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Asymptotics of Solutions to Stokes
and Navier-Stokes Equations

in Domains with Paraboloidal Outlets to Infinity.

S. A. NAZAROV (*) - K. PILECKAS (**)

ABSTRACT - The stationary Stokes and Navier-Stokes equations of a viscous in-
compressible fluid with additional flux conditions are considered in domains
Q with m ~ 1 outlets to infinity, which have in some coordinate systems the
following form

The complete asymptotic decomposition is constructed for the solution of the
Stokes problem in the case when the right-hand side has either a compact
support or a special series representation. For the solution of the nonlinear
Navier-Stokes problem the asymptotic decomposition is constructed in the
case of zero right-hand side. The obtained asymptotic decompositions are jus-
tified in weighted H61der spaces.

1. - Introduction.

The solvability of the boundary and initial-boundary value prob-
lems for Stokes and Navier-Stokes equations have been studied in

many papers and monographs (e.g. [8], [31], [3]). The existence theory
which is developed there concerns mainly the domains with compact
boundaries (bounded or exterior). However, many physically important
problems are related to domains with noncompact boundaries (for
example, the fluid flow in channels and pipes). Therefore, it is not

suprising that during the last 17 years the special attention was given

(*) Indirizzo dell’A.: State Maritime Academy, Kosaya Liniya 15-A, 199026
St.-Petersburg, Russia.

(**) Indirizzo dell’A.: Universitat GH Paderborn, Fachbereich Mathematik-
Informatik, Warburger Str. 100, 33098 Paderborn, Germany.
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to problems in such domains (e.g. [1], [2], [4], [9]-[11], [5], [22], [26], [27]-
[30], etc.).

On the other hand, during the last ’three decades there was devel-
oped the theory of linear elliptic boundary value problems in domains
having singular points on the boundary (e.g. [7], [12], [13], [21] and the
references cited there). The asymptotics of the solutions to elliptic
problems is most well studied in domains with conical points or, equiva-
lently, in domains with cylindrical and conical outlets to infinity ([21],
[7], [13]). In this paper we study the asymptotics of the solutions to the
steady Stokes and Navier-Stokes problems in domains with

paraboloidal outlets to infinity, having in some system of coordinates
the form

Notice that papaboloidal outlets to infinity are an intermediate case be-
tween cylindrical (y = 1) and conical (y = 0) outlets (e.g. Remark 2.4).

General elliptic boundary value problems in domains with singulari-
ty points were investigated in [12], [14], where the coercive estimates
and asymptotics of solutions (in the case of exponentially vanishing
right-hand sides) were obtained. In [15] the results from [12], [14] were
applied to the Dirichlet problem for a scalar elliptic operator of the sec-
ond order near the peak type point of the boundary. The abstract form
of the asymptotic formulas in [14] looks very consistent. However, their
realization for the Stokes system led to cumbersome calculations which
the authors did not succeed to overcome. That is why we have chosen a
different approach related to the asymptotic analysis of elliptic prob-
lems in slender domains.

Here we consider the Stokes

and Navier-Stokes
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problems in the domain S2 c Rn , n = 2, 3, with m ~ 1 outlets to infinity
S~ which have in certain coordinate systems the form (1.1) and we look
for the solutions satisfying the additional flux conditions

where

In order to obtain the solvability of the Stokes problem (1.2), (1.4) and
the coercitive estimates for the solutions with zero fluxes (Fi = 0) in
weighted Sobolev and H61der spaces, we first derive the estimates of
the Dirichlet integral over the subdomains of S~, by using the differen-
tial inequalities techniques (so called «techniques of the Saint-Venant’s
principle») developed by 0. A. Ladyzhenskaya and V. A. Solonnikov
[11], [29] and then we improve the «weighted reguliarity» of the sol-
utions, applying the method proposed by V. G. Maz’ya, B. A.
Plamenevskii [12]. To find the solutions with nonzero fluxes Fi , we look
for the velocity field u in the form

where A is a solenoidal vector function, satisfying the flux conditions
(1.4) and the estimates

where F 2 = 2: F2. Then for (V-, p) we get the Stokes problem (1.2),
(1.4) with zero fluxes (Fi = 0, i = 1, ... , m) and the new right-hand side

f + v L1 A. The mentioned results are obtained in [23], [24] for two and
three-dimensional domains S~, having the outlets to infinity of the form

where IXl I if n = 2, ~ I =N/x,2+x22 if n = 3, and gi (t) are
functions satisfying the conditions
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The nonlinear Navier-Stokes problem (1.3), (1.4) in domains having
outlets to infinity of the form (1.7) was studied in [25]. For three-dimen-
sional domains it is proved in [25] under the additional assumptions
on gi:

that the weak solution of (1.3), (1.4) with the unbounded Dirichlet inte-
gral is regular and has the same decay properties as the solution of the
linear Stokes problem (1.2), (1.4). This result is proved for arbitrary
large data and is based on estimates of the Saint-Venant’s type ob-
tained for the weak solution of (1.3), (1.4) by 0. A. Ladyzhenskaya, V.
A. Solonnikov [11] and on bootstrap arguments, which use the results
for the linear Stokes problem (1.2), (1.4). If the conditions (1.10), (1.11)
are violated and in the two-dimensional case, the analogous results
were proved in [25] for sufficiently small data by means of the Banach
contraction principle. Notice that the decay estimates obtained in [23],
[24], [25] have the same character as that for the divergence free vector
field A (see (1.6)). This is related to the decomposition of the velocity u
in the form (1.5). Since A is arbitrary, the right-hand side f + vd A is

decaying at infinity not sufficiently fast, even if f has a compact sup-
port. Therefore, one can not expect the improved decay rate for the
perturbation v .

In this paper for the domains S~, having the outlets to infinity of the
form (1.1), i.e. gi (t) = go t 1- Y, we construct the formal asymptotics of
the solutions and we prove the better decay estimates for the remain-
der. For example, in the three-dimensional case the obtained asymptot-
ical solution for the Stokes problem with zero right-hand side has the
form
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where are constants and 3/4. If y = 3/4, the repre-
sentation for the pressure pEN3 contains the logarithmic term. Esti-
mates for the discrepancies which are left by this approximate solution

in the Stokes equations improve when we increase N and,
therefore, we get the «good» decay estimates for the remainder

(v = u - U[N], q = p - P[N]).
The procedure which we use to construct the formal asymptotics is a

variant of well known algorithm of constructing the asymptotics for
solutions to elliptic equations in slender domains (e.g. S. A. Nazarov

[17], S. N. Leora, S. A. Nazarov, A. V. Proskura [18], V. G. Maz’ja, S. A.
Nazarov, B. A. Plamenevskii (Ch. 15-16) [16] for arbitrary elliptic prob-
lems and S. A. Nazarov [19], S. A. Nazarov, K. Pileckas [20] for the
Stokes and Navier-Stokes equations). In order to explain the anology
between the paraboloids and the slender domains, let us consider the
intersection of S~ with the sphere SR of radius R. After the change of
variables r - R = i the sphere SR goes over to the unit sphere ,Si
and the intersection S~ n SR2 turns out to become a domain with small,
of order O(R -Y ), diameter. This property turns us to introduce the
«transversal stretched coordinates»

while the image of the domain ,S~ is independent of l~. After this,
applying formally the methods from the theory of elliptic equations in
slender domains, we derive for the pressure p the one dimensional
Reynolds equation (see S. A. Nazarov, K. Pileckas [20]), which follows
as a compatibility condition for the solvability of the two-dimensional
Stokes problem (in the domain a) = {1/’ E 1E~2 : 11/’ 1  ~o}) for the vel-
ocity field 11.

The paper is organized as follows. In Section 2 we present the for-
mal procedure of constructing the main terms of asymptotics for the
solution of the Stokes problem with zero right-hand side f . In Section 3
we construct the higher terms of asymptotics. In order to construct
them, we need to compensate discrepancies appearing in the equations.
To this end, we consider the Stokes equations with the right-hand sides
having the special form. The section is divided in eight subsections re-
lated to different cases of discrepancies, which can appear in the right-
hand side. In Section 4 the obtained results are applied to construct the
complete asymptotics in concrete situations. Namely, for the Stokes
problem with the right-hand side, having compact support (Subsection
4.1), for the Stokes problem with the right-hand side having the special
series representation (Subsection 4.2) and for the Navier-Stokes prob-
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lem, having zero right-hand side (Subsection 4.3). Finally, in Section 5
we justify the obtained asymptotic decompositions for the Stokes (Sub-
section 5.2) and Navier-Stokes (Subsection 5.3) problems, i.e. we prove
the appropriate estimates for the remainder

in weighted H61der spaces. To do this we apply to

the results obtained in [23], [24], [25]. For the reader convenience we
formulate these results in Subsection 5.1.

Notice, that the results obtained for the Navier-Stokes problem
with zero rihgt-hand side can be generalized, with evident changes, to
the case when the right-hand side has series representation. Moreover,
just in the same way one can construct the asymptotics of the solutions
to the Stokes and Navier-Stokes problems near the singular point of
the boundary of the peak type (1) in the case when the right-hand side
has series representation. Finally, we mention that all results remain
valid also in the case of non-circular cross-sections of the outlets to in-

finity i.e. when S~ E xn -1 x’ E S, Xn &#x3E; 0}, where S is an
arbitrary bounded domain in IV Moreover, all the formal calcula-
tions needed for the above mentioned generalizations were presented
in [20].

2. - The main asymptotic term; formal considerations

2.1. Special coordinates. In this section we construct an «approxi-
mate solution at infinity» to problem (1.2), (1.4). Let us consider the ho-

mogeneous problem (1.2), (1.4) (i.e. f = 0) in the outlet to infinity

We pass in (1.2) to new coordinates

(1) I.e. if 0 E 30 and in the neighbourhood of 0 the domain Q can be rep-
resented in the form I x: x’ I  xn E ( o, 6)1 with lim g(xn ) = 0 and
li m g ’ (rn ) = 0. 
n
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and, by using the evident relations

rewrite (1.2) in the following form:

In (2.4) we have used the notations

2.2. Structure of the asymptotics. We look for the solution ( Uo , Po )
of (2.4) in the form
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Let us assume that the 1, 2, ..., are

equivalent (as 77n --" oo) to an qo (nn) (this assumption will be justified
below). Substituting ( Uo , Po ) into equations (2.4) and selecting the
leading at infinity terms, we derive

and

or, what is the same,

Multiplying (2.7) by 0(y’) and integrating by parts one gets

The solution (P(77’) to (2.7) has the form

and it is easy to compute
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The problem (2.8) has a solution ( Uo , ~ n and only if the

right-hand side Go satisfies the compatibility condition

From (2.11), taking into account (2.9), (2.10), we get

Since

the last relation yields

Thus, the function is not arbitrary; it satisfies the second order
ordinary differential equation (2.12). Multiplying (2.12) 
we rewrite it in the form

Solving (2.13), we find

Now, because of (2.14), (2.6)
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and the function Go takes the form

where the operator Y’( ~ ’ , ~’ ) is given by

Comparing the power exponents of t7.,, in (2.16), (2.8), we conclude that
the functions Uo (r¡’ , ~ n ) and Qo(t7’, ~ n ) can be taken in the form

and we rewrite (2.8) as follows

where

It is a well-known fact that in a bounded domain to with the smooth

boundary 8m solutions of the Poisson equation (2.7) and of the Stokes
system (2.19) are infinitely differentiable up to the boundary and obey
the estimates
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Therefore, we obtain (see (2.15), (2.18))

Moreover, the simple computations using (2.10), imply

2.3. Estimates of the dicrepances. Let us define

By the construction

and

Thus, taking

we have
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Furthermore, direct computations using (2.3), (2.4), (2.14), (2.15), (2.18),
(2.23) and the condition y &#x3E; 0, show that satisfy the Stokes
system

with the right-hand side Ho , subject to the estimates

where a = ( a 1, ... , a n ), I a I = a 1 + ... + an. The functions Po
themselves obey the inequalities

REMARK 2.1. Inequality (2.32) coincides with (1.6), where we take
gi = go while (2.31) states better decay at infinity for the com-

ponents uj, 0 (x), j = 1, ... , n - 1, of the velocity field ic; we have in
(2.31) an additional vanishing factor xn Y. The discrepancy Ho also has
at infinity better decay as L1 A. We have in (2.29) an additional vanish-
ing factor xn-y(3 + and in (2.30) we have the factor xn-y(2 +an). This is
the case, since we have already compenseted the principal at infinity
terms in equations (1.2).

REMARK 2.2. Equation (2.13) describing qo is similar to the

Reynolds equation, which is well in the theory of lubrication
(see the lists of references in [19], [20]).
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REMARK 2.3. In [26] it was shown that divergence free vector fields
with the finite Dirichlet integral may have the nonzero fluxes over the
sections Qi of the outlet to infinity Q i, having the form (1.7), if and only
if there holds the condition

In the case gi (t) = go t 1- Y this yields

One has

and

In the limit case y = n(n + 1 ) -1 1 the logarithmic term appears in the
asymptotic representation for the pressure function P.

REMARK 2.4. The formulas (2.14), (2.15), (2.18) together with (2.26),
(2.27) declare the continuous dependence on y of the power exponent of
Xn = ?7n in the formal asymptotic representation (UF, pF) of the sol-
ution (u, p) with the prescribed flux F ~ 0. For example, at n = 3 we
have

(if y = 3/4, then Xly - 3 in (2.35) is replaced by The relations

(2.35) remain valid also for cylindrical ( y = 1 ) outlets to infinity
(Poiseuille flow) and for conical ( y = 0) ones (2). Notice that p F is a
bounded function only under the condition y  3/4, and at y = 1/2 the
decays and I are of the same order, while =

= 0(1 for y  1/2 and 1 uF(x)1 = O(pF(X» for y &#x3E; 1/2 as

xn - oo .

(2) In the case y = 0 the relations (2.35) are proved by a different argumenta-
tion.
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3. - The higher order terms; formal procedure

3.1. Structure of general discrepancy term. In order to construct
the complete asymptotics series, we need to learn how to compensate
each of the discrepancy terms and to show that a new discrepancy, ap-
pearing after compensation, has the similar form with a smaller expo-
nent of 17,,. To this end, we consider the equations (2.4) with the right-
hand sides, having the special form

where 5:’, f1n are arbitrary functions. We will satisfy the equations
(3.1 ) in main, if we put

where Un (r¡’) is represented as a sum

’ ) is the solution of the problem (2.7) and satisfies the

equations

-

and (U’, Q) is the solution to
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where

The solvability condition for the problem (3.4)

gives us the constant q * :

Thus, if

the constant q * is uniquely determined from (3.6).
The discrepances H(i7’, r~ n ), Hn ( ~ ’ , ~ n ) left by functions (3.2) in

the equations (3. I)i and (3. 1)2 can be written in the form

It is easy to see that the new right-hand sides have the same form as it
was in (3.1) with the only difference that the decay exponent A is

changed to A = A - 2y. Therefore, this process can be extended and we
can look for the approximate solution (U, P) to problem (3.1) in the form
of series in powers of t7,,:
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where 3K is certain set of indeces. From the above considerations it fol-
lows that

3.2. The first exceptional case. Let us suppose that

Then we look for the solution ( U, P) in the form

For Un (r~’ ) = q * ~(r~’ ) + Un°~ (r~’ ) and (U’(t7’), Q(i7’)) we get the
same equations (3.4), (3.5); the relation (3.6) for q * is changed into

and for the discrepances H’(t7’, y.), Hn ( r~’ , r~ n ) we have the formulas
(3.8) at A = 0.

3.3. The second exceptional case. Let

We take

where

Substituting the function (3.15) into equations (3.1) and collecting the
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coefficients of the same powers on and we find that

!7~()?’) is subject to the equation (3.4); (~(~),Q~(~’)) and
(v’tl~ (r~’ )~ ~cl~ (r~’ )) are solutions to

and

The solvability condition for the problem (3.16)o gives

Because of (3.13) the first term on the left of (3.17) vanishes. Moreover,
from (3.13) it follows that y # n(n + 1 ) - l. Therefore, 1 + (y - 1) x
x (n - 1 ) ~ 0 and q * can be determined from the equation

The solvability condition for problem (3.16)1 has the form

and it is valid automatically because of (3.13).
The discrepances H’ ( r~ ’ , r~ n ), Hn ( ~ ’ , ~ n ) left by functions (3.14) in the
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equations (3.1)1 and (3.1)2 can be written in the form

3.3. The third exceptional case. It can happen that ll meet both con-
ditions (3.11), (3.13):

In this case we take

Repeating the above considerations, one can find the boundary value
problems of type (3.16) to determine the coefficiens 

( U’ ~ °~ , Q(O) (r¡’» and ( U’ ~ 1 ~ , ~ ~ 1 ~ ( r~ ’ )). The solvability condition for the
problem corresponding to (U’(0), ~ ~ °~ ( r~ ’ )) will give the constant q *

and the solvability condition for ( U’ ~ 1 ~ , ~ ~ 1 ~ ( r~ ’ ) ) is valid automatically.
The discrepances H’ (r¡’ , )7n) have the same form
(3.19).

3.5. The right-hand sides, containing the logarithmic terms; case
(3.7). From (3.19) we can see that the new right-hand sides

H’ ( ~ ’ , ?7n)g ?7n) may contain the logarithmic terms. If we re-
peat the iterative procedure, the logarithmic terms will be iterated, i.e.
there will appear the powers of In Y n. Therefore, it is necessary to con-
sider the right-hand sides which have the form
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If A is subject to (3.7), the solution can be found as

Collecting the coefficiens at the same powers of we

derive

From the solvability conditions for problems (3.26)~ , j = 0, ...k, we find
the constants q(j)*. Together with (3.24) this gives the linear system of
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algebraic equations

The determinant of the system (3.27) is equal to

(see (3.7)) and are uniquely determined from (3.27). The discrep-
ances H’ , Hn have the form

3.6. The right-hand sides, containing the logarithmic terms; case
(3.11 ). If ll satisfies (3.11 ), we look for the solution (U, P) in the
form
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The simple computations show that (3.25), (3.26) are valid at A = 0 and
for the determination of q *~ ~ we again obtain the system of linear alge-
braic equations with the determinant different from zero. The expres-
sions for the discrepances H’ , Hn are given by the same formulas
(3.28).

3.7. The right-hand sides, containing the logarithmic terms; case
(3.13). Let us consider the case (3.13). We take

Then

the equations (3.25), (3.26) are valid for j = 0, ... , k and for j = 1~ + 1 we
get

The solvability condition for (3.26) at j = 0, ... , 1~ give us the the system
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of equations

which has the unique solution. The solvability condition for (3.32)

is valid because of (3.13). The expressions for the discrepances have the
form

3.8. The right-hand sides, containing the logarithmic terms; case
(3.20). Finally, if we meet ~l, satisfying (3.20), we take

and we are led to the same conclusions as in the case (3.13).

4. - Concrete problems; construction of the asymptotics.

Below we apply the described in Section 3 algorithm in order to con-
struct the asymptotics of the solution (u, p) to the Stokes problem (1.2),
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(1.4) with the right-hand side f , having either the compact support or
admitting the special series representation. We also apply the algo-
rithm to construct the asymptotics of the solution to the nonlinear
Navier-Stokes problem (1.3), (1.4) with zero right-hand side f .

4.1. Stokes problem with the right-hand side f, having compact
support. As it is shown in Section 2, the main term of the asymptotic
representation for the solution of the problem (1.2), (1.4) with f , having
a compact support, have the form (2.25) (see also (2.5), (2.6), (2.14),
(2.15), (2.18)). It means that

Hence, in virtue of (3.9) we are upder the condition (3.7) and the asymp-
totical series for the solution ( U, P) may be written in the form

where qk are constants,

and Un, k + 1 ( ~I ~ ), k a 1, are represented as the sums

The coefficiens Un° k + 1 ( ~I ~ ), ~ % 1, are solutions to the problem (3.4) at
~ =~+i~ =~o’2(/c + l)y and

while 1, , are solutions to (3.5) at

The constants qk + 1 are found in order to satisfy the solvability condi-
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tion for the problem (3.5) (see (3.6), (3.7)) and are subjected to

Notice that the functions Qk + 1 ( ~ ~ ), k &#x3E; 0, are defined from (3.5) up to
an additive constants. We fix it by the normalization

In the case y = n(n + 1 ) -1 we put

and we are led to the same conclusions. Let

(or the corresponding partial sums from (4.10) if y = n(n + 1)-1 ). We put

It is easy to see satisfy inequalities (2.31)-(2.34) and their

discrepancy in Stokes equations (1.2) obeys the estimates



25

4.2. The Stokes problem with the right-hand side f, having the spe-
cial series representation. Let § denotes the right-hand f of the
Stokes system (1.2) in coordinates n. Assume that F has the following
form

where is an increasing sequence of nonnegative numbers,
,u o = 0, as l - oo, sii are functions in C °° (o).

According to (3.10) we denote by 3K the countable set of numbers
composed by the rule

We enumerate the numbers v by decrease, i.e.

The solution ( U, P) can be found as the sums

In (4.18) Pk(lnr¡n), lnr¡n), In 17,, ), Bk(lnr¡n), 
are polynomials in constructed in accordance with the

scheme described in Section 3, i.e. the coefficiens 

are constants and the coefficiens of Qk ( ~ ’ , Uk(17’, In Y.),
Un, k (r¡’ , are smooth functions depending on 77’. Degrees of these
polynomials depend on the numbers xl (the degrees of the polynomials
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in (4.14)) and also of whether certain Vk meet one of the conditions
(3.11), (3.13), (3.20) or not. Notice that if

the numbers vk never meet (3.11), (3.13), (3.20). Let us put

and

By using the formulas (3.34), it is easy to calculate that the discrepances
in the Stokes equations obey the estimates

REMARK 4.1. If there is no dependence on In ?7n in (4.14) and all
v E 3K satisfy (3.7), then also the coefficiens of the series (4.18) are inde-
pendent of In 77 n -

4.3. The Navier-Stokes problem. We consider the problem (1.3),
(1.4) with zero right-hand side f . The main term of the asymptotic
expansion of the solution (u, p) is the same as in the linear case (see
Section 2). Let us consider the contribution of the nonlinear term
(5 .V) 1-U. Passing to the coordinates {n} we get
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Substituting these expressions into (4.23), we derive

where

Let the solution p) be represented in the form

where 3K is the certain set of numbers. From (4.24) we conclude, in ad-
dition to (3.10), the following rule for the elements of ~

Let us consider now separately the cases n = 3 and n = 2 and denote
by ~3 and ~ the corresponding most narrow sets of indices, satisfying
(3.10), (4.25).

LEMMA 4.1.
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PROOF. The main term of the asymptotic representation for the
pressure P starts in the three-dimensional case from the power
Ào = 4y - 3. Thus, due to (4.25), (3.10)

It suffices to mention that M3 satisfies (4.25), (3.10), since for

we have

In the two-dimensional case ~, o = 3y - 2 and

Taking into account that for

there hold the formulas

we conclude ~ to be the exponent set in the 2D-case.

It is evident that, excepting v = ~, o = n(n + 1 ) -1, the elements

v E 3Kn do not meet the conditions (3.11), (3.13), (3.20). Hence, if
n = 3 and

the asymptotic representation for the solution (U, P) of the nonlinear
problem (1.3), (1.4) has the form
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where q1°~’ ~~ , ack, 1 are constants, q1°’ °~ 3) . If

the representation for the solution is the following

where q (0, 0) = 
Let n = 2 and

Then

where 

we take
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if n = 3, and

if n = 2. In the cases n = 3, y = 3/4 and n = 2, y = 2/3, we take the cor-
responding partial sums from (4.27) and (4.29).

We put

One can see that satisfy inequalities (2.31)-(2.34) and their
discrepancy in the Navier-Stokes equations (1.3) obeys the
estimates

Analogously, in the two-dimensional case we put
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and for the discrepancy we derive the estimates

REMARK 4.2. Using the above considerations one can construct
also the asymptotics decompositions of the solution to the Navier-Stokes

problem with the right-hand side f, having the series representation
(4.14).

5. - Justification of asymptotic decompositions.

5.1. Stokes and Navier-Stokes problems in weighted Hdlder spaces.
For an arbitrary domain ,S2 c we denote by C 1, 6 (Q), 1 being an inte-
ger, 0  3  1, a H61der space of continuous in S~ functions u which
have continuous derivatives nau = [ = a 1 + ... +
+ a n , up to the order 1 and the finite norm

where the supremum is taken over x E S~ and

Let us consider now a domain Q = 2, 3, having m outlets to
infinity, i.e. outside the sphere 1 x I = Ro the domain Q splits into m con-
nected components S~ i (outlets to infinity) which in some coordinate
systems are given by the relation (1.7) with the function gi satisfy-
ing (1.8), (1.9). Below we omit the index i in the notations for local
coordinates.

In the domain ,~ we introduce the weighted H61der space 
consisting of functions u, continuously differentiable up to the order 1 in
S~, and having the finite norm
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The solvability of the Stokes (1.2), (1.4) and Navier-Stokes (1.3),
(1.4) problems in weighted function spaces has been studied in [23],
[24], [25]. Here, for the justification of the obtained asymptotic decom-
positions, we need the following theorems.

THEOREM 5.1 [24]. Let Q c n = 2, 3, be a domain with m ; 1

outlets to infinity, aS~ E C l + 2, a , f E where 1 ~ 0, 6 E (0, 1)
and -T is an arbitrary vector. Then there exists a unique solution (u, p)
of the linear Stokes problem (1.2), (1.4) with zero fluxes (Fi = 0,
i = 1, ... , m ) such that u E C ~+ 2, a ( S~ ), and there
holds the estimate

In pccrticular, from (5.1) it follows that

THEOREM 5.2 [25]. Let Q c 1f~3 be a domain with m ; 1 outlets
to infinity. Assume that, in addition to (1.8), (1.9), the functions gi
satisfy the conditions (1.10), (1.11). Let aS~ E C L + 2, a , 1 , 0, 0  6  1,

Then for arbitrary fluxes Fi , i = 1, ... , m, there exists a solution (u, p)
of the Navier-Stokes problem (1.3), (1.4), admiting the estimates

I F 1 = (~"ZF2)n2. For small 1 F I the solution (u, p) is unique.
~ 

i 

REMARK 5.1. Theorem 5.2 is also valid for nonzero right-hand
sides f having an appropriate decay at infinity.
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5.2. Estimactes of the remainder in asymptotic formulas; Stokes
problem,. Let domain with 1 outlets to infin-

ity ~, i of the form (1.1). Assume that 8Q E C L + 2, a , L ~ 0, 3 e (0, 1 ), and
denote by ), the smooth cut-off functions equal to 1 in QjBQko+l i and
equal to 0 in We specify the spaces by taking

= t1 - Yi i in the definition of the norm ]] . ; Cl, d (Q)||. .

THEOREM 5.3. (i) Let with

Then there exists a unique solution (u, p) of the Stokes problem (1.2),
(1.4) with

The solution (u, p) admits the asymptotic representation

where are the 1+2 partial 6 sums (4.11 ) constructed for the outlet
to ð holds theto zn, Q i , v E -; (Q), pq E ; (Q) and there holds the
estimate

(ii) Assume that in each Qi i the right-hand side f = ( f ’ , in) can be
represented as a sum
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where

an increasing sequence of nonnegative numbers, = 0,
-~ 00, are smooth functions and f ~* ~ = (f( ~’ , f n* ~ ) E

where ~ - 00 as 1 - 00 are the numbers defined by (4.15), (4.17).
Then there exists a unique solution (u, p) of the Stokes problem (1.2),
(1.4), satis, fying the inclusions (5.8) and the representation (5.9) with

being the partial sums (4.20) and v E Cl+2,dae* (Q), VqE
E (Q). There holds the estimate

PROOF. The solvability of the problem (1.2), (1.4) follows from The-
orem 5.1. In fact, if we represent the velocity field u in the form 5 =
= A + iv, where A is the divergence free vector field satisfying the in-
equalities (1.6), we get for (w, p) the same problem with zero fluxes and
the new right-hand side equal to f + vd A. It is easy to verify that f +
+ E C ~ a ( S~ ) and, thus, according to Theorem 5.1 there exists a sol-
ution (w, p ) with w E Cl + 2, dae(Q), Vp Since 

we also have u E Cl + 2, dae(Q).
Let us represent the solution (u, p) in the form

where are either the functions (4.11 ) in the case (i), or the
functions (4.20) in the case (ii), and is a solution of the equa-
tion
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We have

and the condition

yields

Thus (see [6]), (5.16) has a solution W ~N~ E Cl + 2, a ( S2 ~ko + 2~ )_ with

supp WEN] + 312). Without loss of generality we assume that WE’3 is
extended by zero to S~~S2 « + 2~ . The function V is solenoidal and satis-
fies together with q equations (1.2), (1.4) with Fi = 0, i = 1, ... , m and
the right-hand side

which belongs in the case (i) to the space C~’ a ( S~ ) (see (4.12), (4.13),
(5.7)) and in the case (ii) to the space Cj§*~ (Q) (see (4.21), (4.22), (5.13)).
Applying Theorem 5.1 and taking v = W[N] + V, we conclude the proof
of the theorem.

REMARK. 5.2. In particular, from (5.10), (5.14) there follow the

pointwise estimates for the remainder ( v , q):
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in the case (i), and

in the case (ii). Notice that the condition (5.12) implies 2( 1 - y i ) +
+ Vbi) - 2 y i - 1 + E  - (n - 1 )( 1 - y i ) and, therefore, also in the case
(ii) we have got the improved decay estimates for the remainder ( v , q)
(comparing with the estimates for (u, p)).

REMARK 5.3. Applying the results from [23], it is also possible to
obtain the estimates of the remainder ( v, q) in weighted Sobolev spaces
Vi’ (Q) with the norm

where

For example, let there exist numbers s* = s* (N) &#x3E; 1, i = 1, ... , m,
such that

Suppose that in the case (i) f E (Q) with l ; -1, si &#x3E; 1 and is

defined by
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5.3. Estimates of the remainder in asymptotic formulas; Navier-
Stokes problem. According to Theorem 5.2, the solvability of the
Navier-Stokes problem (1.3), (1.4) is proved for arbitrary large data
only for three-dimensional domains Q under the additional conditions
(1.10), (1.11). For gi (t) Yi (1.10), (1.11) mean 1/4  y i  1. If S~ c
c W or Sz c R3 and 0  1/4, the existens results are known only for
small data (see [25]). We start with the justification of the asymptotic
representation for the solution (5, p) of (1.3), (1.4) in the case of small
data without any additional assumptions on y i .

THEOREM 5.4. Let ,S~ eRn, n = 2, 3, be a domain with m ~ 1 out-
lets to infinity Q i of the form ( 1.1 ) and let / E (Q) with

i = 1, ... , m. T hen for sufficiently 1 F I f ; I the
Navier-Stokes problem (1.3), (1.4) has a unique solution (u, p) satisfy-
ing the asymptotic representation

where ~i N, L~ ) are (4.32), (4.35), v E
E C~* 2, d ( S~ ), &#x3E; and there holds the estimate

PROOF. We prove the theorem in the case n = 3. For the two-di-
mensional case the proof is completely analogous. We look for the sol-
ution (5, p) in the form

where is the solution of the divergence equation (5.16). Then for
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(V, q) we derive the problem

where

Denote

Let with ze* defined by (5.17). By using the estimates
(4.33), (4.34) it is easy to verify that M V E C~~ a ( S~ ). Thus, the problem
(5.23) is equivalent to an operator equation in the space C~* 2~ a (,~);

where a V = ~ ~M V and .,e is the operator of the linear Stokes problem
(1.2), (1.4) with zero fluxes. In virtue of Theorem 5.1 the inverse opera-

is bounded. The direct computations
show that
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where C( 1 F 1 ) --~ 0 as ~ 1 F I ~ 0. Hence, for sufficiently small I Fi ,

i = 1, ... , m, and f ; (Q) the operator is a contraction in a small
ball of the space and the theorem follows from the Banach
contraction principle.

Let us consider now the Navier-Stokes problem (1.3), (1.4) for arbit-
rary large data in the case of three-dimensional domains Q, satisfying
the additional condition

THEOREM 5.5. Let Q c R3 be a domain with m ~ 1 outlets to infini-
ty Q i of the form (1.1) and let f = 0. Assume additionaly that (5.24)
holds and let (u p) be the solution to (1.3), (1.4) from Theorem 5.2. Then
in each outlet to infinity S~ i the solution (u, p) admits the asymptotic
expansion (5.19) with v E C~* 2~ a ( S~ ), Vq E C~~ a (Q), where ae* is defined
by ( 5. 17)). Moreover, there holds the estimate

PROOF. Because of (5.24) the conditions of Theorem 5.2 are satisfied
and there exists a solution (u, p) of (1.3), (1.4) 
Vp E C~ a (S~) = 4 + 1 + 3). Moreover, (u, p) satisfies the estimate

(5.5). In particular, from (5.5) follows that

By the construction (see Section 4.3) the same estimate is true for the
function L~. Let us represent the solution (u, p) in the form (5.22).
For the remainder (V, q) we obtain the problem (5.23). By using (5.26),
it is easy to verify that

In Section 4.3 we have proved that the discrepency 
(5[~’ ~~ . V ) satisfies the relations (4.33),
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(4.34), i.e.

From (5.27), (5.28) it follows that the right-hand side M V of the prob-
lem (5.23) belongs to the space (Q) with

.We consider the solution (V, q) of (5.23) as a solution of the linear
Stokes problem (1.2), (1.4). Applying to (V, q) Theorem 5.1, we obtain
V E (Q), Vq E (,S~) and the estimate (5.25) with T* changed
to ae(1). Since aei(1) &#x3E; we can repeate the above arguments. After the

finite number of steps we derive V E (Q), Vq E ( S~ ) and the
estimate (5.25). The theorem is proved.

~ 
REMAR,K 5.4. Theorem 5.5 remains valid if the right-hand side

f E with T* defined by (5.17).

REMAR,K 5.5. In the same way the asymptotics of the solutions to
the Stokes problem can be investigated near the singularity point of the
boundary of the peak type, i. e. if 0 E aS~ and in the neibourhood of 0 the
boundary aS~ can be represented in the form f x: 1 x’ I I  Xn E

E ( o, 3)) with lim = 0 and lim = 0. Assuming that the
U 

right-hand side f has the series representation in powers of Xn = 77 n,
one can construct and justify the asymptotics of the solutions just by
repeating word by word the above arguments (even with some simplifi-
cations).

REMARK 5.6. Finally, we mention that, of course, all results of
the paper remain valid in domains Q having the outlets to infinity Q i
with noncircular sections, i. e. for S~ i given by the relations

where ,Si is an arbitrary bounded domain in IE~n -1. One can see that we
did not use in the proofs the assumption that Qi i has a circular cross-
section. The same is true for the context of Remark 5.5. All the formal
calculations in these cases can be taken from [20].
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