reducibility of L1 and Lemma 4.20 for
A,, we have that = 0, and the maximality of A and Lemma 4.2
lead to the inequality I  200k.

If s, and 82 are nonspecial sections of Jr, then these sections are
not compatible in L1, since otherwise (using the notation in the defin-
ition of the relations (2.9) and (2.10)) it follows from Corollary 22.1 [6]
and conditions N4-N6 that in rank i for
some integer s. If s = 0, then a = 1 in G( i ), which contradicts
Lemma 23.16 [6], otherwise Ap is of finite order in G(i), and we arrive
at a contradiction to Lemma 4.20 and Theorem 22.4 [6]. Therefore,
there is a submap A 1 of L1 with contour 11 s4 p where s is a special
section of .7r, lj is a subpath of s~ , j = 1, 2,  2 h~ -11~ (by
Lemma 21.1 [6]). We may assume that is a C-map, and using
Lemma 23.15 [6] and the maximality of ~l, we arrive at a contradiction
to N4.

Finally, if Sl is a special section and S2 is a nonspecial section of yr,
then r(A) = 0, and by Lemma 4.2, we have that ~l A si I A s2 [ 
 200k.

Such small values do not affect the resulting estimates, so we may
assume that there are no contiguity submaps of 81 to S2 not containing jr,
where s, and S2 are sections of the cell Jr. Therefore, T can be decom-
posed into several submaps of the following two kinds: submaps of the
first kind contain long subpaths of long sections of the first kind in
T and submaps of the second kind do not contain such subpaths and
so their perimeters are small compared to the perimeter of one of
the submaps of the first kind, by the definition of the relations

(2.9) and (2.10) and the condition r, q) &#x3E; 1/3. Now if we assume
that q2 ~ ~ (1 + y ) j , then repeating the arguments in the proof of
Lemma 26.2 [6] and using the definition of the relators of the second
type, we obtain that a period B of rank j is conjugate in rank i to the
subword St, of the relator of the second type corresponding to
~. Hence B2 = 1 in G(i), which contradicts Lemma 4.20 and Theo-
rem 22.4 [6].

The proof of the lemma is complete.
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LEMMA 4.20. Let q be a section of a contour of a reduced diagram L1
of rank i + 1 which is such that the label of q is an A-periodic
word, where A ± 1 is either a simple word in rank i + 1 or a period of
rank k ~ i + 1, and in the latter case, let the diagram L1’ and the section
q’ of some contour of d’ be obtained from L1 and q, respectively, by excis-
ing all cells of the second type having long nonspecial sections 
ible with q. Then q (in the first case) and q’ (in the second case) are
smooth sections of the first type of rank A ~ I in ad and 3A
respectively,. 

PROOF. In the case when A is a simple word in rank i + 1, the veri-
fication of conditions F1-F3 is the same as that of N1, N4, N3 and N7,
respectively, in Lemma 4.19.

Consider the second case. The verification of S4 for a cell 7r of the
first type is done in the same way as that of condition B4 in Lemma
4.19, by Lemma 4.2 and the argument in the proof of Lemma 4.13. In the
course of verifying condition S2 for a cell Jr of the first type of rank k,
we arrive at a contiguity submap T of a long section p of Jr to q’ with
(p, r, q’ ) ; e. By Lemmas 21.1 [6], 4.14 and Theorem 22.4 [6], T is an E-
diagram. If k &#x3E; i + 1, then q1 = t11 in r, and we arrive at a contradiction
to Lemma 4.13. Hence k  i + 1 and k(2) = so2 ~ = s12 ~ [ = 0 in T, and
by Lemmas 4.13 and 4.2, we can repeat the argument in the first part of
the proof of condition N7 in Lemma 4.19.

Condition F2 can be verified using Lemmas 4.13 and 4.2 and the pre-
vious considerations.

Let the r-contiguity degree of a cell or of rank k to q’ is greater than
1/3. Then T is an E-diagram, by Lemmas 21.1 [6] and 4.14, and it follows
from Lemma 4.13 and the reducibility of L1 that k  i + 1 and = 0.

Hence, again by Lemma 4.13, with , I 
 tl t11 , , and the assertion about tll can be proved in the same way as N3
in Lemma 4.19. Finally, the proof of the inequality I  (1 + y )( 1 +
+ 2 c) -1 (i + 1) is the same as that of a stronger version of N7 in Lemma
4.19.

LEMMA 4.21. If the label of a section q of a contour of a N-map L1 of
rank i + 1 is visually equal to a subword of one of the words

(in the definition of the relations (2.9) and (2.10))
and L1 has no sections of cells of the second type compatible with q, then
q is a smooth section of the second type in (3A.

PROOF. This is similar to the verification of condition N5 in Lem-
ma 4.19.
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5. - Proof of Theorem A.

We may obtain all the assertions of Theorem A if we repeat the
proof of Theorem A [5] with the following remarks.

1) In order to prove assertion 2 of Theorem A, we note that,
by Lemma 4.16 and the maximality of the sets of periods Pi , i ; 1, if
X E L and X is not conjugate in G to an element of any group G~ ,

then either X 2 = 1, since X is conjugate to the subword

Sj + p - 1, cAp of a relator of the form (2.10), or X is conjugate
in G to a power of a period A of some rank and therefore is of infinite or-
der (by Theorem 22.4 [6] and Lemma 4.20), and in the latter case, we
have that A e N, since the group H = G/L is either torsion-free or triv-
ial, hence X is a product of two involutions (by the definition of the rela-
tions (2.9) and (2.10)).

2) Suppose that XY = YX in G for some X, Y E G and consider the
following cases.

a) If X E G~ for some ,u E I, then by Lemmas 4.16 and 4.19, we
can repeat the proof of Lemma 34.10 [6] and obtain that 

b) In the case when X = A k , where A is a period of some rank,
let m be an integer such that mk &#x3E; r(A ) and 2 1 Y I  inzk. Then it fol-
lows from Lemma 4.15 that Y E (A).

c) If X is the subword S cA~ of a relator of the
form (2.10), then, pasting some cells of the second type corresponding to
relators (2.10) for some powers of Ap to the contours of a reduced annu-
lar diagram L1 for the conjugacy of X and X, we may assume, by Lem-
mas 4.16 and 4.19-4.21, that d is a D-map with long sections q1, ... , q4 ,
where ~(ql) _ Ø(q3) + p _ 1, c and Ø(q2) = Ø(q4) = A/2
for some integers 11 and 4. It follows from Lemmas 24.2 [6] and 4.2 and
the definitions of smooth sections that the sections q1 and q3 are com-

patible in L1, hence X = Y in G.

Thus assertion 3) of Theorem A is proved.

3) The assertion in Theorem A about regular automorphisms of a
group Lc follows from assertion 3) of Theorem A and the condition that
the group H is either torsion-free or trivial.

4) All the results in [5] about the mapping F are not affected,
since by the definition of the relations (2.9) and (2.10), we have that
F({Sj+p-1, CaSj-1+p-1,C}

5) In the definitions (from [4] and [5]) of I-diagrams and of H-
maps we further require that they have no self-compatible cells and
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every section of the first kind (in the definition of H-maps in [5]) is a
smooth section of the first type of rank j.

6) In the statement of Lemma 3.2 [5] we replace the condition
Iki [ &#x3E; 100 C-1 by Ikl [ &#x3E; n and |W| [ l2(|k||C|)1/3. In the proof of this
lemma, it follows from Lemmas 4.16 and 4.17 and the maximality of the
sets of periods Pi , i ; 1, that the word W] is conjugate in G to a
word V, where either I VI = 1 or V is a power of a period A. Repeating
the argument in the proof of Lemma 4.16, we may assume that the dia-
gram A0 for this conjugacy on a sphere with three holes has no self-
compatible cells. Now, taking into consideration Lemmas 4.20, 4.13 and
4.14, we can repeat the proof of Lemma 3.2 [5] without essential

changes.

7) In the statements of Lemmas 3.5 [5] and 3.6 [5] we further re-
quire that T ~ I 

8) In the proof of Lemma 3.5 [5], it is necessary to show that X =
= A m TA 2m TA 3m T is conjugate in G to a power C’ of a non-dihedral per-
iod C, that is, C is not a product of two involutions in rank 1. As-

suming the contrary, we have, by Lemma 4.16, that Ct =
in rank 1, where Wk, k = 1, 2, is either an

involution in S~ or the subword Sk of a
relator of the form (2.10) for a non-dihedral period Ak, p of rank  I C .
Using the statement of Lemma 3.5 [5], we obtain a reduced diagram L1’
on a sphere with three holes with contours q’, 1 q2 and q3 , where ~(qi ) _
= X, O(q2) = Wl , O(q3) = W2 . Let the diagram L1 and its contour q1 be ob-
tained from L1’ and q1 , respectively, by excising all cells of the second
type having long nonspecial sections compatible with sections 1 ~

~ r ~ 3, of q1, where Ø(s;) = A’~r . Pasting some cells of the second type
corresponding to relators (2.10) for some powers of the period Ak, p to
the contour qk + 1, k = 1, 2, we may assume, by Lemmas 4.16 and 4.19-
4.21, that d is a D-map in which we choose long sections in each contour
qs , 1 ~ s ~ 3, in the obvious way. If there exists a contiguity submap T
of pl to P2 in which the length of the contiguity arc r A ~r is greater
than E I Pr I = 1, 2, where and are sections of the
contours q2 and q3 , respectively (such contiguity submaps are called
long), then by Lemmas 4.12 and 4.2, PI and P2 are compatible and WI =

for some integer s. Thus, pasting a cell with the label (W1AÍ, ~)2
for some integer l, we obtain that C’ is conjugate in G to a power of

which contradicts Lemma 4.15. Thus there are no long contiguity
submaps of a section of q2 to a section of q3 . Now using Lemmas 24.2 [6],
4.13, 4.14 and 4.2 and repeating the arguments in the proofs of Lemmas
6 [7] and 4.17, we have that there is no a contiguity submap Of Sil to Sj2’
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where j1, j2 e ( 1 , 2, 3} such that either ] &#x3E; ~ ~ s~l ~ I or T /~ sh I &#x3E;

&#x3E; ~ ~ I (such contiguity submaps are called long), and there exists conti-
guity submaps T1 and T3 of long sections, say 81 and s3 , of q1 to qk for
some kE{2,3} such that I &#x3E; t = 1, 3 . By Lemma
21.1 [6], Theorem 22.4 [6] and the argument in the proof of Lemma 4.14,
we have that I &#x3E; 1 and T t is an E-diagram for each 3}. If

A qk I then by Lemmas 4.14 and 4.13 and the definition of
the relators of the second type, some subpaths of the sections st , t =

- 1, 3, and qk are compatible in L1, hence, using again Lemmas 24.2 [6],
4.14, 4.13 and 4.2, we obtain that TAT -1 =A~ 1 in G, which contradicts
the choice of T. If Tt A I for some t E ~ 1, 3}, then by Lemma
4.13, it is also true for T4 _ t . Therefore, L1 can be decomposed into subdi-
agrams T1, r 3 and d 1, J 2 ~ where for some r E ~ 1, 2}, the diagram d r is
circular while J 3 - , is an annular diagram, the contour (or one of the
contours) of A 1 contains t3 and the contour (or one of the contours) of d 2
contains the path tl S2 t2 .

Consider the diagram d 2 . As it was noted above, there are no long
contiguity submaps Of Sil to Sj2 for each j1, j2 E {1, 2, 3} and of sections
of q2 to sections of q3 . Moreover, by Lemma 4.13, there is no a long con-
tiguity submap of a section of qk to = 1, 2, 3, since A I  If

q5 - k is one of the contours of A 2 and there is a long contiguity submap
of S2 to q5 _ k , then we obtain a circular subdiagram A 3 of d 2 with the
same condition for long contiguity submaps between the sections of the
contour as that for d 2 . In any case, we arrive at a contradiction to Lem-
ma 24.2 [6] which is true for J 2 (or J 3), by the argument in the proof of
Lemma 4.13.

9) In the proof of Lemma 3.5 [5], it might be suspected that
one more possibility could arise: that is,
A 2m TA 2m TA 3m T 2 A 2m TA 3m T = 1. Then repeating the argument in the
proof of Lemma 3.3 [5] and using Lemmas 4.20, 4.14, 4.13 and 3 [7], we
obtain that TAT -1 1 = A --:~ 1 , which contradicts the choice of T.

10) In Lemma 3.6 [5] the fact that C is a non-dihedral period can
be proved in the same way as in 8).

11) In the proof of Lemma 3.7 [5], we choose integers p, t and m
according to the statements of Lemmas 3.2 [5], 3.5 [5] and 3.6 [5].

12) The following remark will be useful for proving the assertions
of Theorem A. We note that if a subgroup M of G is not cyclic and is not
conjugate in G to a subgroup of any group G,~ , ,~ E I, then M contains an
element conjugate in G to a power of a period of some rank. In fact,
assuming the contrary, we obtain, by Lemmas 4.16 and 4.19, a N-map
L1 on a sphere with three holes with contours ql , q2 and q3 , where
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the label of qk is either an element of S~ or the subword Wk =

+ p-1, + p -1, p 
of a relator of the form (2.10), 1 ~ k ~ 3.

It was shown in the proof of Theorem 35.1 [6] that the case when I qk I =
- 1, k = 1, 2, 3, is impossible. We may assume that I q11 I &#x3E; 1. Pasting
some cells of the second type corresponding to relators (2.10) for some
powers of Ak, p to the contour qk , k = 1, 2, 3, we may assume, by Lem-
mas 4.19-4.21, that L1 is a D-map with the natural choice of long sections.
Then by Lemmas 24.2 [6], 4.14, 4.13 and 4.2, either a power of is

conjugate in G to e Q for some k e {2, 3}, which is impossible by
Lemma 4.20 and Theorem 22.4 [6], or we may assume that 1 and
there are sections pi and P2 of q1 and q2 , respectively, which are compat-
ible in L1. Therefore Ø(q3) is conjugate in G to a power which
contradicts our assumption. 

’

13) Assertion 12 of Theorem A follows immediately from 2) and
Lemma 34.10 [6].

14) If a subgroup M of G is infinite dihedral and is not conjugate
in G to a subgroup of any E I, then, as it was shown in 12), we may
assume that M contains a power A of a period A. By 2), = (A),
hence CG (M) _ ~ 1 ~. The assertion about NG (M) can be proved in the
same way as in Theorem A [5].

15) If an infinite cyclic subgroup M of L is not conjugate in G to a
subgroup of any group E I, then we may assume, by Lemma 4.16,
the maximality of the sets Pi , i ; 1, and the choice of the group H, that
M = (A~), where A E L is a period, 1. By 2), CG (M) = (A), and it
follows from assertion 2 of Theorem A that A is a product of two involu-
tions X, and X2 in L. By the proof of assertion 13 of Theorem A, we have
that NG (M) = (Xl, X2), which completes the proof of assertion 14 of
Theorem A.

16) Let A E Pi f1 N for some i ~ 1 and T a word such that T ft (A),
the coset T(A) does not contain an involution and the double coset
(A) T(A) does not contain an element XTX -1, where X is an involution
with the property that = A -1, and also assume that if A E P/,
then ST(A) does not have an involution, where S is the subword

Sj + ~ - of the relator (2.9) for Ap = A. Let m be an integer
with [ I &#x3E; n. By Lemma 3.2 [5], V = [A m , T ]
is conjugate to a power of a period B. We show that, in our case, B is a
non-dihedral period. Assuming the contrary and using Lemmas 4.16
and 4.19, we obtain a N-map L1’ on a sphere with three holes with con-
tours qi , q2 and q3 , where o(q’) = V and q5(qk) is either an involution in
S~ or the subword Wk + ~ -1, a relator of the
form (2.10), k = 2, 3. In exactly the same way as in 8), we obtain a dia-
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gram d and its contour q1 from d’ and respectively, such that 4 is a
D-map if we choose long sections in the contours in the obvious way.
Pasting a cell of the second type with the label (W2A’ )’ for some non-
zero integer s, we also may assume that there are no sections P2 and P3
of q2 and q3 , respectively, such that they are compatible in d . Moreover,
there is no a contiguity submap T to s - j1 , j2 E ~ 1, 2}, such that ei-
ther I I or [ &#x3E; ~ ~ s ~ ~ , since otherwise some sub-
paths of these sections are compatible or anticompatible in L1, by Lem-
mas 4.14 and 4.13, and, using Lemma 24.2 [6] and the argument in the
proof of Lemma 4.17, we arrive at a contradiction to the choice of T. By
the same reason, there are no contiguity submaps 7"i and T2 of long sec-
tions s, and S2 of q1 to a section p of qk , k E ~ 2, 3}, such that A s, I &#x3E;

&#x3E; ~ ~ s~ ~ , j = 1, 2, since otherwise either some subpaths of Sj and p are
compatible in L1 and therefore T E (A) or T(A ~ contains an involution, or,
by Lemma 24.2 [6] and Theorem 22.4 [6], there are sections of q2 and q3
which are compatible in L1, and we arrive at a contradiction to our as-
sumption. They by Lemmas 24.2 [6], 4.14, 4.13 and 4.2, Theorem 22.4 [6]
and our assumption, there exists the only possibility when some sub-
paths of long sections of q1 are compatible with sections of distinct con-
tours qk , k = 2, 3. But in this case, we have that A E Pz’ and (A) T(A)
contains STS - 1 , which contradicts the choice of T.

17) Let 1jJ be an automorphism of a subgroup LC, where C f G, for
each p E I. Repeating the proof of Lemma 3.8 [5] and using Lemma 4.16,
we obtain that y (A) is a power of a period of some rank for each period
A, but it might be possible that is not conjugate in G to an element
of S~ for some b E n C. In this case, b is an involution and there are

c, d E C such d ) f Gv for each y, v E I and c ~ d. We
have (after multiplying V) by an inner automorphism of Rc) that

C]k) = Ar and d]) = W, where A is a period, k &#x3E; n7 , (or
I r = 2 k if c is an involution), W ~  and W is a minimal
word in G such that since [b, d][b, c][b, d]-1 ~ [b, C]:i:1 1
in G.

Suppose that A is a non-dihedral period. = 1jJ (cbc -1 )
for some t, I ~ 2, hence = A - t , and it follows from

~ Lemma 4.15 that y (b) SA k in G for some integer 1~, where S is the
subword of the relator (2.9) for A. Therefore,

= and repeating the argument in 2), we obtain
that 1jJ (c) SA l for some integer 1. Then there exists an element e E C
such for each p E I, e # c e]) is not conjugate
to a power of a non-dihedral period, since otherwise it follows from the
previous considerations that the cyclic subgroups ( bc ~ and ( be ) have a
nontrivial intersection, which contradicts assertion 3 of Theorem A.
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Thus we may assume that A is a product of two involutions in rank
IAI -1.

By Lemmas 3.2 [5] and 3 [4], we obtain (after multiplying y by an in-
ner automorphism of Rc) that 1jJ(bd)Bo(bd)-l) = E and Y([b, c]k) = B,
where E is a period, L and 

Now we show that E is a non-dihedral period. First of all we note
that A E N, since [b, c] E N and the group H is either torsion-free or
trivial. As it was shown above, A -:k1, hence W 0 (A). Suppose
that W(A) contains an involution, then (or V =

[b, c is an involution) is an involution for some integer t. By
Lemmas 4.16 and 4.19, there exists a reduced annular diagram L1 with
contours q1 = PI P2 and q2 for the conjugacy of V and an involution X,
where either X E S~ or X is the subword Sj + p - 1, cAp of a rela-
tor of the form (2.10), such that L1 is a N-map. Pasting some cells of the
second type corresponding to relators (2.10) for some powers of A~ to
q2 , we may assume that the contour q2 is either smooth or geodesic in L1.
Moreover, [b, c] (or bc if c is an involution) is a product of two involu-
tions, then by Lemma 4.20, we have that is a smooth section in 3J. If
X E ,5~, then it follows from Corollary 22.2 [6], Lemma 21.7 and the defi-
nition of the relations of G that d4 ) = 0, which contradicts the choice of
b, c and d, otherwise we may assume that the cyclic section q1 with the
label V is geodesic in.J. Then by Lemmas 4.20 and 4.21, L1 is a C-map in
which q1 is the long section of the second kind and the long sections of
the first kind are chosen in q2 in the obvious way. We arrive at a contra-
diction to Lemmas 23.15 [6], 4.12 and 4.2.

Suppose that (A) W(A) contains an element where X is an
involution such that Then V = [ b, d ] [ b, (or

c is an involution) is equal in G to Y[ b, d ] Y -1 for
some integers t1 and t2 and an involution Y such that Y[ b, c ] Y -1 =
= [ b, (or Y(bc) Y -1 = if c is an involution). Let A be a reduced
annular diagram without self-compatible cells for the conjugacy of V
and [ b, d]. (Such a diagram d exists by Lemma 4.16, since [ b, d] is a
product of two involutions.) Hence, by Lemma 4.19, L1 is a N-map. It fol-
lows from the previous considerations, Corollary 22.2 [6] and the defini-
tion of the relations of G that = 0. Then t1 = - t2 , and by assertion
3 of Theorem A, Y E [b, d]) (or Y E (bc)tl ([ b, d]) if c is an involu-
tion), but it follows from Lemma 4.15 that Y E b([b, cl) (or Y E b(bc) if c
is an involution), hence a power of [ b, d] is an involution, which contra-
dicts Lemma 4.20 and Theorem 22.4 [6].

Thus 16) enables us to assert that E is a non-dihedral period. We
choose an integer m such that mL &#x3E; 0, ~ and I 
 It follows from Lemmas 3.6 [5] and 3 [4] and the defini-
tion of relations of the first type (after multiplying y by an inner aut-
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morphism of Rc) that either 1jJ([b, = [ u, G for some integer t,
such for each u E I and

vy E S~ 2 , or = L and = T , where L is a non-
dihedral period, L e Lc , , 

1 and 
In the first case, it follows from the standard considerations

that 1jJ (b) is conjugate to an element of ,5~. In the second case, it follows
from Lemmas 1 [4], 4.14 and 4.13 that (after multiplying y by an inner
automorphism of RC) there is T1 e YL such that T = T1 where |p I 
 n . Applying the automorphism V to both sides of the defining relation
(2.2) (conjugated by an element bd) for [ b, and 1 =
= 4n - p, we obtain that

and it follows from the definition of the relations (2.2), (2.6) and (2.7) for
L and T, that we again obtain the first case which has already been
considered.

Thus is conjugate in G to an element of S~ for each b E n

n C.

18) In the proof of Lemma 3.9 [5], it is necessary to show that

(using the notation of this lemma) A is a non-dihedral period. If c is an
involution, then, by 16), we can repeat the argument in 17). Suppose
that c 2 ~ 1 in G. As it was shown in the proof of Lemma 3.9 [5], (S).
The fact that W~,S~ does not contain an involution can be proved in ex-
actly the same way as that for W(A) in 17).

Let the double coset (S)W(S) contains an element 
where X is an involution such that Then V =
- [ c, [ c, fg ] [ c, is equal in G to Y[ c, fg ] some integers t1
and t2 and an involution Y with the property that 
= [ c, As in 17), we obtain that t1 = - t2 , and by assertion 3 of
Theorem A, Y E [c, fg]). But it follows from Lemma 4.15 that
either Y E e([c, de ]~ if d = 1 and e 2 = 1, or de ]~, where ,S1 is
the subword Sj + p - of the relator (2.9) for [ c, de ].
In any case, we have that a power of [c, fg] is an involution, which con-
tradicts Lemma 4.20 and Theorem 22.4 [6].

It remains to prove that EW(S) does not contain an involution,
where E is the subword Sj + ~ -1, CaSj-+1p -1, c of the relator (2.9) for 
- S. Assuming the contrary, we have that V = Y[ c, fg][c, de ] is an invo-
lution in G for some integer t and an involution Y such that

Y[ c, de ] y-1 = [ c, It follows from Lemma 4.15 that either 1) d =
Y = e[c, e ]k for some integer k, or 2) Y = Si [ c, de ]k , where

1~ is an integer and S1 is the subword Sj + p -1, CaSj-+1p -1, c of the relator
(2.9) for Ap = [ c, de ]. The first case is impossible, by the argument in
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the consideration in 17) of the case when W(A) contains an involution.
In the second case, by Lemmas 4.16 and 4.19, there exists a reduced an-
nular diagram L1’ with contours q’ = Pl’P2’P3 and q2 for the conjugacy of
VI = de ]~ [ c, fg ] and an involution X, where m is an integer and
either X E S~ or X is the subword S + p _ 1, cAp of a relator of
the form (2.10), such that L1’ is a N-map. Excising cells of the second
type with special or long nonspecial sections compatible with p’ or P2
from L1’, we obtain the diagram L1 with contours q1 = Pl P2 P3 and q2 such
that the sections PI and p2 are smooth in L1, by Lemmas 4.20 and 4.21.
Pasting some cells of the second type corresponding to relators (2.10)
for some powers of Ap to q2 , we may assume that the contour q2 is either
smooth or geodesic in- L1. then L1 is a C-map in which q2 is the
long section of the second kind, which contradicts Lemmas 23.15 [6],
4.12 and 4.2, otherwise L1 is a D-map, and using Lemmas 24.2 [6], 4.12
and 4.2, we arrive at a contradiction to the choice of elements c, d, e, f
and g.
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