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Viscosity Solutions and Standard Riemann Semigroup
for Conservation Laws with Boundary.

DEBORA AMADORI - RINALDO M. COLOMBO (*)

ABSTRACT - Two different formulations of the Initial-Boundary Value Problem for
a system of conservation laws

are considered. Correspondingly, we define two Standard Riemann Semi-
groups (SRS) generated by the system (*) plus boundary conditions. We
prove that, if a SRS exists, then it is unique and its trajectories yield solutions
to the Initial-Boundary Value Problem, in each of the two cases. Moreover, a
proper definition of viscosity solutions allows us to characterize the solutions
provided by the SRS in terms of local integral estimates.

1. - Introduction.

Consider the following system of n conservation laws in one space
dimension

where u varies is smooth and each characteristic field in DF is
either linearly degenerate or genuinely non linear. Aim of this paper is
to generalize part of the theory developed in [5] for Cauchy Problems
for (1.1) to the different formulations of the Initial-Boundary Problem
for (1.1) considered in [ 1 ], [11], [13], [15].

More precisely, the Standard Riemann Semigroup (SRS) for the
Cauchy Problem for (1.1) is defined in [5] as a Lipschitzean semigroup

(*) Indirizzo degli AA.: Department of Mathematics, Via Saldini 50, 20133 Mi-
lano, Italy
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whose trajectories locally coincide with the standard Lax solutions in
case of piecewise constant initial data. If such a SRS exists, it is unique
and it yields the same solutions obtained by Glimm [12] and by a wave-
front tracking procedure [3]. Similarly, in the present paper we define
the SRS generated by the Initial-Boundary Problem for (1.1). We show
that if the SRS exists for such problem, then it is unique and it yields the
same solutions obtained in [1] by wave-front tracking.

The construction of the SRS for the Cauchy Problem is accomplished
in [7] in the 2 x 2 case, and in [6], [9] in the n x n case. Concerning the
Initial-Boundary Problem, the SRS has been constructed in [2] in the
2 x 2 case.

Following [1] and [2], we consider two different formulations of the
Initial-Boundary Problem, referred to as the Characteristic (C) one and
the Non Characteristic (NC) one. The two formulations differ in the
sense given to the boundary condition and, hence, in the very definition
of solution.

Separately, we introduce a concept of viscosity solution to the In-
itial-Boundary Problem for (1.1), extending the analogous definition

given in [5]. Aim of this definition is to single out some intrinsic property
which characterizes the solutions provided by the SRS. In fact, we show
that if a SRS exists, then its trajectories are viscosity solutions of the In-
itial-Boundary Problem for (1.1). Conversely, a viscosity solution with
small total variation coincides with the corresponding semigroup trajec-
tory as soon as a SRS exists.

The paper is organized as follows. The next two sections are devoted
to the statement of the problem in the two cases (C) and (NC). In Sec-
tion 4 we prove that the semigroup trajectories provide solutions to the
Initial-Boundary Problem and that the SRS is unique. Section 5 is con-
cerned with the definition of viscosity solutions, a characterization of
semigroup trajectories. The proofs are collected in the last section.

2. - The characteristic initial-boundary problem.

Fix a continuous boundary profile ~: R + H R and define the domain
S2 I (t, x) E R 2 : t ~ 0 and x ~ Vf(t)1. The Characteristic Initial-Bound-
ary Problem for (1.1) in ,S~ with boundary condition u: R + H 1~ is:
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where it is assumed that the initial data u and the boundary condition u
are L’ functions with small total variation, so that ( is
also small.
We briefly recall here the definition of solution to (C), as stated in

[11] and [1].

DEFINITION C.1. Call u(r , + ) = 
x 

lim u(-r, x). For every r 

&#x3E; 0, let w r be the self-similar Lax solution to the Riemann Problem

where u(z, W(r) + ) == lim u(r , x). A function u: is a solution

to (C) if 

(i) u is a weak entropic solution to (1.1) and satisfies the initial
condition, in the sense that

for any C1 function 0 with compact support contained in the set ~(t, x) E
ER2: t  0 or 

(ii) u satisfies the boundary condition in the sense that for all but
countably many i ; 0

where is the lower left Dini
derivative. 

s-t -

The role that Riemann Problems have in the theory of Cauchy Prob-
lems for ( 1.1 ) is here played by the
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Characteristic Riemann problem with boundary.

Fix a continuous boundary profile ~: R + and choose two con-
stant states u, U E R n , with Ilu - iij sufficiently small. The Characteristic
Riemann Problem with Boundary is

We shall now provide an explicit formula for the solution of (2.4). For
(t, x) E Q, let

denote the slowest speed with which a wave exiting the boundary
can reach (t, x). Call wR the Lax solution to the Riemann Problem

(Figure 1)

By direct verification, the solution w to (2.4) in the sense of Definition
C.1 is found to be (Figure 2)

Figure 1.
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Figure 2.

We remark that in the case W(t) = the above procedure amounts to
define w simply as the restriction of wR to S~. In particular, if W(t) = 0,
then Definition C.1 coincides with the one introduced in [11].

Problem (C) is in general not time-homogeneous, due to the bound-
ary condition it and to the boundary profile ~. In order to define a semi-
group, we thus need to incorporate both the boundary condition and the
boundary profile in the domain of the semigroup, as in [2]. Let Q~* be the
set of those triples p = (is, ic , ~) such that

DEFINITION C.2. A Standard Riemann Semigroup generated by (C)
is a continuous semigroup

such that

(1) (JJ is a subset of containing all triples p = (u, u, ~) with
Tv(u) + TV(u) sufficiently small.

(2) If p = (is, u, then Stp = (Et p , The evolution op-
erator E : R + is such that, for any two triples P’ == (u’, u’, Vf’)
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and p" - u", if W’ and have Lipschitz constant L ’ and L ",
then

for some fixed constant L and for all t ’, t " in R + . l3t is the time-transla-
tion operator, i.e. (btU)(S) i(t + s) and + s), for any
s~0.

(3) If fi and E are piecewise constant and if tp is piecewise linear
and continuous, then Etp coincides for t small with the glueing of the
Lax solutions to Riemann Problems in the points of jumps of u, and of
the solution to the Characteristic Riemann Problem with Boundary at
(0, 1 tp( 0 ) ) .

At present, such a semigroup for Initial-Boundary Problems has
been constructed in the case n = 2 in [2].

Denoting p’ - (u’, u’, and p" = (u ", U ", tp"), introduce the quan-
tity

Note that the continuity of ,S and (2) imply the Lipschitz estimate

for any pair of initial data and of continuous boundary profiles ~’
and W", provided ii’ = u ".

3. - The non characteristic initial-boundary problem.

Fix a boundary profile tp: R + -R and define the domain

S~ _ ~ ( t , x ) E R 2 : t ~ 0 and x ; ~( t ) ~ . The Non Characteristic Initial-

Boundary Problem for (1.1) in S~ with boundary condition g is:

where the initial data 11 and the boundary condition g are Ll functions
with small total variations. Call and the i-th eigenvalue and
the corresponding i-th right eigenvector of the matrix DF(u). We as-
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sume that

for n suitable pairwise disjoint bounded intervals chosen so
that We require that W is Lipschitz continuous and
satisfies

for some fixed q E ~ 1, ... , n ~. By (3.1), all characteristic lines cross the
boundary transversally, motivating the denomination Non Characteris-
tic.

On the function b, following [15], we assume:

(b.1) b: is smooth;

(b.2) at the point u = 0, the differential restricted to the

span ... , is injective.
We recall here the definition of solution to (NC), as stated in [13],

[15].

DEFINITION NC.l. A function u : is a solution to (NC) if

(i) u satisfies condition (2.2), for any C1 function 0 with compact
support contained in the set ~ ( t , x ) E R : t  0 or x &#x3E; 

(ii) it satisfies the boundary condition in the sense that for all but
countably many z ~ 0

The following is the equivalent to Riemann Problems in the present
case, and will be referred to as the

Non Characteristic Riemann problem with boundary.

Fix q ..., n I and a Lipschitzean ~:7!~ ’-~/! with ~, n ~q 
 a.e. Let a constant initial data and a constant

boundary condition given, both sufficiently close to the origin.
Let b be any smooth function satisfying (b.1), (b.2) and

(b.3) gll is sufficiently small.
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The Non Characteristic Riemann Problem with Boundary is

As introduced in [13] and [15], the solution to (3.3) according to Defini-
tion NC.1 is the restriction to the of the Lax
solution to the Riemann Problem

where u + is defined by the conditions

(a) b(u + ) = g, and

(b) u + is connected to u by means of the shock-rarefaction curves
of the families n - q + 1, ... , n, in increasing order.

Because of the assumptions (b.1), (b.2) and (b.3), such a state u + exists
and is unique.

As in case (C), we incorporate the boundary condition g and the
boundary profile tp in the domain of the flow. Thus we obtain a semi-
group acting on the set of triples p = (u, g, where

Lipschitzean and satisfying (3.1).

Similarly to the previous case, define
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DEFINITION NC.2. A Standard Riemann Semigroup generated by
(NC) is a continuous map

such that

(1) (J) is a subset of 6)* containing all triples p with TV(p) suffi-
ciently small.

(2) ,S is Lipschitzean, i.e.

for a fixed L, for all p’ , p" in (D and for all t ’ , t " in R + , d being the dis-
tance defined at (3.4). Moreover, if then Stp =
= (Et p , l3t where E is the evolution operator and l3t is the time-
translation operator.

(3) If fi and g are piecewise constant and if tp is piecewise linear
and continuous, then Etp coincides for t small with the glueing of the
Lax solutions to Riemann Problems in the points of jumps of 11, and of
the solution to the Non Characteristic Riemann Problem with Boundary
at (0, tp( 0 ) ) .

Note that (2) above implies that for all p’, p" in (fJ and for all t ’, t " in
R+

where L is the same constant as in (3.5).

4. - Uniqueness of the standard Riemann semigroup.

Assume that the Characteristic Initial-Boundary Problem for (1.1)
generates a SRS with associated evolution operator E. Call (u, u, W) the
triple of the initial data, the boundary condition and the boundary profile
in (C). Aim of this section is to prove that the SRS associated to the
Characteristic Problem (C) is unique. Furthermore, the SRS yields weak
entropic solutions. To this end, it will be proved that the function

t - Et (ii, u, 1JI) coincides with any solution to (C) constructed in [1]. We
consider only case (C), since the other one is entirely analogous.

All the proofs are deferred to Section 6.
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THEOREM 4.1. Assume that (1.1) generates a SRS with associated
evolution operator E: R + x 6D - Ll 

1 and that the triple (ii, ic , in

problem (C) belongs to 6D. Let u : R + be a solution to (C) construct-
ed in [1 ] as limit of wave-front tracking approximations, un . Then

As a consequence, if the SRS generated by the initial-boundary prob-
lem for (1.1) exists, then

- it yields weak entropic solutions to (C);
- it is unique, up to the domain.

In particular, the above properties are enjoied by the semigroup con-
structed in [2], for n = 2.
A key point in the proof of Theorem 4.1 is the following estimate on

piecewise constant approximate solutions. This result can be interpreted
as an analog for Conservation Laws of the Gronwall Lemma for
O.D.E.s.

PROPOSITION 4.2. Let E : R + be the evolution operator as-
sociated with a SRS generated by (C). Let v: R + H Rn be piecewise con-
stant and ~: R + -R be piecewise linear and continuous. Let

v: [0, T] H L1 (R ; R n ) be a continuous map, piecewise constant in the
( t , x)-plane, vanishing outside Q, with discontinuities occuring along
finitely many poLygonaL lines, and such that

The proof is almost identical to that of Lemma 4 in [5].
We conclude this Section with two results concerning the dependen-

cy domain of the solution provided by the SRS near the boundary. Away
from the boundary, the same results as in [5] still hold.

PROPOSITION 4.3. Assume that there exists a SRS generated by the
Characteristic Initial-Boundary Problem for (1.1). Call E the associat-
ed evolution operator. Let 1 be an upper bound for all characteristic
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speeds. Fix some and two triples p’ ==(u’,u’, qJ’) and

p" - (u" ii", qJ") in 6D.

The proof is as in [5] and relies on the construction of the solution as
a limit of the approximate solutions defined in [1], by means of a wave
front tracking technique. In fact, the equality above is satisfied by all
those approximate solutions.

REMARK. The distance defined at (2.9) may become infinite. How-
ever, by the Proposition above, the solution u(t, .) to (C) computed at
time t depends only on the restrictions of the boundary profile and of the
boundary data to [o, t]. Thus, the whole construction may well be carried
out in an arbitrary bounded time interval [0, T], making the dis-
tance (2.9) finite for any pair p’, p" in 6D*. The choice of such a T has no
influence on the construction.

PROPOSITION 4.4. Let the Characteristic Initial-Boundary Prob-
lem for ( 1.1 ) admit a SRS defined on 6D with associated evolution opera-
tor E . Let £ be an upper bound for all characteristic speeds. Fix some
g e R and two triples p’ - (u’ , ic’ , tp’) and p" - (u", ii 11, tp") in 6D.

If (resp. is Lipschitzean with constant L ’ (resp. L "), then for
all t &#x3E; 0

If the boundary data coincide it’ = it" and the boundary profiles
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W’, W" are (arbitrary) continuous functions, then for all t ~ 0

5. - Viscosity solutions.

In this section we introduce a suitable definition of viscosity solution
for (C) and (NC), which characterizes the solutions provided by the cor-
responding SRS. This will extend the results of Section 4 in [5] to the
case of problems (C) or (NC).

Let u : [0, T] x be a locally integrable function with u( t , ~ ) E
E B V for all t E [ 0, T], and fix any point ( z , ~ ) in the domain of u. In order
to give a meaning to the pointwise values of u, we shall consider the L1-
representative of u(t, -) which is right continuous.

Assume first that ~ &#x3E; W(r). As in [5], call A = DF(u(z, ~) ) the Jaco-
bian matrix of F computed at u(r, ~). For t &#x3E; r, define r ç)(t, x) as
the solution of the linear hyperbolic Cauchy Problem with constant
coefficients

Next, call the self-similar solution, centered at (i, ~), to the Riemann
Problem

Let 1 be an upper bound for all characteristic speeds. For t &#x3E; z,
define
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The function t ~--~ U u; z, ~~ (t, .) is Lipschitz continuous w.r.t. the Ll dis-
tance, and approaches u(,r, -) as t -~ z + .

Assume now that ~ = Then, similarly to above, define to be
the standard solution to the Characteristic Riemann Problem with

Boundary, see (2.7)

and for t &#x3E; r, (t, x ) E S~ define

and I is as above an upper bound for all characteristic speeds. A few
comments are in order. The functions * and 4f are defined so that the

x): t ; z , x E contains all the waves originat-
ing from the jump at (z , 

Concerning the first line in (5.4), the value of U ~; z, ~~ at some

( t * , x * ) in S~ with x * belonging to the interval [ ~( t * ), ~z ( t * ) ] can be
obtained as follows. Trace from ( t * , x * ) the vertical half-line x = x * , t ~
~ t * . The interval [ ~( t * ), is not empty, hence this half-line inter-
sects the boundary for the first time at some (i, with i  t * . Then
U~u; ~, ~~ (t * , x * ) = u(t), see Figure 3.

Note also that the map t - 1:) is continuous in L1. Moreover, if u
and u are both constant, then !7(t;~)(~ x ) = cv # ( t , x ).

In the following, Il denotes the total variation of the func-
tion u(,r, .) over the set I.

DEFINITION C.3. Let u: [0, be continuous w.r.t. the Lloc-
topology. We say that u is a viscosity solution of the Characteristic In-
itial-Boundary problem (C) if there exists a constant C &#x3E; 0 such that, at
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Figure 3.

each point (r, ~) with r  T , for all e, ê &#x3E; 0 sufficiently small one
has

The next result shows that the solutions provided by the SRS are in-
deed viscosity solutions in the sense defined above.

THEOREM 5.1. Assume that the Characteristic Initial-Boundary
Problem for (1.1) generates a SRS on the domain (JJ. Call E the
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associated evolution operator. If (ii, u , then the map
t - Et (ii, U, tp) is a viscosity solution to (C).

For the proof, see Section 6.
The following is slightly more general than the converse to the above

Theorem 5.1.

THEOREM 5.2. Assume that the Characteristic Initial-Boundary
Problem for (1.1) generates a SRS. Call E the associated evolution oper-
ator. Let u : [ 0 , T] H L1 be continuous with u( o ) = u and

(u(t), ‘~t 1/1) Ei 6) for t E [ 0, T]. Assume that for all but countably
many times r E [ 0 , T], there exist two positive Radon measures !i7: and
It 7: on R such that

for all e, E &#x3E; 0 sufficiently small. Then, for all t in [ 0 , T ]

The proof of this Theorem is entirely similar to the proof of Theo-
rem 4 in [5]. Observe that Theorem 5.2 can be used, in particular, with
!1 r: = TV measure of u(r, .), = TV measure of u (independent of r).

All the previous results remain valid in the Non Characteristic In-
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itial-Boundary value problem, with only a few minor modifications. If cv #
is the solution to

then define

in place of (5.3). The statements and proofs of the analogous to Theo-
rems 5.1 and 5.2 in the Non Characteristic case are entirely similar.

6. - Technical proofs.

We begin by showing that the function introduced at (2.7) is indeed a
solution of the Characteristic Riemann Problem with Boundary (2.4), in
the sense of Definition C.1.

We briefly recall the construction of piecewise 1 ~
to the Riemann Problem (2.6), according to [1]. Given a state U ERn, let

denote the i-th shock-rarefaction curve through u,
parametrized by means of the arc-length Q. Given two nearby states u
and it as in (2.6), introduce the intermediate values w,, defined

inductively by

If Q i &#x3E; 0 and the i-th characteristic field is genuinely non linear, let

otherwise, set
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Define

Observe that

The following Proposition states a sufficient condition for a sequence
of approximate solutions to converge to the solution provided by the
SRS.

PROPOSITION 6.1. Let E : l~ + x 6D - Ll be the evolution operator as-
sociated to a SRS for the Characteristic Initial-Boundary Problem for
(1.1). For v E N, let uv : R+ - R be piecewise constant, R+ - R be

piecewise linear and continuous. Let T ] H L1 (R ; R n ) be contin-
uous, piecewise constant in the (t, x)-plane with discontinuities occur-
ing along finitely many polygonal lines. Assume that

(b) The instantaneous rate of error is uniformly bounded w.r.t. v
and tends to zero as v - + 00, for a. e. t :

(c) There exist functions u : [ 0 , R n ), ic : [ 0 , T] -R n
and [ 0 , T] ~ R such that for all t E [ 0 , T] (u( t , ~ ), ‘~t u , ‘~t tp) (=- 6D
and

Then, for all t E [ 0 , T]
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PROOF. The continuity of the semigroup implies that

thus, by (c) and the triangle inequality, it is sufficient to prove that

By Proposition 4.2 one has

The assumption (b) ensures that the last r.h.s. above tends to zero as
v -~ + ~ , concluding the proof.

PROOF OF THEOREM 4.1. It is enough to prove that the sequence of
approximate solutions defined in [1] satisfy the assumptions (a), ( b ) and
( c ) of Proposition 6.1.

By the definition of the approximate boundary condition, boundary
profile and by the bounds (4.2) in [ 1 ] on the total variation of the approxi-
mate solution, (a) and ( c ) hold. Concerning ( b ), we refer to the construc-
tion in Section 3 of [ 1 ].

Fix T &#x3E; 0. For v in N, choose t in [ o, T] so that at t no wave-front in
the approximate solution uv ( t , ~ ) interacts with the (approximate) bound-
ary, the approximate boundary condition iv is locally constant and the
approximate boundary profile Vf v is locally linear. The analysis in [1] en-
sures that the above choice excludes at most a finite number of times on

any bounded time interval.
Let a = 1, ... , N be locations of the discontinuities in 

corresponding to wave-fronts with generation order (see [1] Section 3)
less or equal to v ; denote with E a the corresponding size.

Call ~6 = 1, ... , N’, the (locations of the) non-physical waves
with speed I.

Let S be the set of indexes a such that and uv (t, Xa + ) are
connected by a shock or by a contact discontinuity. Denote by wa and re-
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spectively by w ~ the Lax (exact) solution to the Riemann problems

respectively. Call 1l1 the set of indexes a corresponding to rarefaction
waves of a genuinely nonlinear family.

Recalling Remark 4.1 in [1], the jumps at xa for a E s satisfy the
Rankine-Hugoniot conditions, while the jumps at Xa for a e lll approxi-
mate them with an error that vanishes for v - + 00, and the maximum
size of a rarefaction wave in uv tends to zero as v - + oo. On the other

hand, the total amplitude of the jumps at tends to zero as v ~ + 00,
~.e.

By property (3) in the definition of S, Lemma 3 in [5] and the above (6.4),
one has
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for g &#x3E; 0 suitably small and for some positive C, independent from v.
Since the last term is uniformly bounded w.r.t. v and approaches zero as
v ~ 00, the proof is completed. 8

PROOF OF PROPOSITION 4.4. Fix t ~ 0 and define

Note that p’, p" both belong to (D. Moreover, by Proposition 6.3 and by
the above definition of p’, p"

To conclude the proof of (4.2), it is now sufficient to use (6.5) and the Lip-
schitz type estimate (2.8). The proof of (4.3) is entirely similar.

Before passing to the proofs relative to Section 5, we remark the fol-
lowing useful consequences of the Lipschitzean property (2.8). Assume
that only one of the boundary profiles is Lipschitzean, say W’, with Lips-
chitz constant L’. Combining (2.8) and the triangle inequality

A further consequence of (2.8) is the following. Given a continuous

boundary profile IF, consider two triples p’ - ( u ’ , u ’ , and p" =
= (u ", ic" , W). If 0: R + -R is a function with Lipschitz constant L,,,
then
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PROOF OF THEOREM 5.1. Fix T &#x3E; 0. It will be proved that

t H Et (u, u, W) is a viscosity solution on [ o , T]. Note first that the conti-
nuity requirement in definition C.3 is clearly satisfied, due to (2.8).
Choose now a point (r, ~) in ,5~, with r  T.

If ~ &#x3E; ~(z), then the same proof as in [5] still holds.
Assume that fJI( í). If (u, u, is the triple of the initial data,

boundary data and boundary profile in (C), call p u, and u(t, .
.) u, Since u, T and ~ are kept fixed, to simplify the notation we
let U tp U(±.; and 

First f°1x e &#x3E; 0 and () &#x3E; 0 with r + o  T .

Moreover, choose an arbitrary ~’ &#x3E; 0 and a continuous function
~ : [0, T ] - R , piecewise linear on [r, T ], with Lipschitz constant Lcp on
[r, T], such that

Moreover, define ut as but replacing Y in (5.3) and (5.4) with W .
Then

By (6.6) applied to the time interval [r, T], the first summand in the
r.h.s. above is bounded by c~ ( 1 ) ~ ~ ’ . Moreover, by construction, U # is a
continuous function in L1 of the boundary profile in CP. Thus, using the
dominated convergence theorem, the third summand is o( I ) as 
(i.e. it tends to 0 as E’ tends to 0).
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Concerning the second term in (6.14), one has

The first term above is bounded by c~( 1 ) ~ E’, due to (6.8). For the second
term, we will prove below that

where lim o( 1 ) = 0 .

Indeed, introduce a triple q = (v , v , b1;" Ø) in (D such that

(i) v and v are piecewise constant,

and define q(t) = Let (9(t, -) be the solution to the Characteristic
Riemann Problem
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Finally, for t &#x3E; r and (t, x ) E Sz, define

Then

Consider the three summands above separately. (6.13) can be estimated
using (2.8) on [z, T]:

Passing to (6.14), by (4.1) it follows that
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Rewrite the last integrand as

Call x,  ...  xN the location of the jumps in v and 0 ~ z 1  ...  í M the
location of the jumps in v. Then, using Lemma 3 in [5]

An entirely similar argument allows us to obtain

where the sum in (6.20) is extended to all a such that, denoting
ta = r + ra 
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Inserting (6.19) and (6.21) in (6.18) and then in (6.17), the summand
(6.14) is bounded by

Consider now (6.15):

because the two functions v(r + e, .) and U # coincide on the interval
[ ~( z + E ), ~( i + ~ ) ], due to the definitions (6.12) of v and (5.4) of 

If 0(,r + E) = + E), the r.h.s. at (6.23) is zero. If, on the other
hand, 0(,r + E ) &#x3E; 0(-r + e), then 4(r + E ) ~ - ~, . Denote with t the maxi-
mum between r and the last time before r + ë, at which 0 changes slope
from positive to negative, i.e.

where Then
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Concerning (6.24)

Summing up (6.16), (6.22), (6.25) and (6.26), the proof is complet-
ed.
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