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REND. SEM. MAT. UN1v. PADOVA, Vol. 99 (1998)

Asymptotics of Solutions to Stokes
and Navier-Stokes Equations
in Domains with Paraboloidal Outlets to Infinity.

S. A. NazArov (*) - K. PILECKAS (**)

ABSTRACT - The stationary Stokes and Navier-Stokes equations of a viscous in-
compressible fluid with additional flux conditions are considered in domains
2 with m = 1 outlets to infinity, which have in some coordinate systems the
following form

Qi ={w: |2"| <gowz "7, %, >0, 7€(0, 1)}.

The complete asymptotic decomposition is constructed for the solution of the
Stokes problem in the case when the right-hand side has either a compact
support or a special series representation. For the solution of the nonlinear
Navier-Stokes problem the asymptotic decomposition is constructed in the
case of zero right-hand side. The obtained asymptotic decompositions are jus-
tified in weighted Holder spaces.

1. - Introduction.

The solvability of the boundary and initial-boundary value prob-
lems for Stokes and Navier-Stokes equations have been studied in
many papers and monographs (e.g. [8], [31], [3]). The existence theory
which is developed there concerns mainly the domains with compact
boundaries (bounded or exterior). However, many physically important
problems are related to domains with noncompact boundaries (for
example, the fluid flow in channels and pipes). Therefore, it is not
suprising that during the last 17 years the special attention was given

(*) Indirizzo dell’A.: State Maritime Academy, Kosaya Liniya 15-A, 199026
St.-Petersburg, Russia.
(**) Indirizzo dell’A.: Universitit GH Paderborn, Fachbereich Mathematik-
Informatik, Warburger Str. 100, 33098 Paderborn, Germany.
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to problems in such domains (e.g. [1], [2], [4], [9]-[11], [5], [22], [26], [27]-
[30], etc.).

On the other hand, during the last three decades there was devel-
oped the theory of linear elliptic boundary value problems in domains
having singular points on the boundary (e.g. [7], [12], [13], [21] and the
references cited there). The asymptotics of the solutions to elliptic
problems is most well studied in domains with conical points or, equiva-
lently, in domains with cylindrical and conical outlets to infinity ([21],
[7], [18]). In this paper we study the asymptotics of the solutions to the
steady Stokes and Navier-Stokes problems in domains with
paraboloidal outlets to infinity, having in some system of coordinates
the form

(1.1) Qi={xeR": |x’|<gox,{"’,wn>1}, 0<y<l.

Notice that papaboloidal outlets to infinity are an intermediate case be-
tween cylindrical (y = 1) and conical (y = 0) outlets (e.g. Remark 2.4).

General elliptic boundary value problems in domains with singulari-
ty points were investigated in [12], [14], where the coercive estimates
and asymptotics of solutions (in the case of exponentially vanishing
right-hand sides) were obtained. In [15] the results from [12], [14] were
applied to the Dirichlet problem for a scalar elliptic operator of the sec-
ond order near the peak type point of the boundary. The abstract form
of the asymptotic formulas in [14] looks very consistent. However, their
realization for the Stokes system led to cumbersome calculations which
the authors did not succeed to overcome. That is why we have chosen a
different approach related to the asymptotic analysis of elliptic prob-
lems in slender domains.

Here we consider the Stokes

—vAu +Vp=? in Q,
(1.2) diva =0 in Q,

—

% =0 on 092
and Navier-Stokes
~vA%+@V) % +Vp=f inQ,

(1.3) div e =0 in Q,
=0 on 0Q
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problems in the domain Q c R"*, » = 2, 3, with m = 1 outlets to infinity
Q; which have in certain coordinate systems the form (1.1) and we look
for the solutions satisfying the additional flux conditions

(14) Jﬁ'?&d&‘:ﬂ, i=17~"’m, .ZFi:()’

o; ()
where
0;(t)={xeQ: x,=t=const}.

In order to obtain the solvability of the Stokes problem (1.2), (1.4) and
the coercitive estimates for the solutions with zero fluxes (F; =0) in
weighted Sobolev and Hélder spaces, we first derive the estimates of
the Dirichlet integral over the subdomains of Q, by using the differen-
tial inequalities techniques (so called «techniques of the Saint-Venant’s
principle») developed by O. A. Ladyzhenskaya and V. A. Solonnikov
[11], [29] and then we improve the «weighted reguliarity» of the sol-
utions, applying the method proposed by V. G. Maz'ya, B. A.
Plamenevskii [12]. To find the solutions with nonzero fluxes F;, we look
for the velocity field % in the form

(1.5) B=A+7T,

where 4 is a solenoidal vector function, satisfying the flux conditions
(1.4) and the estimates

(16) Dz A@)| < C(| F Dgi(w) 11l

— m -
where | F |2 = 2 F7 Then for (v, p) we get the Stokes problem (1.2),
=1
(1.4) with zero fluxes (F; =0, i =1, ..., m) and the new right-hand side

? +v4a Z The mentioned results are obtained in [23], [24] for two and
three-dimensional domains €, having the outlets to infinity of the form

a.n Q;={xeR": |z'| <g;(x,),x,>1},

where |z’ | = |2, | if n =2, |2’ | =Vl + xf if n =3, and g;(t) are
functions satisfying the conditions

1.8 g —g:@)| <M |t—t¢t"|, Vtt'>0; gi(t)=g,>0,

1.9) tlim gi®) =0, lgi | <sM;, i=1,..,m.
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The nonlinear Navier-Stokes problem (1.3), (1.4) in domains having
outlets to infinity of the form (1.7) was studied in [25]. For three-dimen-
sional domains Q it is proved in [25] under the additional assumptions
on g;

(1.10) jgi(t)-4f3dt= o, i=1,..,m,
0

111) gl gtV | <6kl for t>ky, i=1,...,m,

that the weak solution of (1.3), (1.4) with the unbounded Dirichlet inte-
gral is regular and has the same decay properties as the solution of the
linear Stokes problem (1.2), (1.4). This result is proved for arbitrary
large data and is based on estimates of the Saint-Venant’s type ob-
tained for the weak solution of (1.3), (1.4) by O. A. Ladyzhenskaya, V.
A. Solonnikov [11] and on bootstrap arguments, which use the results
for the linear Stokes problem (1.2), (1.4). If the conditions (1.10), (1.11)
are violated and in the two-dimensional case, the analogous results
were proved in [25] for sufficiently small data by means of the Banach
contraction principle. Notice that the decay estimates obtained in [23],
[24], [25] have the same character as that for the divergence free vector

field A (see (1.6)). This is related to the decomposition of the velocity %
in the form (1.5). Since A is arbitrary, the right-hand side f +v4A is

decaying at infinity not sufficiently fast, even if f has a compact sup-
port. Therefore, one can not expect the improved decay rate for the
perturbation v.

In this paper for the domains £, having the outlets to infinity of the
form (1.1), ie. g;(t) = got! ~?, we construct the formal asymptotics of
the solutions and we prove the better decay estimates for the remain-
der. For example, in the three-dimensional case the obtained asymptot-
ical solution for the Stokes problem with zero right-hand side has the
form

N
( PWi(x) = afo 3 x5 2 (qf¥ + a5 2 Qp(w] "'2')),

N
112) { UiM(x) = xgl"‘y”kgox;z(’” DUy (@] '),

N
N - - -1 .
[]j[ ](x)=x§0 3y+1k20x3 (2k+1)ylfj,k(x37 CL"), ]=1’2,

\
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where g{? are constants and A, = 4y — 3, y = 8/4. If y = 8/4, the repre-
sentation for the pressure P contains the logarithmic term. Esti-
mates for the discrepancies which are left by this approximate solution

(U™, PIN1y in the Stokes equations improve when we increase N and,
therefore, we get the «good» decay estimates for the remainder
@ =4 - U™, g=p-PW)

The procedure which we use to construct the formal asymptotics is a
variant of well known algorithm of constructing the asymptotics for
solutions to elliptic equations in slender domains (e.g. S. A. Nazarov
[17], S. N. Leora, S. A. Nazarov, A. V. Proskura [18], V. G. Maz’ja, S. A.
Nazarov, B. A. Plamenevskii (Ch. 15-16) [16] for arbitrary elliptic prob-
lems and S. A. Nazarov [19], S. A. Nazarov, K. Pileckas [20] for the
Stokes and Navier-Stokes equations). In order to explain the anology
between the paraboloids and the slender domains, let us consider the
intersection of 2, with the sphere S2 of radius R. After the change of
variables & — R ~'x = £ the sphere S goes over to the unit sphere S?
and the intersection 2; N S turns out to become a domain with small,
of order O(R ~7), diameter. This property turns us to introduce the
«transversal stretched coordinates»

77j=90§'_190j, Jj=12, N3 = %3

while the image of the domain £; N S2 is independent of R. After this,
applying formally the methods from the theory of elliptic equations in
slender domains, we derive for the pressure p the one dimensional
Reynolds equation (see S. A. Nazarov, K. Pileckas [20]), which follows
as a compatibility condition for the solvability of the two-dimensional
Stokes problem (in the domain w = {5’ e R®: |n'| < g,}) for the vel-
ocity field .

The paper is organized as follows. In Section 2 we present the for-
mal procedure of constructing the main terms of asymptotics for the
solution of the Stokes problem with zero right-hand side f. In Section 3
we construct the higher terms of asymptotics. In order to construct
them, we need to compensate discrepancies appearing in the equations.
To this end, we consider the Stokes equations with the right-hand sides
having the special form. The section is divided in eight subsections re-
lated to different cases of discrepancies, which can appear in the right-
hand side. In Section 4 the obtained results are applied to construct the
complete asymptotics in concrete situations. Namely, for the Stokes
problem with the right-hand side, having compact support (Subsection
4.1), for the Stokes problem with the right-hand side having the special
series representation (Subsection 4.2) and for the Navier-Stokes prob-
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lem, having zero right-hand side (Subsection 4.3). Finally, in Section 5
we justify the obtained asymptotic decompositions for the Stokes (Sub-
section 5.2) and Navier-Stokes (Subsection 5.3) problems, i.e. we prove
the appropriate estimates for the remainder

;=ﬁ—U[N], qu_P[N]

in weighted Holder spaces. To do this we apply to

T=u-UM, g=p-— PV,
the results obtained in [23], [24], [25]. For the reader convenience we
formulate these results in Subsection 5.1.

Notice, that the results obtained for the Navier-Stokes problem
with zero rihgt-hand side can be generalized, with evident changes, to
the case when the right-hand side has series representation. Moreover,
just in the same way one can construct the asymptotics of the solutions
to the Stokes and Navier-Stokes problems near the singular point of
the boundary of the peak type (1) in the case when the right-hand side
has series representation. Finally, we mention that all results remain
valid also in the case of non-circular cross-sections of the outlets to in-
finity Q;, i.e. when Q;={xeR": 2} "'z’ S, 2, > 0}, where S is an
arbitrary bounded domain in R™ ~!. Moreover, all the formal calcula-
tions needed for the above mentioned generalizations were presented
in [20].

2. - The main asymptotic term; formal considerations

2.1. Special coordinates. In this section we construct an «approxi-
mate solution at infinity» to problem (1.2), (1.4). Let us consider the ho-

mogeneous problem (1.2), (1.4) (i.e. f =0) in the outlet to infinity
@) Q;={reR": |o'| <gowl 7, x,>1}, 0<y<1.
We pass in (1.2) to new coordinates
2.2) =) ey, j=1,.,mn-1, n,=x,
() Le. if 0 € 92 and in the neighbourhood of 0 the domain £ can be rep-

resented in the form {x: |z'| < g(x,), x, e (0, 8)} with lim g(x,) =0 and
lim g’ (x,)=0. “n—0

2y, —0
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and, by using the evident relations

[ 0 y-1_0 P -2 F 1
S =Nxr YR ~ o — lln ) - 9---””—1,
ox; 7 on; ox? 7 n? J
3 _ 8 Ny 18
o, I, ,21(1 VM Gy
2.3) ﬁ

3 e ISk e
— = — +2(y -, ; +(y - 1)y —2) X
oxZ  ond (y=1m j; g o1, 9n; (v =Dy —2)

x p =2 o 4 —1)2p-2 g
M 2475 31, le(y Y. min; P

\

rewrite (1.2) in the following form:

(2.4), (¥ 24"+ @) u' + 9L V' p=0in I, ,
(2.4), —v(p% 24" + ®®)u,+ ®p =0 in IT, ,
(2.4)5 n, " ldiv'u' + @u, =0 in IT, ,

2.4), “=0onS§,.

In (2.4) we have used the notations
@=0,+(y—Dny'n"V,
I, ={neR": |n'| <go,n.>1},
S, ={neR": |9'| <go,n.>1},
U=y, oy Un—1), 0, =09, k=1,..,mn,
V' =08, ., 0-1), diva'=V-u, 4'=V-V.

2.2. Structure of the asymptotics. We look for the solution (ﬁo, Py)
of (2.4) in the form

25 Py(n',my) =qo(n,) + Qo(n', 1,),
' U’ na) = Us(", 1)y Un o' 1)),
with

(2.6) Uno(m', my) =021 "7 38,q0(n,) D(n').
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Let us assume that the infinitesimals #%£0%*1qy(#,), k=1, 2, ..., are
equivalent (as 7, — ) to 9,9 (n,) (this assumption will be justified
below). Substituting (U,, Py) into equations (2.4) and selecting the
leading at infinity terms, we derive

*Van%(’ln)A'¢(77')+3nqo=0 in w,
d(n')=0 on dw

and
—2 A T () + 1L V' Qe ) =0 in o,
7y~ ldiv' Uy(n') = —®@U, o(n",1,) in w,
ﬁé(ﬂ')=0 on dw

or, what is the same,

v4'd(n')=1 in w,
@.7) ,
d(n')=0 on dw,
A" Ty )+ V' (L 7Qo (') =0 in w,
@2.8) div' Uy(n') = Go(n', 1) in w,

Up(n') =0 on dw,
where o ={n'eR"" % |5'| <go},
2.9) Go(n', 1) = —nh " (0217 8,00 (,) D(n")).
Multiplying (2.7) by @(n') and integrating by parts one gets
I(D(n’)dr]’ = —vj |V'®|2dp' =Kk, <0.

The solution &(x') to (2.7) has the form

ry — 1 r12 _ 2
D(n )———Zv(n_l)(ln I* = 90)

and it is easy to compute

1 1
(2.10) K0=—§gé for n =8 and K0=—3—vg§ for n=2.
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The problem (2.8) has a solution (ﬁ(,, nl-7Q,) if and only if the
right-hand side G, satisfies the compatibility condition

2.11) jGOdn' =0.

From (2.11), taking into account (2.9), (2.10), we get

—nh‘yé‘n(ni“"”an%(nn))J<D(n’)d77' -

—(y - l)nf’z‘l‘”‘laan(nn)Jn"V’<Pdf7' =0.
Since

Jn"V’fﬁ(n’)dn’ =—(n-— l)fd>(n’)dr7’ = —(n - Dk,

w

the last relation yields
212) =7y 73, (3 "V 3,q0(n,)) +

+ (’ﬂ - 1)('}’ - l)ﬂi(l_y)_lanqo(nn) =0.
Thus, the function ¢, (7, ) is not arbitrary; it satisfies the second order

ordinary differential equation (2.12). Multiplying (2.12) by 5 =21 =7,
we rewrite it in the form

(2.13) =3, (P17 3,q0(n,)) = 0.
Solving (2.13), we find

@18) gpiny= [P sy = DT
' v pilnm, +us, y=mnn+1)""

Now, because of (2.14), (2.6)

(2-15) Un,O(ﬂ,ﬁ nn) =

— -1
_—_777:(7&—1)(1—}/)45(77/) /"l(n+1)(y 1)+17 V¢n(n+1) ’
M1, y=n(n+1)"1,
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and the function G, takes the form
@16)  Go(n',ma) = —pana @207V 71X (", V)D(p') X

« m+D)y-1+1, yznnr+1)71,
1, y=n(n+1)71,

where the operator Y(', V') is given by
2.17) X' ,V)=m -y -1 +(y-1n'V.

Comparing the power exponents of 7, in (2.16), (2.8), we conclude that
the functions Uy(n', n,,) and Q,(n', n,,) can be taken in the form

_>/ ’ — —(n—2)(1—y)—1—+r ’
(2.18) UO(” ’ ”n) Nn UO(” )’
Q(n', 1) =7, """ 1Qy(n")

and we rewrite (2.8) as follows

-vA'56+V’QO=O in w,

(2.19) div' U) = G, inw,
Uy =0 on dw,
where

220) Go(n') =

m+1)(y-1+1, yznn+1)1,

_ — Y !,VI ¢ ’
w1 X(n ) D(n ){1’ y =n(n+1)71.

It is a well-known fact that in a bounded domain @ with the smooth
boundary dw solutions of the Poisson equation (2.7) and of the Stokes
system (2.19) are infinitely differentiable up to the boundary and obey
the estimates

@21 |dFd(n")|<C, j=1,..,m-1, k=0,1, ...,

@22) [8¥Us(n")| + |8¥Qo(n)| < Cilu1 |
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Therefore, we obtain (see (2.15), (2.18))

( 'a]lpaitUn,O(”,7 77n)| scl-:,ll:ul l”;(n—l)(1~y)~l,
k1=0,1, ...,
©223) 18¥3L Uy (', ma)| < €yl [y @20V~ 170
k,1=0,1,...,
10¥0LQ (", mu)| < ¢y lpy [y @ H DAV 1Y
| k=0,..,1=1,...

Moreover, the simple computations using (2.10), imply

@24)  [Unoln', n)dn’ =

(m+1)(y -1+ 1)y, @ DAV »=ztpn+1)7,
= U1Ky

7y 0 Dm DT y=mn(n+1)"1.
2.3. Estimates of the dicrepances. Let us define

— _ = 'y -1
(225) uO (a/‘) UO (m xn y xn) )

Po(@) = Po(x'w} ™1, w3) = qo(x,) + Qo(x' @) ™1, @)
By the construction

div o) =0 in Q;,  ue(x) =0 on 3R;\o;(0)
and

m+(y-1)+1, y=nn+1)1

Uo'm dx' = u K
aJ ’ o 0{1, y=n(n+1)"1
Thus, taking

Fi(n+1)(y-1)+1)"1k!, y#=nn+1)7",

(2.26) =
o {FiK(;li V=n(n+1)—1,

we have

@27 j %o 7 do' =F;.
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Furthermore, direct computations using (2.?12, 24), (2.14), (2.15), (2.18),
(2.23) and the condition ¥ > 0, show that %'®, p® satisfy the Stokes
system

_VA?_'ZO-*—VpO:I_{)O in 92’,
(2.28) div %o =0 in Q,,
Up=0 on 32;\0;(0),

with the right-hand side FIO, subject to the estimates

(2.29) IDij,o(xﬂ <c|F; Iwn—(n+1+ laD1 =) - B +awy
j=1...,n-1,

(2.30) |D§‘Hn,0(w)| < ClFi lxn_("+ 1+ a1 —y)—(2+an)r,

where a = (ay, ..., a,), |a|=a;+ ... +a,. The functions uy, po
themselves obey the inequalities

(231) |DEui(x)| <c|F;|a, @ 1H1abd=-N-v |q| 20,
(232)  |DEuy o(x)| <c|F;|x, ®-1t1eD=n_"" q| =0,
(233) |D%py(x)| S c|F;|a, mH1ePA=V o] =21,

|Fy o, ®+DA=D+1 4oy = n(n+1)71,

n

(2.34) ()| <c
7o @] {IFillnxn+clv y=n(n+1)71.

REMARK 2.1. Inequality (2.32) coincides with (1.6), where we take
9:(,) = goxl =7, while (2.31) states better decay at infinity for the com-

ponents u; o(x), j=1,...,n — 1, of the velocity field u; we have in
(2.31) an additional vanishing factor x, *. The discrepancy Hy also has

at infinity better decay as A A. We have in (2.29) an additional vanish-
ing factor x,; 7@+ and in (2.30) we have the factor x, Y%+ ). This is
the case, since we have already compenseted the principal at infinity
terms in equations (1.2).

REMARK 2.2. Egquation (2.13) describing q, is similar to the
Reynolds equation, which is well known in the theory of lubrication
(see the lists of referemces in [19], [20]).
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REMARK 2.3. In [26] it was shown that divergence free vector fields
with the finite Dirichlet integral may have the nonzero fluxes over the
sections a; of the outlet to infinity Q;, having the form (1.7), if and only
if there holds the condition

jgi(t)‘("‘l’dt< ©

In the case g;(t) = got' ™7 this yields

It‘("“)(“”dt < .

©

One has

jt—<"+1><1‘>’)dt= ©, ify<nn+1)’!

©

and

J't—(n+1)(1—y)dt<oo’ zfy>n(n+1)“l-

In the limit case y = n(n + 1)~ the logarithmic term appears in the
asymptotic representation for the pressure function P.

REMARK 24. The formulas (2.14), (2.15), (2.18) together with (2.26),
(2.27) declare the continuous dependence on y of the power exponent of
&, =1, in the formal asymptotic representation (u¥, p¥) of the sol-

ution (u, p) with the prescribed flux F # 0. For example, at n = 3 we
have

235) pf(x)=0@"3), |uf@)| =02 asx,—>»

(if y = 3/4, then x3? ~3 in (2.35) is replaced by Inzx,). The relations
(2.35) remain valid also for cylindrical (y = 1) outlels to infinity
(Poiseuille flow) and for conical (y = 0) ones (). Notice that p¥ is a
bounded function only under the condition y < 3/4, and at y = 1/2 the
decays of p¥ and |u"| are of the same order, while p*(x)=
=o(| uF@)|) for y<1/2 and |u"(@)| = o () for y>1/2 as

X, —> ©,

(®) In the case y = 0 the relations (2.35) are proved by a different argumenta-
tion.
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3. — The higher order terms; formal procedure

3.1. Structure of gemeral discrepancy term. In order to construct
the complete asymptotics series, we need to learn how to compensate
each of the discrepancy terms and to show that a new discrepancy, ap-
pearing after compensation, has the similar form with a smaller expo-
nent of n,. To this end, we consider the equations (2.4) with the right-
hand sides, having the special form

Bly, - vy tA + @)U + L IV P=gA-1rF (") in 1T, ,
Blp — v 24"+ @)U, + @P =2 -1F,(3") in I, ,
Gls 7. Ydw'U +@U,=0 in I, ,

81, U=0 onS§,,

where _:T’”, &, are arbitrary functions. We will satisfy the equations
(3.1) in main, if we put

P(p',my)=qny + 17 "7 Q(n'), g, = const,
(32) Ut n) =m0 ('),
Un(n'yma) =031 "2 Uy (n')
where U,(n') is represented as a sum
(3.3) U,(n')=q:AD(n') + UP ("),

®(n') is the solution of the problem (2.7) and U.® satisfies the
equations

—vA4'U® =g, ino,
34)
U® =0 on Jdw

and (ﬁ’ , @) is the solution to

—vA'U +V'Q=9 ino,
(3.5) div U’ = -D(A)U, i w,

-

U=0 on dw,
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where
DAY=A+1-2y+(y-1)gy'-V'.

The solvability condition for the problem (3.4)

jD(A)UM')dn' =0

gives us the constant q,:

86) Axol(A+1—-2y)+(1—p)n -1y = — jD(A)U,‘,‘”(n')dn'.

Thus, if
3.7 A=#0, and A=(y—-1)n—-1)—-1+2y,

the constant ¢, is uniquely determined from (3.6).
The discrepances I_i "', m.), H,(n', n,) left by functions (3.2) in

the equations (3. 1); and (8. 1); can be written in the form
H (', 1) =v@2i U (")) =
= 0" D(A —y = DDA - T (') =
38) | =Y F ('),
Hy(n', ny) =v@ gy V1 "2 Uy (') — @7 =2 Q") =
=" 1D - D)D) U, (') = DA - 1) Q(n")) =
- ”S’LA_ZY)_I‘%’;L("I)‘

\

It is easy to see that the new right-hand sides have the same form as it
was in (3.1) with the only difference that the decay exponent A is
changed to A = A — 2y. Therefore, this process can be extended and we

can look for the approximate solution (ﬁ, P) to problem (3.1) in the form
of series in powers of 7,:

P(n',nn)~12mni(qz+n;27Qz(n')), q; = const. ,
@9 U@ )~ 3 ni T,

U.,(n', m,) ~l§3mni“‘2’Un,a(n'),
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where I is certain set of indeces. From the above considerations it fol-
lows that

(3.10) AedM=>4—2ye .
3.2. The first exceptional case. Let us suppose that
3.11) A=0, Az -1Dn-1)-1+2y.

Then we look for the solution (f], P) in the form

—

P(n',n,)=qxInn, +1,2Q(n'"),
3.12) .
U ) =m0 @), U,(n',n,)=n5"2U,(n").

For U,(n') =g ®(n')+ UL (') and (U (n'), Q(n')) we get the
same equations (3.4), (3.5); the relation (3.6) for ¢, is changed into

Ko[(1=2y) + (1 =y)n = 1D]gs = — JD(O) U (n')dn'

and for the discrepances H ', n.), H,(n', n,) we have the formulas
3.8) at 4 =0.
3.3. The second exceptional case. Let

(3.13) A=y -Dn-1)-1+2y, A#0.

We take

P(n',n,) = qenilng, + 7, 2 Q(n', Iny,),

(3.14) U n,)=ni =30 (', Iny,),
U,(n'ym.) =02 "2 U, (', Ing,),

where

Q(n',Inn,)=QP(n" )ny, +QVx"),
(3.15) U (', Ing,) =UD@")ng, + U0,
U,(n',Inn,) =qs(1+ Alny,)d(n')+ UL (1").

Substituting the function (3.15) into equations (3.1) and collecting the
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coefficients of the same powers on n% and 5% Inzy,, we find that

U (n') is subject to the equation (3.4); (U'®(n'), @®(n')) and
U'Y(y"), QY (n')) are solutions to

—A' U0 + vV QY= F in w,
(316) { div' U= ¢, D(A) @~ AD(2y) @ DM UL  in o,

U®=9 on dw,

and
—vA'ﬁ'(1)+V’Q(1)=0 in w,
(8.16), div' U’V = —q, AD(N)® in ,
U= on Jw.
The solvability condition for the problem (3.16), gives

@17 Kol(A+1—2y) + (1 —y)n - Dlgy +
+AKo[1+ (1= p)n = D]gy = — jD(A)US”(n')dn'.

Because of (3.13) the first term on the left of (3.17) vanishes. Moreover,
from (3.13) it follows that y = n(n + 1)~ Therefore, 1+ (y — 1) X
X(n—1)# 0 and q, can be determined from the equation

B.18) Axg[l1+ (A —-y)n—1Dlge= — ID(A)U}LO)(n')dn'.

The solvability condition for problem (3.16); has the form

Akp[(A+1=2y)+ (1 =y)n—1)]lgs =0

and it is valid automatically because of (3.13).
The discrepances H (n',n.), H, (', n,) left by functions (3.14) in the
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equations (3.1); and (3.1); can be written in the form

3.19) H (' m) =007 GFO0") + 7O ),
H,(n',n,) =0{"2"U(FP (") + FLP (" )Ing,).

3.3. The third exceptional case. It can happen that 4 meet both con-
ditions (3.11), (3.13):

820) A=(y-1Dn-1)-14+2y=0, ie y=nn+1)"1.
In this case we take

P(p',n,) =
= ¢x(nn, + (nn,)*) + 7, 2@QP (" )Inn, + QV(n")),
321) { .

U (', n.) =3k~ (TD@ )Y Ing, + UO@")),
Us(n',m0) = queny 721+ 2Inn,) D) + 952 UP (n').

Repeating the above considerations, one can find the boundary value
problems of type (3.16) to determine the coefficiens U,

(U'®, Q®(5')) and (T, Q¥ (")). The solvability condition for the
problem corresponding to (U'®, Q@ (")) will give the constant qx
and the solvability condition for (U™, QW (y")) is valid automatically.

The discrepances H (n',n.),H,(n',n,) have the same form
(3.19).

3.5. The right-hand sides, conlaining the logarithmic terms; case
3.7. From (3.19) we can see that the new right-hand sides

H (n',n,), H,(n',n,) may contain the logarithmic terms. If we re-
peat the iterative procedure, the logarithmic terms will be iterated, i.e.
there will appear the powers of In#, . Therefore, it is necessary to con-
sider the right-hand sides which have the form

- k — .
.f}”(n’,nn)=771,‘“‘7205"”(17’)(ln17n)’,
(3.22) . =
&;(77’,nn)=nﬁ”‘,Zocgr“ﬁzf)(n')(lnnn)j.
i
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If A is subject to (3.7), the solution can be found as

r

k . . k ) )
P(n', n.) =13 ,quf.!’(lnnn)f + 77 ‘2yj20Q(”(77')(lnnn)’,
j= =
g = const,
— k -
UI ry n) = A+1-3y Ul(j) ' 1 " j,
@23 U @m) =gyt 2 U0 ng,)

k .
U,(n', ny) = nﬁ“‘zw(ﬂ’)zoaj(lnnn)’ +
i<

k
+nn ”‘2720 U (" )nn, ).

\

Collecting the coefficiens at the same powers of 7%4(ln7y,)’, we
derive

B24) a;=qPA+G+1ed"Y, j=0,..,k-1, a=¢P 4,

(3.25) —vA'UP =FYP inw,
. U =0 on dw,
j=0,..., k
—vA' TP + V' QW = F'D
o Ta 7 inw,
a2, |4V U= -4DA)® ~ ;D +2y) @ -
26); . . |
~ D)UY —D(j +2p) UG+ n o,
ﬁr(j)___o on aa)’
i=0,...,k—1,
_vdlﬁ’(k)+vrQ(k)='§4(k) in 0,
(3.26),, div' '™ = -4, D) -DNUP in o,
o =0 on dw.

From the solvability conditions for problems (3.26);, j =0, ...k, we find
the constants q{’. Together with (3.24) this gives the linear system of
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algebraic equations

(A[A+1-29)+ (1 —y)n—1D]q¥ +
+([A+1=-2p)+ A —p)n—-DIG+1)+
+G+1+ (- Dn-1)))gd* P+

+(+2)AG+1+(1 - -1)q¥*t?=
620 | (J+2)A4( (1-y)n—1)gq

= ~xi' [ D UY + DG +29) UY* V) dn’,
j=0,.., k-1,
A[A+1=2p) + (y = D(n — D]gP = —x&ljD(A)U,i’”.

L
The determinant of the system (3.27) is equal to
AR IUA+1-29)+ A —p)n - DI =0

(see (3.7) and ¢ are uniquely determined from (3.27). The discrep-
ances H', H, have the form

- k =2 . .
H(n',n,)=n 727177 3 D' Xnn,)?,
(3.28) U7
H,(n',n,) = 773?‘27"1Eﬁﬁi’(n')(lnnn)f )
=

3.6. The right-hand sides, containing the logarithmic terms; case

(38.11). If A satisfies (3.11), we look for the solution (5, P) in the
form

r

k . . . .
P(n',m,)=1nmn, ,Zoqi”(lnﬂn)“rﬂiz’ .ZOkQ")(ﬂ')(lnﬂn)],
J= J=

g = const. ,
- k B
@29 (U@ n)=m""Z UV H")ny,)’,
i
k .
Unn'smy) =™ @(n") 2 a;(Ingy,)’ +
i

k
+ 773{2720 U (' Inn,)’.
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The simple computations show that (3.25), (3.26) are valid at A4 = 0 and
for the determination of q{’ we again obtain the system of linear alge-
braic equations with the determinant different from zero. The expres-

sions for the discrepances H ', H, are given by the same formulas
(3.28).

3.7. The right-hand sides, containing the logarithmic terms; case
(3.13). Let us consider the case (3.13). We take

( koo .
P(n’,nn)=nﬁlnnn20qi”(lnnn)’+
=
k+1 . ) .
+ a2 ,EOQ(’)(W')(IH 7.)), q¥ = const.,
i
— | k+1_) X .
B30) U (' ,n,)=na*1"% X Uy )ny,)’,
=0
k+1

Un(n' ) =nit "2 d(n") ,Zoaj(lnnn)f +
=

k o .
+ogatio .ZOUé”(n')(lnnn)’-
e

Then

B31) a=qL, @=Aq¢ Y+ +1)q¥,
j:l, ceey ky a’k+l=Aq=(kk);

the equations (3.25), (3.26) are valid for j =0, ..., k and forj =k + 1 we
get

_VA,ﬁf(kﬂ)JrV'Q(kH):O in o,
(3.32) div' U'**D = —q,, , D) D in o,

0w =g on dw.

The solvability condition for (3.26) at j = 0, ..., k give us the the system
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of equations
(AG+1+A-p)n-D)gP + (G +1gd*) =

= —Ko-lj(D(A) U + D@+ 2y) US+V)dy',

(3.33)
j=0,.. k-1,

AG+1+ 1= y)n—1)gP = ~K5‘jD<A)U,5’°’dn' ,

\

which has the unique solution. The solvability condition for (3.32)
[(A+1-2y)+ (1= p)n-Dlgd =

is valid because of (3.13). The expressions for the discrepances have the
form

— k+1 > .
H (n',n,) = 77;"‘2’"1‘720 F'P(n'Ynn,),
(3.34) e |
H,(n',n,) =y "1 ,Zo FP (' )nn,)?.
]=

3.8. The right-hand sides, containing the logarithmic terms; case
(3.20). Finally, if we meet A, satisfying (3.20), we take

. k
P(y', n,)=(nn,)? Zoq”)(lnnn)“nnz’ E QY (n')nn,)’,
7~

q¥ = const. ,

k+1

836) J U'(n',n,)=nL"3 2 U (5" )Iny,)?,
Un(”’!”'ﬂ)=
k+1

=9 ¥ d(n') 2 aj(nn,)’ + 5L~ 2 UP (n' )Inn,)’

\

and we are led to the same conclusions as in the case (3.13).

4. — Concrete problems; construction of the asymptotics.

Below we apply the described in Section 3 algorithm in order to con-
struct the asymptotics of the solution (%, p) to the Stokes problem (1.2),
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(1.4) with the right-hand side ?, having either the compact support or
admitting the special series representation. We also apply the algo-
rithm to construct the asymptotics of the solution to the nonlinear

Navier—Stokes problem (1.3), (1.4) with zero right-hand side 7

4.1. Stokes problem with the right-hand side 7, having compact
support. As it is shown in Section 2, the main term of the asymptotic

representation for the solution of the problem (1.2), (1.4) with ?, having
a compact support, have the form (2.25) (see also (2.5), (2.6), (2.14),
(2.15), (2.18)). It means that

4.1) Ao=(n+1)y—mn.

Hence, in virtue of (3.9) we are under the condition (3.7) and the asymp-
totical series for the solution (U, P) may be written in the form

Pn', ) ~ 1 2 1™ (@i + 0™ Qu(n")),

4.2) 1 UnOr’s ma) =m0 2 0T U (),

U'n'sma) ~m 2 1227 U,

\

where ¢, are constants,

4.3) y#nn+1)7!

and U, x+1(n"), k = 1, are represented as the sums

44) Unis1(")=qes1((Ro =20k + 1)) D) + U1 (n").

The coefficiens U’ . ('), k = 1, are solutions to the problem (3.4) at
G =qQu+1, A =240~ 2(k + 1)y and

45)  Fpk+1(n")=vD@Ao—2ky — 1)D(Ay — 2ky) Uy 1 (n') —
Do — 2ky - 1)@Qi(n")

while ((7;;+1(n'), Qu+1(n")), k=1, are solutions to (3.5) at

46)  Fia1(n') =vD(o — (2k + 1)y — DD(Ao — (2k + 1)) Ui (n").

The constants ¢, , ; are found in order to satisfy the solvability condi-
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tion for the problem (3.5) (see (3.6), (3.7)) and are subjected to
47 Ao—2k+1)y)Kkoldo—2k+2)y +1—(y —D(n — DIges1 =

=—IDQO—%k+UyﬂﬁmedW.

Notice that the functions Q. 1(n'), k > 0, are defined from (3.5) up to
an additive constants. We fix it by the normalization

4.8) [Qk+1(n'>dn'=0.

In the case y =n(n + 1)"! we put
( P(n',1,) ~ qolnn, + 0,207 Qu(n") +

5 et 4 g,

49 - ]
Un(n’y nn)~k§=:0"7:2(k+l)n(n+l) 1+1Un,k(77’)1

U'(77', 77n) "'k§=:0777:(2k+3)n(n+1)_1“U/’c(ﬂ')

\

and we are led to the same conclusions. Let
¢ N
PM G, ) =mie 2 0™ (@ + 1™ Qu(n ")),

N
@10) 3 UM (', ma) = ﬂi"kgoﬂiz”‘“”“Un,k(n'),

— N —
UNM@', n,) = ni“kgon;‘z"”)“‘Ul’,(n’), y=n(n+1)71,

\

(or the corresponding partial sums from (4.10) if y =n(n+1)"1). We put

@1)  AWV@) =T @'z} w,), pM@) =PWM (@ el x,).

It is easy to see that #™), p'™ satisfy inequalities (2.31)-(2.34) and their
discrepancy H'™) in Stokes equations (1.2) obeys the estimates

(4.12) ID;H]_[N](x)I < ClFi Ixn—(n+1+ Ial)(l—y)—(2N+3+an)y,
j=1,..,n-1,

(413) ID:Hy[LN] (x)l < CIFZ lxn~(n+ 1+ |a|)1-1y) —(2N+2+an)y.
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4.2. The Stokes problem with the right-hand side 7, having the spe-
cial series representation. Let F denotes the right-hand f of the

Stokes system (1.2) in coordinates #. Assume that :T) has the following
form

- kad a5 )
F'p) ~ X 4T 2 F P (' )(An,)?
(4.14) - o
F, () ~ lEOn’:,‘ “ml ,EO FP,(n" Ynn,)7,
- =

where {u;};~, is an increasing sequence of nonnegative numbers,

Uo=0, u;— o as l— o, 3; are functions in C* (w).
According to (3.10) we denote by 9% the countable set of numbers
composed by the rule

(4.15) te{ldo, Uy — U, 1=0,1, ... }=>v=17-2ye N,
where
(4.16) Ag=(n+1)y—mn.
We enumerate the numbers v by decrease, i.e.
(4.17) VOB'VIB...B'VlZ....
The solution (5, P) can be found as the sums
POp',mn) ~ 2 it Pe(ng,) + 2 mi " Qu(n', Inmy),
U' (')~ 2 = Titn', I,

4.18) | -
Un(nlr nn) -~ k20”2k+1‘273k(1n77n)¢(77') +

+ 2 U Ty,

\
In (4.18) P,(Inn,), Qx(n’,Inn,), ﬁl;(ﬂ,vln”n): By (Inn,), Un,k(n,’

Inn,) are polynomials in In#, constructed in accordance with the
scheme described in Section 3, i.e. the coefficiens of P,(In#,), B,(Inn,)

are constants and the coefficiens of Q.(',Inn,), ﬁ;@(ﬂ’ ,Inn,),
U, x(n',Inn,) are smooth functions depending on 7 '. Degrees of these
polynomials depend on the numbers k; (the degrees of the polynomials
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in (4.14)) and also of whether certain v, meet one of the conditions
(8.11), (8.18), (3.20) or not. Notice that if

1“* < A’O ’
the numbers v, never meet (3.11), (3.13), (3.20). Let us put
r N N
PN (', m,) ~ X mPynn,) + 2 0 Qu(n’, Inny),
- N —
U’ ma) ~ 2 n 7 Uiy’ Ing,),

419) .
UM @'y na) ~ 2 " Bi(ng,) 2(n') +

N
+ kgonzk“‘szn,k(n’, Inn,)
and

4200 AM(@) = UM @'z} 1 ), p™M@) =P (2 x}" !, x,).

By using the formulas (3.34), it is easy to calculate that the discrepances
H'WI HIN in the Stokes equations obey the estimates

@21) |DEHM(2)| <c|F;|ayy-1-lald-n-Grayte g5,
ji=1,..,n—-1,

(4.22) |DZHMN(x)| <c|F;|apy—1-1al@=n=-Crady+e 50,
REMARK 4.1. If there is mo dependence on Inn, in (4.14) and all

v € I satisfy (3.7), then also the coefficiens of the series (4.18) are inde-
pendent of Inn, .

4.3. The Navier-Stokes problem. We consider the problem (1.3),

(1.4) with zero right-hand side f. The main term of the asymptotic
expansion of the solution (ﬁ, p) is the same as in the linear case (see
Section 2). Let us consider the contribution of the nonlinear term
(4-V) u. Passing to the coordinates {7} we get

(4.23)  u'(x):V, + u,(x)d, =

=92 u' (7) V' +u, ()3, + (y —Dyin'-V').
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Let
Py’ ny) =07 + 1.2 Q(n")),
U (', na) = 0= U (n'), US (', ) = 120, ('),
i=1,2.
Substituting these expressions into (4.23), we derive
(7" 1T V) T2 () +
+ U ()@, + (v = Dty V)T () ~

~”;&1+12—5y+15/;(n1)znﬁ—l—y(?fr(nl)’

“24) . -
n, "N (U™ () V') U () +
+ U )@y + (v = Dty V) TG () ~
{ ~qp TR (") =97 T F, ('),
where

A=1,+1,+2—4y.
Let the solution (%, p) be represented in the form

P(ﬂ’,nn)~12mni(ql+n;zsz(n’)), ¢, = const.
ﬁ,(”l7 nn)~ Z ni+1—3in(’7;)’
Aedn
Uc(n',ma)~ 2 gt 720, ('),
Aed

where JIT is the certain set of numbers. From (4.24) we conclude, in ad-
dition to (3.10), the following rule for the elements of I
(4.25) T, T2€M=>T,+71,+2—4ye .

Let us consider now separately the cases n = 3 and n = 2 and denote
by I3 and INT; the corresponding most narrow sets of indices, satisfying
(3.10), (4.25).

LEMMA 4.1.
Mg ={4y —8—-2ky—-1: k,1=0,1, ...},
My={8y—2—-ky: k=0,1, ...}.
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PrOOF. The main term of the asymptotic representation for the
pressure P starts in the three-dimensional case from the power
Ao =4y — 3. Thus, due to (4.25), (3.10)

Ao+ Aog+2—-4y=20—-1€eMg, A¢g—2yeds.
It suffices to mention that J1; satisfies (4.25), (3.10), since for
v=4y -3—-2ky -1, 1t=4y—-3-2my—s
we have
v+1=4y-2(k+m)y — (1 +s+1),
v—2y=4y—-3-2k+ 1)y —1.
In the two-dimensional case Ay =3y — 2 and
AgtAdg+2—-4y=8y—-2—y.
Taking into account that for
v=38y—-2-ky, =3y —2—-my
there hold the formulas
v+1+2-4y=8y-2—-(k+m+ 1)y,
v—=2y=3y—-2—-(k+2)y,
we conclude I, to be the exponent set in the 2D-case.

It is evident that, excepting v =1,=n(n + 1)"!, the elements
ve I, do not meet the conditions (3.11), (3.13), (3.20). Hence, if
n =3 and

y #3/4,

the asymptotic representation for the solution (5, P) of the nonlinear
problem (1.3), (1.4) has the form

r

P(n',n3) ~n§y‘3kl2=0n§2"y"(q5k’°’” + 757 Qu (")),

(4.26) 3 Us(n', ’73)~7l§7~3k ZE 0773_2(k+1)y_l+1(ak,z¢(77')+ Us,x,1(n"),

Ms

Ur(nr’n3)~77§'y—3 ’73—(2k+3)y—l+1U];

K, ,l(”,)y

o~

\ =0
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where q{¥?, @, are constants, ¢&>¥ = Fikq'(4y —3) . If

y =3/4,
the representation for the solution is the following

((P(n', n3) ~q®PInns + n3%2 Qo 0(n') +

+ . lz_ln§3k/2wl(qg‘k,l) + 773_3/2Qk,l(77’)) ,
(4.27) |

07753"‘”)/2‘“1(%,@(77’) + Us .i(n")),

Ul(n/, "3) ~klz_0n53(2k+3)/44l+1U;c,l(”r),

U3(77,v 7]3) ~k

g TIMs

where ¢ = F;kq!.
Let n =2 and

y #2/3.
Then

P(py, ) ~n¥ * B ni ¥ @ + 0 Qun),

(4.28) 1 Uz(m,nz)~n%y‘zkgonz‘(’”z”*‘(ak¢(n1)+Uz,k(m)),

LUl(ﬂl’ Ng) ~ ﬂgy_zkgoﬂz_(k+3))'+lU1,k(771),

where ¢ = F;kg'(8y — 2). If
y =2/3,
we take

( P(n1,12) ~qInn, + 15 RQy(n,) +

+ kglﬂz_zk/a(q;k) + 753 Q (1)),

4.29) -
Us (71, 3) ~ k§0772_2(k+2)/3+1(ak¢(7/1) + Uz k(1))

L Uy (1, m2) ’“kgoﬂz_z(“s)/g“ULk,l(’h)
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and ¢ = F;k; L. Let

- N L
PG ) =ni7 =2 2 2 n5™ g0 + 157 Quai(n’)),
U?EN'L](”,) 773) =

430) < 4y -3 ¥ & —2k+ 1)y —1+1 ' '
= 73’ IEO 220773 v (@, (') + Uz 1,1(n")),

— N L _ —
U ma) =m0 B o SR G ),
if n =3, and
e N
PGy, m2) =072 2 157 (@8 + 157 Qu(n'),
N
@3 UMy, mp) = ’737_2]‘20772_("”)“l(ak¢(ﬂl) + Uy, k(1))

N
UMy, ma) =i =% 2 pg® 371U, (),

\

if n = 2. In the cases » = 3, y = 8/4 and n = 2, y = 2/3, we take the cor-
responding partial sums from (4.27) and (4.29).
We put

PN, L) () — THAN, LI (gt oy — 1
432) u™ E(g) = UN- L (' ) =1, mg),
p™ (@) = PV Ll(g' 7 =1 ).

One can see that u'™ 1, p!™ I gatisfy inequalities (2.81)-(2.34) and their

discrepancy H™X in the Navier-Stokes equations (1.3) obeys the
estimates

433) |DEH™ D (x)| < c|F; |y @+ laha-n-@N+3+any-L
Jj=12,
(4.34) |D;H§N' l’](x)| < ¢|F; |xn—(4+ lalX1=y) =~ @N+2+as)y —L_

Analogously, in the two-dimensional case we put

@35)  @™M(2)= UM (@al Y @), p™ @) = PV (z 00, z,)
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and for the discrepancy H™ we derive the estimates
(4.36) |DfH[N](:L‘)| < chi |x2—(3 +lapL =)~ (N+1+az)y ,

4.87) |DaH[N] (x)l ch |90 B+ laDA-y)— (N + ag)y

REMARK 4.2. Using the above considerations one can construct
also the asymptotic decomposition of the solution to the Navier-Stokes

problem with the right-hand side ?, having the series representation
(4.14).

5. — Justification of asymptotic decompositions.

5.1. Stokes and Navier—Stokes problems in weighted Hdlder spaces.
For an arbitrary domain £ c R” we denote by C%°(8), | being an inte-
ger, 0 < 0 <1, a Holder space of continuous in Q functions % which
have continuous derivatives D%y = 8%l w/dxf1... 2%, |a| =a; + ... +
+ a,, up to the order ! and the finite norm

he €2 (@) = 2 sup{|D*u(@)|} + 2 sup{[D*uls(@)},
where the supremum is taken over x e 2 and
u(x) — w(y)
Wh@=  sp ADZUO]
o<lz-yl<lziz |z —y|
Yyef

Let us consider now a domain Q c R*, n = 2, 3, having m outlets to
infinity, i.e. outside the sphere |x| = R, the domain £ splits into m con-
nected components £; (outlets to infinity) which in some coordinate
systems x® are given by the relation (1.7) with the function g; satisfy-
ing (1.8), (1.9). Below we omit the index ¢ in the notations for local
coordinates.

In the domain @ we introduce the weighted Holder space C}°(Q),
consisting of functions u, continuously differentiable up to the order  in

Q, and having the finite norm

le; C3° ()] =

= Jlu; €42 (R )l + g 2 sup{g; (@)= 0¥ el | Dou(x) |} +

la| <lzeR,

+ 3 2 sup {9: @)Z[D%uls ()} .

i=1la|=lze®;

Here 2 = (&, ..., #,) and Qg = {ve Q: |z| <k }.
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The solvability of the Stokes (1.2), (1.4) and Navier-Stokes (1.3),
(1.4) problems in weighted function spaces has been studied in [23],
[24], [25]. Here, for the justification of the obtained asymptotic decom-
positions, we need the following theorems.

THEOREM 5.1 [24]. Let Q cR", n =2, 3, be a domain with m =1

outlets to infinity, 92 € C'*33, f e CL%(Q), where 120, e (0, 1)
and 2 is an arbitrary vector. Then there exists a unique solution (%, p)
of the linear Stokes problem (1.2), (1.4) with zero fluxes (F;=0,
1= 1, ..., m) such that EZ € Cé+2’6(9), Vp € ng([)) and there
holds the estimate

Gy U CEr@) +Vp; Ché@)l < el f; cho().
In particular, from (5.1) it follows that

62  |D*u@)| < f; CLo(Q)|g;(@w,) =+ +2+0-lel | zeq.

63) [P Vp@)| <cl f; CL4@)| gi(w,) =01l peg,,
while 0 < |a| <1+2 in (62) and 0 < |a| <1 in (5.3).
THEOREM 5.2 [25]. Let QcR® be a domain with m =1 outlets

to infinity. Assume that, in addition to (1.8), (1.9), the functions g;
satisfy the conditions (1.10), (1.11). Let 0Q e C'*%%,120,0< 6 <1,

=0,
(54) &=n+1+1+9, i=1,..,m.

Then for arbitrary fluxes F;,i =1, ..., m, there exists a solution (Z, p)
of the Navier-Stokes problem (1.3), (1.4), admiting the estimates

(5.5) la; C5*>° @) +Ivp; Ché(@)ll < (| F)),
(5.6) |p()| SC(lF’|)fgi(t)‘4dt+cl, veQ,,
0

| F | = @™ FHY. For small | F | the solution (u,p) is umique.

REMARK 5.1. Theorem 5.2 is also valid for monzero right-hand
sides f having an appropriate decay at infinity.
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5.2. Estimates of the remainder in asymptotic formulas; Stokes
problem. Let Q cR", n =2, 3, be a domain with m = 1 outlets to infin-
ity ©, of the form (1.1). Assume that Q2 e C'*>°,120, 8 € (0, 1), and
denote by &; the smooth cut-off functions equal to 1in Q;\Qy, +1 and
equal to 0 in Q\(2,\24,). We specify the spaces Ck%(Q), by taking
gi(t) =t' "7 in the definition of the norm |-; C5°(Q)|.

TuEOREM 53. () Let f e CL°(Q) with
G7 @&Z=nm+1+1+06+2IN+Dy,(1—y)7 Y, i=1,..,m.

Then there exists a unique solution (u, p) of the Stokes problem (1.2),
(1.4) with

(68) ueCL'?°Q), VpeCL®®Q),

&=n+1+1+6, 1=1,...,m.

The solution (u, p) admits the asymptotic representation

(5.9) W= 2 L+, p=2p g,

where (@™, p,N ]) are the ;)artwl sums (4 11) constructed for the outlet
to infinity Q;, v (), Vge(C2 4 (Q) and there holds the
estimate

(5.10) [ v; C2°(@)) +|Vg; CEo ()| <ec _§1|Fi| +1 7 et @l

(ii) Assume that in each Q; the right-hand side = (f', f,) can be
represented as a sum

[ F @)=
(z)
= & (x) 2 A A _2 £ @'l Yn,) + £ (@),
P22
G.11) vei,
o) =
e

= L) X ap? 1Y @ ali Y (na,) i + £ (@),
j=0

xE.Qi,
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where
(5.12) ¥ <1—(n+ 1)1 -y, i1=1,...,m,

{2y is an mcreasmg sequence of nonnegatwe numbe’rs ﬂ(’) =0,

,ugl)—) w gsl— o, f(’) are smooth functions and £ = (F, £ e
13(Q) with

(5.13) @&F=1+6+Q+2y;—e—v)1-y)7},
e>0, 1=1,...,m,

where v — —® as l— ® are the numbers defined by (4.15), (4.17).
Then the're exists a unique solution (u, p) of the Stokes problem (1.2),
(1.4), satisfying the inclusions (5.8) and the 'representatwn (5.9) with

(_’[N], ™) being the partial sums (4.20) and v e CLi%%(Q), Vge
€ Czs* (R2). There holds the estimate

6.14) [|7; CE2%(Q)| + |Vg; €58 Q)| < c(_Z1 VAR NE Céf’(mll)-

ProOF. The solvability of the problem (1.2), (1.4Lfollows from !he-
orem 5.1. In fact, if we represent the velocity field « in the form u =

=4+ w, where A is the divergence free vector field satisfying the in-
equalities (1.6), we get for (w, p) the same problem with zero fluxes and

the new right-hand side equal to f +v4 A. It is easy to verify that 7 +
+v4A e C5°(Q) and, thus, according to Theorem 5.1 there exists a sol-
ution (w, p) with w e C5**°(Q), Vp e C4°(Q). Since 4 € CL*>?(0),

we also have u e CL*2%(Q).
Let us represent the solution (u, p) in the form

m —> - m
619 - et n-Sealeo,

[N]

where (u; -, pi[N 1y are either the functions (4.11) in the case (i), or the

functions (4.20) in the case (ii), and W™ is a solution of the equa-
tion

diV W[N] - 2 VC’L £N] in 'Q(ko +2)
(5.16)

W[N]=0 on (9.9<k0+2) .
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We have

SUPP( 2 VC@ 1 )C‘Q(ko+1)
and the condition

2F1=0

i=1

yields

m
[ 2 veulde=o0.
Qg +1) =

Thus (see [6]), (5.16) has a solution WiV g Cl+2 "(Q(k”z)) with

supp WM ¢ 2 (k, + 3120 - Without loss of generality we assume that W' is
extended by zero to 2\Qy, +2). The function V is solenoidal and satis-
fies together with ¢ equations (1.2), (1.4) with F;=0,i=1, ..., m and
the right-hand side

m(iciﬁgm) (E & p[N]) +vAWN + F case (i),

N

vA( S c,-ﬁ%”‘) (E & p””) +vAWWN + 79 case (ii),
i=1

which belongs in the case (i) to the space (Q) (see (4.12), (4.13),
(5.7)) and in the case (ii) to the space Cas~ () (see (4.21), (4.22), (5.13)).

Applying Theorem 5.1 and taking 3 = W™ + V, we conclude the proof
of the theorem.

REMARK. 5.2. In particular, from (5.10), (5.14) there follow the
pointwise estimates for the remainder (v, q):

m —
|DEv(x)| < 0( Z IR+ Céé(g)ll)x,;(”‘”'“““‘Vi"‘“’”m
i=1 ’
xe.Qi ,
m -
|DgVg(w)| < c( > F |+ f; Cgé(g)||)xn—(n+l+|a|)(1—yi)—(2N+2)yi
i=1 ’

xe.Qi,



36 S. A. Nazarov - K. Pileckas

in the case (i), and
m —_ .
ID:;("”)I < C(.Zl IFi l + ” f(*); Cg*é(.Q)”).’lcn_('al —2)(1—71)'*"’5\11)_2)’1'_1"'5’
1=

eri,

i

m - 3
| Dz Va(a))| S“( IR VA Cg*%mll)x;'a'“*M”%’—zw-“f,

eri,

in the case (ii). Notice that the condition (5.12) implies 2(1 — y;) +
+v{ =2y, —1+e< —(n— 1)1 — y;) and, therefore, also in the case
(ii) we have got the improved decay estimates for the remainder (v, q)
(comparing with the estimates for (u, p)).

REMARK 5.3. Applying the results from [23], it is also possible to
obtain the estimates of the remainder (v, q) in weighted Sobolev spaces
VL3 (Q) with the norm

. - l = -
1% VE¥ @l = 3 D5 Li, . (@,

la] =0
where
1/s0 m 1/s;
- 2 - —
I i@l = [ lidlede) + 3| [ ap=0tor0)u]de
Qg +1) il 2\ 2 ko)

For example, let there exist mumbers s¥f=38*(N)>1 1=1,...,m,
such that

©

Jt~§;"[n(l—yi)+2yi(N+1)]+(n——1)(1~yi)dt < o,
1

Suppose that in the case (i) 7 e VLS (@) with 1= -1, s; > 1 and 2* is
defined by
ns¥ 3 $F—s8)2(N+1y;

2¥=2f(N)=l+n+1- —
2= &) " 8i $i(1—yy;) ’

then

veVE2T(Q), VgeVar(Q).
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5.3. Estimates of the remainder in asymptotic formulas; Navier-
Stokes problem. According to Theorem 5.2, the solvability of the
Navier-Stokes problem (1.3), (1.4) is proved for arbitrary large data
only for three-dimensional domains £2 under the additional conditions
(1.10), (1.11). For g;(t) = got' 7 (1.10), 1.11) mean 1/4 < y, < 1. If Q ¢
cRZor Q cR?®and 0 < y; < 1/4, the existens results are known only for
small data (see [25]). We start with the justification of the asymptotic
representation for the solution (%, p) of (1.3), (1.4) in the case of small
data without any additional assumptions on y;.

THEOREM 5.4. Let QcR", n =2, 3, be a domain with m = 1 out-
lets to infinity Q; of the form (1.1) and let f e C1°(Q) with

617 @&f=2}N,L)=

=4+1+0+2IN+1)y,(1—y,) ' =L -y}, n=3,
(518) @;=2*(N)=83+1+0+Ny,(1—-y)"}, n=2,
i=1, ..., m. Then for sufficiently small |F‘| and | ?; L2(Q)|| the

Navier-Stokes problem (1.3), (1.4) has a unique solution (ﬁ, p) satisfy-
ing the asymptotic representation

619) W= 2 Lu™"+5, p=3pMeg, n=3,

or

620 u=2 LuMN+v, p= 2 tpM+q, n=2,
where (ui™ P, pi L are defined by (4.32), @™, pI™) by (4.35), v e
L2oQ), Vge CL2(Q) and there holds the estimate

- l+26

G20 |75 CEP (@) + IVg; Cil@) < (| F )+ f; cL3 Q).

Proor. We prove the theorem in the case n = 3. For the two-di-
mensiogal case the proof is completely analogous. We look for the sol-
ution (u, p) in the form

g

622) =3 "WV, p= 3 L4y,

1=1

where W I is the solution of the divergence equation (5.16). Then for
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(f}, q) we derive the problem

[ 04V +Vg = F +va%W 11— @11 y) 11 yQv 1 _
~VV) V-GN V) V=TV a8 i@,

G23) JdivV=0, i@,

where
- N s SIN, L], TN L N, L] _ X [N, L]
w Ll = .EICiui MW ns gy, ]=_zl§z'pi T
i= i=
Denote
MV:=Ff +vanp®L_ (w11 V) V. L) _ yQIN, L] _
~(VV) V—@W1.V) ¥ = (V-V) W L1,

Let Ve CLI%°%(Q) with =* defined by (5.17). By using the estimates
(4.33), (4.34) it is easy to verify that MV e CLo(Q). Thus, the problem
(6.23) is equivalent to an operator equation in the space CL!2°(Q):

V=av,

where AV = £ 1MV and £ is the operator of the linear Stokes problem
(1.2), (1.4) with zero fluxes. In virtue of Theorem 5.1 the inverse opera-

tor £71: C4°(Q2) - CL *%(Q) is bounded. The direct computations
"show that

la¥; cir® @l <e.(c F D) +11 F; chdl + |17 Ca ™ (QIF +
+CUFDIV; el (@),
[V = a Vs cht® o Q)] < e (Vs %2 (@) +
+HIVE; c @D O - Vs czeo o) +

HOF DIVO - V@; clr=o)),
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where C(| F |)—0,as |F | = 0. Hence, for sufficiently small |F;]|,
i=1,..,m,and| f; C4’(£)| the operator A is a contraction in a small
ball of the space CLi?% "(9) and the theorem follows from the Banach
contraction principle.

Let us consider now the Navier-Stokes problem (1.3), (1.4) for arbit-
rary large data in the case of three—dimensional domains £, satisfying
the additional condition

(5.24) Va<y, <1, i=1,..,m.

THEOREM 5.5. Let Q cR? be a domain with m = 1 outlets to infini-
ty Q; of the form (1.1) and let f 0. Assume additionaly that (5.24)
holds and let (u, p) be the solution to (1.3), (1.4) from Theorem 5.2. Then
in each outlet to infinity 2, the solution (u, p) admits the asymptotic
expansion (5.19) with v e Cl $2%(Q), Vg e CL2(Q), where * is defined
by (5. 17)). Moreover, there holds the estimate

(5.25) 105 Chr®2(@)| + |Vg; C22 (@) < (| F ).

Proor. Because of (5.24) the conditions of Theorem 5.2 are satisfied
and there exists a solution (%, p) of (1.3), (1.4) with u e CL*%%(Q),
Vp e C12(Q) (; =4 + 1 + 6). Moreover, (u, p) satisfies the estimate
(5.5). In particular, from (5.5) follows that

(526) |D*u@)| <c(|F|)ay @+ledi-v 5eQ, |a| 0.

By the construction (see Section 4.3) the same estimate is true for the
function %" ™. Let us represent the solution (%, p) in the form (5.22).

For the remainder (V, q) we obtain the problem (5.23). By using (5.26),
it is easy to verify that

6270  |D* (@™ 1-V) w4+

+VV) V+@N LV V + V) WD) < o | F |y G+ leha-ro,
xE.Qi, |a| =0.

In Section 4.3 we have proved that the discrepency H LYy =
=pauMH - GV .y g D ypN Blgatisfies the relations (4.33),
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(4.34), i.e.

(5.28) ID;FIEN,L](x)l < C(l fvI)x3A(4+|a|)(1—yi)—2(N+l)y1—L’
(I}EQI', |a| =0.

From (5.27), (5.28) it follows that the right-hand side M V of the prob-
lem (5.23) belongs to the space CL$ (Q) with

2’=4+1+6+min{l, QN+ Dy +LX1~-y)'}, i=1,..,m.

‘We consider the solution (f}, q) of (5.23) as a solution of the linear
Stokes problem (1.2), (1.4). Applying to (V, q¢) Theorem 5.1, we obtain

VeC4i®?(Q), Vge Cib(Q) and the estimate (5.25) with &* changed

to &Y. Since 2" > a;, we can repeate the above arguments. After the

finite number of steps we derive Ve CLi®°(Q), Vge C52(Q) and the

estimate (5.25). The theorem is proved.

_, REMARK 54. Theorem 55 remains valid if the right-hand side
fe Cé;:’(g) with 2* defined by (5.17).

REMARK 5.5. In the same way the asymptotics of the solutions to
the Stokes problem can be investigated near the singularity point of the
boundary of the peak type, i.e. if 0 € 382 and in the neibourhood of 0 the
boundary 082 can be represented in the form {x: |x'| < g(x,), x, €
€ (0, 8)} with xlimo g(x,) =0 and rlimo g' (x,) = 0. Assuming that the

right-hand side f has the series representation in powers of &, = M,
one can construct and justify the asymptotics of the solutions just by
repeating word by word the above arguments (even with some simplifi-
cations).

REMARK 5.6. Finally, we mention that, of course, all results of
the paper remain valid in domains 2 having the outlets to infinity Q;
with noncircular sections, i.e. for ; given by the relations

Q;,={xeR": x} 'x'€8;,x, >0},

where S; is an arbitrary bounded domain in R™ 1. One can see that we
did not use in the proofs the assumption that Q; has a circular cross-
section. The same is true for the context of Remark 5.5. All the formal
calculations in these cases can be taken from [20].



Asymptotics of solutions to Stokes ete. 41

REFERENCES

[1] C. J. AMICK, Steady solutions of the Navier-Stokes equations in unbounded
chamnels and pipes, Ann. Scuola Norm. Sup. Pisa, 4 (1977), pp. 473-513.

[2] C. J. AmIcK - L. E. FRAENKEL, Steady solutions of the Navier-Stokes equa-
tions representing plane flow in channels of various types, Acta Math., 144
(1980), pp. 81-152.

[3] G. P. GALDI, An introduction to the mathematical theory of the Navier-
Stokes equations, Springer Tracts in Natural Philosophy, 38, 39 (1994).

[4] J. G. HEYwWoOD, On uniqueness questions in the theory of viscous flow,
Acta. Math., 136 (1976), pp. 61-102.

[6] L. V. KapiTanskil - K. PILECKAS, On spaces of solenoidal vector fields and
boundary value problems for the Navier-Stokes equations in domains with
noncompact boundaries, Trudy Mat. Inst. Steklov, 159 (1983), pp. 5-36. En-
glish transl.: Proc. Math. Inst. Steklov, 159, issue 2, (1984), pp. 3-34.

[6] L. V. KapiTanskil - K. PILECKAS, Certain problems of vector analysis, Za-
piski Nauchn. Sem. LOMI, 138 (1984), pp. 65-85. English transl.: J. Sov.
Math., 32, No. 5, (1986), pp. 469-483.

[7] V. A. KONDRAT'EV, Boundary value problems for elliptic equations in do-
mains with conical or corner points, Trudy Moskov. Mat Obshch., 16 (1967)
209-292. English transl.: Trans. Moscow Math. Soc., 16 (1967).

[8] O. A. LADYZHENSKAYA, The Mathematical Theory of Viscous Incompress-
ible Flow, Gordon and Breach, New York, London, Paris (1969).

[9] O. A. LADYZHENSKAYA - V. A. SOLONNNIKOV, On some problems of vector
analysis and generalized formulations of boundary value problems for the
Navier-Stokes equations, Zapiski Nauchn. Sem. LOMI, 59 (1976) pp. 81-116.
English transl.: J. Sov. Math., 10, No. 2 (1978), pp. 257-285.

[10] O. A. LADYZHENSKAYA - V. A. SOLONNNIKOV, On the solvability of bound-
ary value problems for the Navier-Stokes equations in regions with non-
compact boundaries, Vestnik Leningrad. Univ. (Ser. Mat. Mekh. Astr. vyp.
3), 13 (1977), pp. 39-47. English transl.: Vestnik Leningrad Univ. Math., 10
(1982), pp. 271-280.

[11] O. A. LADYZHENSKAYA - V. A. SOLONNNIKOV, Determination of the sol-
utions of boundary value problems for stationary Stokes and Navier-Stokes
equations having an unbounded Dirichlet integral, Zapiski Nauchn. Sem.
LOMI, 96 (1980), pp. 117-160. English transl.: J. Sov. Math., 21, No.5 (1983),
pp. 728-761.

[12] V. G. Maz'va - B. A. PLAMENEVSKII, Estimates in L, and Holder classes
and the Miranda-Agmon maximum principle for solutions of elliptic
boundary value problems in domains with singular points on the boundary,
Math. Nachr., 81 (1978), pp. 25-82. English transl.: Amer. Math. Soc. Transl.,
123 (2) (1984), pp. 1-56.

[13] V. G. Maz'ya - B. A. Plamenevskii, On the coefficients in the asymptotics of
solutions of elliptic boundary value problems in domains with conical
points, Math. Nachr., 76 (1977), pp. 29-60. English transl.: Amer. Math. Soc.
transl., 123 (2) (1984), pp. 57-88.



42 S. A. Nazarov - K. Pileckas

[14] V. G. MAz'vA - B. A. PLAMENEVSKII, On the asymptotic behaviour of the sol-
utions of differential equations in Hilbert space, Izv. Akad. Nauk SSSR.
Ser. Mat., 36, No. 5 (1972), pp. 1080-1133. English transl.: Math. USSR
Izvestija, 6 (1972), pp. 1067-1116.

[15] V. G. MAz'vA - B. A. PLAMENEVSKIIL, On the asymptotics of the solution of
the Dirichlet problem near an isolated singularity of the boundary, Vestnik
Leningrad. Univ., Ser. Mat. Mekh. Astr., vyp. 3, No. 13 (1977), pp. 60-66. En-
glish transl: Vestnik Leningrad. Univ. Math., 10 (1982).

[16] V.G. MAz'vA - S. A. NAzAROV - B. A. PLAMENEVSKII, Asymptotische Theo-
rie ellitischer Randwertaufgaben in singuldr gestorten Gebieten, Bd. I,
Akademie-Verlag, (1991).

[17] S. A. Nazarov, The structure of the solutions of elliptic boundary value
problems in thin domains, Vestnik Leningrad, Univ., Ser. Mat. Mekh. Astr.,
vyp. 2, No. 7 (1982), pp. 65-68. English transl.: Vestnik Leningrad. Univ.
Math., 15 (1983).

[18] S. N. LEORA - S. A. NAZAROV - A. V. PROSKURA, Computer derivation of the
limit equations for elliptic problems in thin domains, Zh. Vychisl. Mat. i
Mat. Fiz., 26 (1986), pp. 1032-1048. English transl.: USSR Comput. Math.
Math. Phys., 26 (1986).

[19] S. A. NazArov, Asymptotic solution of the Navier-Stokes problem on the
Sflow of a thin layer of fluid, Sibirsk. Mat. Zh., 31, No. 2 (1990), pp. 131-144.
English transl.: Siberian Math. J., 31 (1990), pp. 296-307.

[20] S. A. NazArov - K. PILECKAS, The Reynolds flow of a fluid in a thin three-
dimesional channel, Litovskii Mat. Sb., 30 (1990), pp. 772-783. English
transl.: Lithuanian Math. J., 30 (1990).

[21] S. A. NAazARov - B. A. PLAMENEVSKII, Elliptic Boundary Value Problems
i Domains with Picewise Smooth Boundary, Walter de Gruyter and Co.,
Berlin, (1994).

[22] K. PILECKAS, Existence of solutions for the Navier-Stokes equations having
an infinite dissipation of energy, in a class of domains with noncompact
boundaries, Zapiski Nauchn. Sem. LOMI, 110 (1981) 180-202. English
transl.: J. Sov. Math., 25, No. 1 (1984), pp. 932-947.

[23] K. PILECKAS, Weighted L9-solvability for the steady Stokes system in do-
mains with noncompact boundaries, Math. Mod. Methods Appl. Sci. (to
appear).

[24] K. PILECKAS, Classical solvability and uniform estimates for the steady
Stokes system in domains with noncompact boundaries, Math. Mod.
Methods Appl. Sci. (to appear).

[25] K. PILECKAS, Strong solutions of the steady monlinear Navier-Stokes sys-
tem in domains with exits to infinity, Rend. Sem. Mat. Univ. Padova (to
appear).

[26] V. A. SoLONNIKOV - K. PILECKAS, Certain spaces of solenoidal vectors and
the solvability of the boundary value problem for the Navier-Stokes system
of equations in domains with noncompact boundaries, Zapiski Nauchn.
Sem. LOMI, 73 (1977), pp. 136-151; English transl.: J. Sov. Math., 34, No. 6
(1986), pp. 2101-2111.



Asymptotics of solutions to Stokes ete. 43

[27] V. A. SOLONNIKOV, On the solvability of boundary and initial-boundary
value problems for the Navier-Stokes system in domains with noncompact
boundaries, Pacific J. Math., 93, No. 2 (1981), pp. 443-458.

[28] V. A. SOLONNIKOV, On solutions of stationary Navier-Stokes equations with
an infinite Dirichlet integral, Zapiski Nauchn. Sem. LOMI, 115 (1982), pp.
257-263; English transl.: J. Sov. Math., 28, No. 5 (1985), pp. 792-799.

[29] V. A. SOLONNIKOV, Stokes and Navier-Stokes equations in domains with
noncompact boundaries, College de France Seminar, 4 (1983), pp. 240-
349.

[30] V. A. SOLONNIKOV, Boundary and initial-boundary value problems for the
Navier-Stokes equations in domains with noncompact boundaries, Math.
Topies in Fluid Mechanics, Pitman Research Notes in Mathematics Series,
274, eds. J. F. Rodriques, A. Sequeira (1991), pp. 117-162.

[31] R. TEMAM, Nawvier-Stokes Equations North-Holland Pub. Co., Amsterdam,
New York, Tokyo (1977).

Manoscritto pervenuto in redazione il 24 gennaio 1996.



