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Pencils of Binary Quartics.

C. T. C. WALL(¥*)

1. — Introduction.

The objective of this article is to discuss the classification and invari-
ant theory of pencils of binary quartics. The main motivation for this is
the intrinsic interest of the question. Indeed, it is now known (see [1])
that for very few types of quantics (a single homogeneous equation) is
the ring of invariants a complete intersection (for degree d in r variables
we require eitherd <2, d=3,r<4ord <6, r=2),soitis of interest to
document such further natural situations where—as here—the ring of
invariants is a complete intersection.

There are, however, two additional reasons for writing this paper at
this time. One is that the results (or at least part of them) are used in re-
cent work of the author [6] giving an algorithm to list possible configura-
tions of singularities on quartic surfaces in P3(C), given that the singu-
larities are isolated and not all simple.

The other is that whereas at the time of writing [5] I considered these
questions but my notes were incomplete due to the difficulty of calecula-
tions of invariants, these can now be performed relatively easily using
computer algebra (my preference is for MAPLE).

The paper opens with a section discussing pencils of binary quantics
in general, and establishing basic ideas and notation, in particular a sym-
bol descibing the ramification associated with each case. The various
types of pencil of binary cubics and quartics are then listed and named,
thus defining a stratification ad hoc. The map from strata to possible
symbols is not surjective; in these degrees it is injective.

The next section discusses the application of geometric invariant the-
ory, and determines the structure of the ring of invariants. Most of the
invariants were already given by Salmon in [4], but his list is incomplete.

(*) Indirizzo dell’A.: Department of Pure Mathematics, University of Liver-
pool, Liverpool L693BX, Gran Bretagna.
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The case of pencils of binary cubics was analysed by Newstead in [3], a
source I have found very useful.

Then we discuss the notion of symmetry of forms and of pencils. We
discuss non-stable strata in a separate section; in the remainder of the
paper we describe the stratification of the moduli space.

The discussion of symmetry leads to a more systematic way to view
the strata. We re-present the list, and show how to characterise the cas-
es on it.

Finally we calculate the invariants on the examples from our lists of
strata, and list the symmetry types that occur in special cases.

1. — General notions.

Consider the space V =V, of homogeneous polynomials of degree »
in the variables 2 and y. A pencil of binary n'* is a 2-dimensional sub-
space of V. We can define it by picking any two linearly independent
members f=f(x, y) and g =g(x, y), and write (f, g). Thus a typical
member of the pencil is a linear combination pf+ qg. We regard two pen-
cils as equal if we have the same subspace of V and as isomorphic if they
are equivalent under some automorphism in GL(V).

We can distinguish two main subcases, according as f and g do or do
not have a common factor (of degree at least 1). If there is no common
factor, then for any linear expression y — tx (or x) there is a member of
the pencil, unique up to a scalar factor, which it divides: it is determined
by pf(1, t) + qg(1, t) =0 (note that by hypothesis, f(1, t) and g(1, t) do
not both vanish). Equivalently, the point of projective space P!(C) deter-
mined by the ratio (x: y) determines a unique ratio (p: ¢), and hence a
point of projective space P!(C). We can thus identify such pencils with
rational maps (of degree n) from P!(C) to P!(C). Note that we regard
these as different projective spaces, so will not attempt to iterate such
maps. Two ways of obtaining a single polynomial from a pencil are imme-
diate. The Jacobian J is defined, as usual, as 3f/dx-3g/dy — of/dy-3g/ox.
It thus is homogeneous of degree 2% — 2. Up to a constant factor, it de-
pends only on the pencil. The discriminant A is the usual discriminant
of pf + qg considered as polynomial in x and y. This is homogeneous of
degree 2n —2 in p and gq.

In the case of a pencil without common factor, J represents the set of
branch points of the corresponding rational map, and 4 the set of images
of these points.

This statement is made more precise in the following lemma. Here we
write v,(f) to denote the multiplicity of x as factor of f: this is equal to r
if f is divisible by 2" but not by x"*!.
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LEmMMA 1.1. (i) If the pencil has no common factor, then v (J) =
=1 —1 if the member pf+ qg = h, say, of the pencil divisible by x has
vo(h) =7, and v, (4) =7 if f has n —r distinct linear factors.

(i) If the pencil (f, g) has Jacobian J and discriminant A while
for f' =af, g' =xg we have J' and A’', then J' =x>J (up to a multi-
plicative constant). If x divides both f and g then A' = 0; otherwise x di-
vides pof + qog for a unique (py: @) and A' = (pqo — qpo)* 4 (up to a
constant).

Proor. The assertions for J follow by elementary calculations. If
v,(f) =rand v, (g9) =s>r then J is clearly divisible by 2" **~! and we
may check that the coefficient of x”**~1y2"~"=5~1 is non-zero.

Now suppose that f has n — r <n distinet linear factors; write f; for
their product, and f = f, f;, so that both Jf/dx and 9f/dy are divisible by f;.
Now A4 is the determinant of the matrix of coefficients of the zy® (a +
+b=2n—2)in(pf + qg)/dx and 8(pf + qg)/3y. This is a sum of 22" ~ 2 sim-
ilar determinants each obtained by omitting either p or ¢ in each row,
hence each a multiple of some p2" =2~ {q?,

If ¢t <r we have at least 2n — 1 — r rows formed from f. The corre-
sponding polynomials, of degree 2n — 3, are all multiples of f;, of degree
r, so form a vector space of dimension at most 2n —2 — r. The corre-
sponding determinant thus vanishes. Thus A4 is divisible by ¢”

First suppose the pencil has no common factor. Since a general mem-
ber does not then have a repeated root (by Bertini’s theorem), 4 does not
vanish identically. We have proved that it is divisible by a product P, say,
of terms corresponding to members of the pencil with repeated factors.
We will now show that P has the same degree 2n — 2 as A4: the desired
result will follow.

As described above, the pencil defines a rational map from P! to P
Let us calculate Euler characteristics d¢ la Riemann-Hurwitz. Since
x(P') = 2 and the degree is 7, the characteristic of the source P! is equal
to 27 minus corrections due to the branching behaviour. A member of
the pencil with just n — r distinct factors corresponds to a point with just
n — r distinet pre-images, and hence requires a correction of r. Since the
characteristic of the source is 2, the sum of these correction terms must
equal 2» — 2. This proves our claim.

Now consider f' = «f, g’ = xg; we may suppose that fis divisible by «,
so qo = 0. Write

R =0/ox(pf+q9), S=03/9y(pf+qg).

Then 4 is the determinant of {x*y°R, x°y°S|a+b=mn—2} with re-
spect to {x°y%|c+d=2n—-3} and A4’ is the determinant of
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{xy’R’, x°y*S"' |a+b=n—1} with respect to {x°y®|c+d=2n—
— 1}, where

R’ =3/0x(x(pf+q9)), S'=03/dy(x(pf+qg)).
It follows from homogeneity that
R'=(n+1)xR +nyS, S'=xS.
Thus elementary operations transform the above list to
{x®* 2y’ R, x°*2y’S|la+b=n—2},
2y 1S, m+1)ay” 'R+ny"S.

The first part of this list has determinant A4 with respect to {x°*2y%|c +
+d =2n — 3}, so we must extract the coefficients of xy 2" ~2, y>"~!in the
last two terms. We thus see that (up to a non-zero scalar) 4 is multiplied
by the square of the coefficient of ¥~ ! in S, or equivalently, that of " in
g, which is zero if x also divides g, and is a non-zero multiple of ¢
otherwise. ®

We use the above to define a symbol for any pencil to describe its
branching behaviour. First suppose there is no common factor. For each
root of A4 (of multiplicity », say) we list the multiplicities of the factors
(there are m —r of them) of the corresponding member pf+ qg of the
pencil, separated by commas, and enclose this set in parentheses. Do this
for each root of A, and enclose the whole in (square) brackets.

In the case of a pencil with common factor &, say (fh, gh), first we
write the symbol of the pencil ( f, g), Now for each linear factor of &, of
multiplicity 7, if this has already occurred as a factor of one of the mem-
bers of the pencil with a repeated root, we underline the corresponding
number in the symbol r times. If not, we attach a new blank parenthesis
to the symbol and underline that instead. The definition is amply illus-
trated in the lists to follow.

For a pencil with no common factor, we can interpret the symbol
topologically. We have a branched n-fold covering of a 2-sphere; at each
branch point, the symbol provides a partition of » which describes the
nature of the branching. The monodromy given by encircling the point
once is a permutation of the n branches whose cycle type is given by this
partition.

Globally, if we puncture the sphere at the &k branch points we obtain
an unramified covering. The fundamental group of the punctured sphere
is generated by the classes {a;} of loops circling these points, which are
subject to the sole relation a;a,...a; =1 (so generate a free group of
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rank k — 1). This acts transitively by permutations on a set of cardinality
n; the fundamental group of the cover is a stabiliser subgroup.

As we have noted in the above proof, the numerical conditions ensure
that when we compactify this covering by filling in the punctures we ob-
tain a surface of genus 0.

2. — Enumeration.

We begin by enumerating types of pencil of degree n < 3. Note that
pencils with a common factor are enumerated by removing the factor,
and then considering the different places in which it can be inserted in
the symbol. The enumeration with » =3 is given in [3]; see also [5],
where a notation is introduced and normal forms discussed more fully
(though the emphasis there is on the real case).

The first column in Table 1 gives the names assigned in [5] to the
various cases with » = 3. The fourth column is the dimension of the stra-
tum (as a subset of the Grassmannian of 2-dimensional subspaces of the
n + 1-dimensional vector space V). The column headed J gives the multi-
plicities of the linear factors of J. We observe that in each case the num-
ber of such factors equals the dimension. The corresponding column for
A would be the same except for case (¢), where 4 =0.

TABLE 1.
Symbol Normal form J
n=1
L1 (®, y) 0 O
n=2
() (2, ay) 1@
[(2)2)1 (a2, y?) 2 @0
n=3
(e) ()] (23, x2y) 1 4)
© ()] (x2y, xy?) 2 (22
@ @21 (x®, xy?) 2 31
® ex2)H (i@ +y), yix +y) 3 @11
€ 1(3x3)] (x®, y®) 2 (22
B [(38)2, 1)2, 1)] (e, 2%y +y?) 3 @10
A (2, 1)2, 1)2,1)2, D] (23 + oxy?, ox’y +y?) 4 (1,111
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TABLE 2.

Symbol Normal form J
(@) [(;)] (x*, 23y) 1 ()
® [N (x3y, x2y?) 2 (4,2
() [C:HCHE] (x2y(x + ), xy%(x +¥)) 3 222
(@) [@)x2)] (et x?y?) 2 (51
(e) [@@2)] (x3y, zy?) 2 (3,3
(f) [@@):)] (@3 +y), 2y + y)) 3 (321
@ [2)2):)] (@®@+y)P, y* (@ +y)) 3 (L0
(h) [(2)2)(:)( )] (2(x? + 2axy + y2), 4 ©221,1)

y2(x® + 2axy + y?))

(@) [B3)] (x4, xy?) 2 4,2
(7) [BXB)X(:)] (3@ +y), y3 (@ +y) 3 (222
(k) [B)2,1)2,1)] (x4, 23y + 2y?) 3 (4,1,1)
O [B)2, 1X2, 1)] (x3y, xy® +y*) 3 3,21
(m) [(3)(2, 1X2, 1)] (@3 +y), (x +y)Py?) 3 @211
(n) [(3)(2,1)2,1):)] (3 +ky), y2 (e +y)c+ky) 4 2211
(o) [2,1)2,1)2,1)2,1)] (x3y, x(x3 + 3bay? + y?3)) 4 (8,1,1,1)
(» [(2,1)(2,1)2,1)2,1)] (x%y?, y(&® + 3bay® + y*)) 4 21,111
(@ [(2,1)2,1)2,1)2, 1)(:)] (x*+axdy+bx2y? x2y2+ay3) 5 (2,1,1,1,1

We now begin the same for pencils of quarties. First we consider cas-
es with a common factor, which we list in Table 2: as before, we accom-
plish this by inserting a common factor in the cases in Table 1.

The precise conditions on the parameters defining these strata will
be discussed below. An exception occurs in case (k), where if a =0 the
pencil contains (2% + %)%, and 4 has type (2, 2, 2). We will distinguish
this case and denote it by (k).

We next enumerate the cases with no common factor. The list is sum-
marized in Table 3. In order to display all the data, each case occupies
two lines.

To obtain the list in Table 3, we must argue directly. First suppose
the pencil contains a fourth power, say f=x* We may take the coeffi-
cient of y* in g as 1; perform a substitution ¥’ =y + kx to remove the
term xy® and add a multiple of f to g to reduce g to the form ax3y +
+ bx2y? + y*. (In future we will omit essentially trivial arguments of this
type.) We now find (it is easy using MAPLE) that 4 = q3D, where D is a



Pencils of binary quartics 203
TABLE 3.
Name Symbol J
Dimension Normal form A4
4) [(4)(4)] 3,3)
2 (2, y*) (8,3)
(B) [(4)2, 2)(2, 1, 1)] 3,1,1,1)
3 (x*, x2y® +y*) 3,2,1)
(®) [(4)(8, 1)(2, 1, 1)] 3,2,1)
3 <x4’ y3(x +y)> (3’ 2’ 1)
(D) [(4)2,1,1)2,1,1)2,1,1)] 3,1,1,1)
4 (x*, x3y + 3bx2y2+ y*) (3,1,1,1)
(E) [(2,2)2, 2)2, 2)] (1,1,1,1,1,1)
3 (x?y?, (@ +y?)P) (2,2,2)
(F) [(2,2)2, 2)(2, 1, 1)2, 1, 1)] (1,1,1,1,1,1)
4 (x®y?, («® + 2axy + y*)?) 2,2,1,1)
(@ [(2, 2)@3, 1)3, 1)] (2,2,1,1)
3 (x3(x — 2y), y3(4x + 7)) 2,2,2)
(H) [(2,2)8, 1)(2, 1, 1)(2, 1, 1)] 2,1,1,1,1)
4 (x3y, (22 + 2axy + y2)?) 2,2,1,1)
o)) [(3, 1)(3, 1)3, 1)] (2,2,2)
3 (x3(x + 2y), y3(2x + ) 2,2,2)
N [, 1)3,1)2,1,1)2,1,1)] 2,2,1,1)
4 (x3(x + 4ky), y3(x + ) 2,2,1,1)
(K) [(2,2)2,1,1)2,1,1X2, 1, 1)2, 1, 1)] (1,1,1,1,1,1)
5 (x2y?, x* + bady + daoy® + y*) 2,1,1,1,1)
() [, 1)2,1,1)2,1,1X2,1,1)2, 1, 1)] 2,1,1,1,1)
5 (x3y, 2%+ cxy? + dwy® + y*) 2,1,1,1,1)
(M) [(2,1,1)2,1,1x2,1,1x2,1,1X%2,1,1)2,1,1)] (1,1,1,1,1,1)
6 (2t —22y2, ax* + bxdy + doy3 + y*) (1,1,1,1,1,1)

cubic (not divisible by ¢) with discriminant a2(27a2 + 8b3)3. We thus
have cases (A), wherea=b=0,(B)witha=0,b=0,(C)witha=1,b=
= —3/2, and (D) where none of these occur. A more convenient normal
form for (C) is given in Table 3.
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Next we enumerate cases where the pencil contains no fourth power
but has two members each with only 2 distinct prime factors. First sup-
pose both of these have multiplicities (2, 2). Then we can take f=x%y?,
g= (22 +2axy + y?)%. Here we have 4 = p?q®D where ¢ divides D only
if a®2=1 (which is excluded since the pencil contains no fourth power)
and D has a repeated root if and only if @ = 0. We thus have cases (&)
with @ =0 and (F) with a = 0.

Next suppose we have multiplicities (3, 1) and (2, 2), so we can take
f=x%yand g = (% + 2axy + y2)?. Then again 4 = p2q2D with neither p
nor q dividing D; the discriminant of D is (a? + 3) (up to a constant). We
thus have cases (G) with a? = —3 and (H) otherwise. If both f and g have
multiplicities (3, 1) we can take f=x3(ax + by) and g =y3(cx + dy),
where as there is no common factor, ad(ad — bc) # 0 and as there is no
fourth power, bc = 0. We again have A4 = p2q2D with neither p nor q di-
viding D; the discriminant of D is (ad — bc)(8ad + be)(4ad — be). The
case 8ad + bc = 0 again yields the stratum (G); otherwise we have case
(I) with 4ad = bc and case (J) where the above discriminant does not
vanish.

There remain three cases: (K) where f has factor multiplicities (2, 2)
but each other member of the pencil has at least 3 distinet linear factors;
(L) similarly with (3, 1) and the generic case (M).

In all cases in Table 2 and Table 3, the dimension of the stratum is
equal to the number of distinct linear factors of A, except in cases
(@), (b),(d),(g) where there is a common repeated factor and 4 =0; in
these cases, we may count the factors of J instead. Apart from these, the
factors of A4 correspond to those of J except whenever the symbol con-
tains (2, 2) (in Table 2, only cases (m) and (p)).

A more interesting remark is that the symbol [(2, 2)(2, 2)(3, 1)]
does not appear. This could be predicted from the topological interpreta-
tion. For if such a cover existed, we could find permutations of a set of 4
objects, of respective cycle types (2, 2) (2, 2) and (3, 1), whose product
is the identity. But this is manifestly impossible.

3. — Invariant theory.

To apply invariant theory in its simplest form, we consider generic
quartics (or indeed 7 %) f, g, and the action of GLy; X GL, on the polyno-
mial ring in the coefficients of f and g, where one copy of GL, acts by lin-
ear substitutions in « and y and the other by linear substitutions in fand g.

There are several ways to construct invariants of a pencil of binary
quartics. One may consider pf + qg as a quartic in « and y and take its in-
variants: its self-transvectant I(p, ¢) and its catalecticant J(p, q). We
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then have the discriminant DI of I(p, ¢), which has weight 2 (in the coef-
ficients of f and also in those of g); the resultant DR of I(p, q) and
J(p, q), which has weight 6; and the discriminant DJ of J(p, ¢), which
also has weight 6. We may also form the Hessian determinant H(p, q) of
J(p, q) and the transvectant DH of H(p, q) and I(p, q), which has weight 4.

Alternatively we may start with the Jacobian J and construct its in-
variants as a binary sextic (our version of these - including the algorithm
to compute them - is taken from [2], p.156). We denote these by J1,, J1,,
JIg, JI,, and J1;5, where the suffix gives the weight in each case. We re-
call that the first four of these are independent, while the square of JI;
may be expressed as a polynomial in them. More precisely, we call an in-
variant @ even if ®(—f) = @(f), and odd if the sign is changed. Then
the even invariants form a polynomial ring in J1,, JI4, JI; and J1,y; each
odd invariant is divisible by JI;5, with quotient an even invariant.

(We could also consider the invariants for 4 but here the weights
would be tripled, and in any case as 4 =41(p, q)® + 27J(p, q)* many of
these can be recovered from the above covariants of I(p, ¢) and
J(p, 9)).

We also have the resultant Res(f, g) of f and g.

We choose the following as our basic invariants:

I,=DI, J,=(I,-3DI)/4, I,=64Res(f,g), Is=DR.

These are essentially the same as the invariants given by Salmon [4],
Arts 213-217.

There are various conventions as to the precise definition of invari-
ants, so that each one has a somewhat variable scalar factor. Our conven-
tion is, in effect, defined by the computer programme we have used. It
can be inferred from the following examples which give the invariants
for normal forms for the top dimensional strata (K), (L), (M). Most other
cases may be obtained by substituting in these. In subsequent calcula-
tions we write conventionally C, to denote an unimportant scalar factor
(usually involving a large power of 2).

Write F for the generic quartic F =ax?!+ bx®y + cx?y® + doy® +
+ ey *. Then the invariants for the pencil (F, 2*) (generically in case (D))
are

(48e2, 8e?, 64¢*,0);

for the pencil (F, x3y) (if we set a =¢ =1 this is the normal form for
case (L)) we have

(3d2, 4ce —d?, 64ae®, 0);

and for the pencil (F, x%y?) (here we may set a = e =1 to give the nor-
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mal form for case (K)) we have
(4bd — 16ae, 8ae, 64a%e?,(16ae — bd)® + 27(ad? — b%e)?).

The two latter cases are, of course, independent of b and c respectively,
since these do not affect the pencil. Similarly in the invariants for the
generic case (F, x* — 22y?), the coefficients a and c¢ only appear in the
combination a + ¢. Taking ¢ =0 (for the normal form for (M) we also
have e =1), we have

(4bd—16ae+48e?, —4d%+8ae+8e?,64e*(a—b—d+e)a+b+d+e),

27a2d* — bd3(b + 9d)% + 6abd%e(6d — b) — 384a2de(2b + 3d) +

+27be?(b3+20b2d +116bd*+128d3) — 128ae3(—32a%+108bd +27b%) +
+243p%e?).

As a final example, for the given normal form for case (¢), the invariants
are

(3a2—4ab,4b—a?, 0, b3(a®—-9a%+270)).

In our enumeration of strata, we defined 3 codimension 1 condi-
tions:

there is a common factor,
the pencil contains a perfect square,
the pencil contains a quartic divisible by a cube.

The invariant I; is defined as the resultant DR of I, , and J, ,. It
thus vanishes if and only if these have a common factor. This means that
for some element pf + qg in the pencil, both its invariants 7 and J vanish,
so it has a factor of multiplicity at least 3. Hence the third condition is in-
variantly characterised by the vanishing of I;.

The invariant I, is defined as the resultant of f and g. It thus vanishes
if and only if f and g have a common factor: the first condition
above.

These conclusions were obtained & priori. By direct calculation we
also find that the second condition holds if and only if JZ = I,. These are
the considerations which guided our choice of the invariants to take as
basic. The conditions Ig=0, I,=0 and I, =J# are illustrated on the
above examples.

PRrROPOSITION 3.1. The even invariants of J are expressed in terms
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of the above by the following formulae:
JI, =C (3], — Ip);

JI,=C (71} —221,J, + 63J% — 1351,);
JIg=C (= 3713 + 67812 J, — 27091, JZ + 324J3 —
—8101,(I, — 3J,) — 16001;) ;

157
Tho= =~ 1§+ 9914.J, — 969 13.J3 + 35611373 -

486 45
—25381,J5 — e J5 + v L(=TI3 + 1291} J, — 6571,J% — 81J3) —

320 3645

- I(TIE = T21,J, + 63J2) + 131, — 3J,) + 28001, I .

The odd tnvariant J15 is a product C . Fly Flg of irreducible factors,
where

FIG = 24314(12 - 9J2) + 25616 5

and FI¢ is obtained by substituting A =1,, B=3J,, C =811, and D =
= 6416 m

A(A-3B?(A+B)*-8AC(A + B*(A—38B)A?-4AB + B?) +

2
+ —?:ACz(5A4 —48A3B + 114A%B* - 40AB3 + 9B*) +

4 ’ 1
+§AC3(A2—4AB+BZ)+ §AC4+
+D(38A®+3A4B%2+40A%B3+57TA%2B* +24AB%+ B%) +
+CD(A*—40A%B + 38A2B%2 - 16AB%+ B*) +

1 2 2 2 1 3
+§C D(19A“—-24AB+ B )+2—70 D+

+D?%(3A%+15AB%+2B%) + CD%*(5A —2B) + D3.



208 C. T. C. Wall
ProOF. The result was established by direct calculation using
MAPLE. The calculations were performed as follows. It is enough to con-
sider the generic case (F, x* — x%y?) considered above, with ¢ = 0. Note
that I, has a factor e. Substituting e = 0 yields
I,=4bd, J,=—4d?, I;=27a%d*—bd?(b+9d).

We may solve these equations as

1 I, V31, + bd3(b + 9d)?
p— a=
2 4d 94?2

and hence define substitutions (with new variables iy, jo, %)

1

; 3ig + bd®(b + 9d)*
dzE\/:ié) b=£’ a:‘\/716 ( ) .

9d?

Now for any invariant @ of J (or indeed of 4) we proceed as follows.
Write X for @ computed on the above example. Substitute e = 0 to obtain
A;. Now make the above substitutions for a, b, d in A; and simplify: this
yields a polynomial B, in i, j» and ig. Substituting the computed values
of I,, J,, I for iy, ja, g in B; gives an expression C;. Now divide A; — C;
by the computed value of I, and simplify to obtain an expression A, (the
fact that this division is possible is a crucial check on the calculation). Re-
peat the entire procedure, obtaining in turn B,, C,, A3 and so on. Since
the degree is lowered at each step, the procedure terminates.

The desired formula is now given by the final value D, where D, is in-
ductively defined by Dy=0, D,= D, _, + i{ "' B,, with I, for i,, etc. This
procedure is easily programmed, and running the programme gives the
results above. =

We can also run the programme on other invariants—e.g. those of
the binary sextic A4 (after the first, we just obtain complicated expres-
sions) and, more interestingly, the discriminants, giving

discrim J = 0*1416 y
diserimd4 = C , I,(I, — J£)* 1§,

conforming to the considerations of Section 1.
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THEOREM 3.1. The ring of invariants of a pencil of binary quartics
1s generated by I, Jy, I, I and Fly. The only syzygy is that expressing
the square of Fly in terms of the rest.

The invariant FIy was overlooked by Salmon. We shall show below
how to interpret it.

Proor. We will model our proof on the corresponding argument
given by Newstead [3] for pencils of cubics. We begin with the vector
space V of quartics, containing f and g. A 2-dimensional subspace of V is
determined by its 10 Pliicker coordinates, or equivalently by the exterior
product fA ge N2(V).

As representation of GL, (acting on 2 and y), A?(V) splits as direct
sum of representations of degrees 7 and 3. The Jacobian J is obtained by
projecting f A g onto the 7-dimensional component. As projective variety,
the Grassmannian has dimension 6 and we are projecting onto a 6-di-
mensional linear space. This projection is generically smooth, as we see
by a simple calculation in local coordinates. Since the Grassmannian va-
riety has degree 5, this is also the degree of the projection. It follows
that the field of invariants of J is an extension of degree 5 of the field of
invariants of the pencil.

The field of invariants of J is an extension of degree 2 of the field
generated by the independent invariants J1,, J1,, JIg and JI,,. We have
expressed these as polynomials in our basic invariants I, Js, I, I;.
Comparing the degrees of these invariants we see that we have a field
extension of degree (2x4X6x10)/(2X2Xx4x6)=>5. Moreover the
quadratic extension given by JI;5 corresponds to the quadratic extension
given by FI,. Since our invariants generate a field over which the invari-
ants of J generate an extension of degree 5, it follows that we do indeed
have the field of all invariants.

It remains to show that this field contains no polynomials which are
not expressible as polynomials in the given invariants. Suppose it does,
and that A, B are polynomials, with no non-trivial common factor, such
that

A(127 JZ, 147 IG)
B, Jy, I, Ig)

when evaluated for a generic pair ( f, g) of binary quartics, reduces to a
polynomial in the coefficients. We may suppose without loss of generality
that A and B are homogeneous, and that we have a counter-example of
minimal degree.
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We recall that substituting f=F, g =23y gives

(12, Jz, 14, 16) = (3d2, 4ce — Cz, 640/83, 0).

Since the first three of these are algebraically independent, substituting
in B will yield zero identically only if I divides B. But, in the case when f
and g are generic, I is irreducible (it is so already in Case (K) for
example), so since A/B becomes polynomial in this case, I; must also di-
vide A: a contradiction.

Thus A(3d?, 4ce —d?, 64ae?, 0)/B(3d?, 4ce — d?, 64ae®, 0) has
non-vanishing denominator, so is a homogeneous polynomial in a, c, d
and e: say P(a, c, d, e). It follows that

A(ly, J, 1y, Ig) _p Iy I, +3J, \/E 1
By, 75, In, 1) ’ AR

64 4

since this holds on substituting I, = 8d?2, J, = 4c — d?, I, = a. Since the
left hand side is a rational function, \/T, can only appear on the right
hand side via its square. Hence the right hand side is a polynomial
Cy, J3, 1y).

Now set

A ,(127 J27 14’ 16) =A(127 J2’ 147 16) - B(129 JZ’ 149 16) C(I2’ JZ, 14)
Then A'/B has the same properties as A/B, and vanishes for the above
example. But this example is the generic element of its stratum. Thus
A' /B vanishes whenever I = 0. As above, it follows that this, and hence
A', is formally divisible by Is: A’ =I;A". But now A”/B has the same
properties and lower degree, contradicting the inductive hypothe-
sis. =

ProorF. Since we have established our invariants by comparison with
the ring of invariants of the jacobian J, it is of some interest to consider
the induced map of moduli spaces in more detail. We confine ourselves to
finding its branch locus. This is given by the vanishing of

o1, J1, J1g, J1,)
8(12, J21 I4v 16)
(after a brief calculation in MAPLE). The vanishing locus of this function

meets our strata in a rather complicated manner: we will not investigate
this further.

=C ., +3Jy) FI,

4. - Pencils with symmetry.

As a preliminary to discussing symmetry of pencils, it is convenient
to note the situation for binary sextics, or more generally, » . We define
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the symmetry group of a form F to be that subgroup of GL, which trans-
forms F' to a multiple of itself, or (better) its image in PGL,.

For the n™ power 2™ of a single linear form, we obtain the full group
of upper triangular matrices. For a monomial 2"y"~" we have the group
of diagonal matrices, augmented, if r = n — r, by the transposition of the
two factors.

In all other cases, the subgroup of PGL, preserves a finite set of at
least 3 points on the projective line, hence is itself finite. It may thus be
taken to be contained in a maximal compact subgroup PU,=SO; of
PGL,(C). This group is thus cyclic, dihedral, or one of the 3 polyhedral
groups. Let us write C, for a cyclic group of order n; D,, for a dihedral
group of order 2n; and Tet, Oct, Icos for the respective polyhedral
groups.

If there is a symmetry of order k, we may conjugate it to diagonal
form. This transforms f to the product of a monomial by a polynomial in
x* and y*; this still leaves the freedom to multiply x and y by constants.
Excluding the case when f is a monomial, it follows that k <n.

Now we fix n =6. For f not a monomial, we have the following
cases:

fo=u(x®—y®),
fi=ax®+bady®+ cyb,

g5 =’y +a’y’,
fo=axb+bxty?+ caly®+ dy®,

S R
Il
DD DN W W »m

9o = ax5y + baxdy® + cay®.

The case k = 6 is given by taking b =0in f;; the case k=4 by b=d =01in
foorby b=01in g,. For f; and g,, if ac # 0 we can reduce to a = c =1 and
have a further symmetry interchanging « and y, giving a dihedral group.
In fact all cases admitting the four group D, can be reduced
to gs.

Case f; is characterised by the vanishing of the invariant 7;5. The only
case of a group neither cyclic nor dihedral is given by xy(x* — *), repre-
senting the vertices of a regular octahedron and thus admitting the octa-
hedral group.

Now we turn to the case of pencils. Here we consider the product
GL, X GL, of the groups of linear substitutions on the variables (x, y)
and on the forms (p, q), and consider the action of this group on pairs
(p, q)- Since, by hypothesis, p and g are linearly independent, the sta-
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TABLE 4.
Name f g Symmetry
group

S4 xt+yt x3y C,

ty xzt+yt x2y? Oct

S3 xt+ 2yl axdy + by* D,

ts x4+ oyl x2y? Cs

S5 ax® + bx2y? +cyt dxdy + exy? C,

t axt+ bx2y?+cy? a'vt+b' 22y +c'yt D,

biliser intersects 1 X GL, trivially, so projects isomorphically into the
first factor. Since the subgroup (x, ¥, p, q) — (ax, ay, a "*p, a ~*q) al-
ways acts trivially, we may project further to PGL,. The resulting group
is, of course, a subgroup of the automorphism group of the Jacobian of p
and g, which we have just described.

In particular, if J has just two linear factors, we may take both p and
q to be monomials: for pencils of quartics, this arises in cases
(a), (b),(d), (e), (i), (A). Here the group is infinite: in case (a) we have the
triangular matrices, in the rest the diagonal ones, with interchange pos-
sible for (e) and (A).

Otherwise we have a finite group, which may be regarded as a sub-
group of SO;. If a eyclic group of order m acts by symmetries, we may di-
agonalise the group to multiply x by m ™ roots of unity, say, leaving ¥ in-
variant, and look for this to multiply each of p and q by a constant. This
implies that each of p and q is equal to a monomial multiplied by a poly-
nomial in £™ and y™.

For pencils of quarties, with the case when both p and ¢ are monomi-
als excluded, this implies m < 4, and leads to the list in Table 4. Here the
cases (sy), (ty) = (E),(t3) are unique up to isomorphism; the 1-parameter
families (s3) and (;) (which is essentially the same as (F')) contain some
special cases, listed in Section 6 below. The 2-parameter family (s;) has a
number of interesting specialisations, which are also discussed in detail
in Section 6.

5. — Non-stable pencils.

In the next section we will use our invariants to describe strata in the
moduli space. As this ignores non-stable cases, we consider these more
fully now.
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Applying geometric invariant theory (in its naive form) to our
situation, we find 3 cases for (f, g) not semistable:

@ g=0;
(ii) x divides f and x* divides g;
(iii) «? divides f and «® divides g;
and 3 cases for (f, g) not stable:
(iv) «* divides g;
(v) x divides f and 23 divides g;
(vi) 22 divides f and x2 divides g.

However, (i) does not correspond to a pencil; and if (vi) holds, then
some other member of the pencil is divisible by 2, so we reduce to case
(iii). The correct list of possibilities is thus the following.

A non-semistable pencil is either of type (ii), which occurs if and only
if the pencil contains a 4™ power and has a common factor: this gives cas-
es (a), (d), (2), (k); or of type (iii), which occurs if and only if there is a re-
peated common factor, viz, for cases (a),(b),(g).

A semi-stable pencil which is not stable is either of type (iv), which
occurs when there is a fourth power, hence for cases (A), (B), (C),(D); or
of type (v), which implies, but is not equivalent to, having a common fac-
tor: it comprises cases (e),(f),(l) and (o)

All invariants vanish for the non-stable pencils; for each of the semi-
stable groups (iv), (v), the invariants take a unique value (up to scaling
by constants) for the whole group. Such a group is typified by the unique
case representing a closed orbit: this is (A) for type (iv) and (e) for
type (v). In the next section we will refer to the corresponding points in
moduli space as (A)* and (e)*.

We now go through these cases considering first, the precise condi-
tions on the normal form in Tables 2 and 3, and second, what is the sym-
metry group in each case.

The first question is quickly answered in most cases, since only for
cases (D) and (o) does the proposed normal form contain a parameter.
For each of these, our reduction to normal form fixed « and ¥ up to scalar
factors: « as the repeated factor; y since in the (o) case, the pencil con-
tains 23y, in the (D) case we eliminated the term in xy3. Now the only
scalars which leave the form invariant involve multiplying « (or %) by a
cube root of unity: this multiplies b by such a root. Thus in both cases b?
is the parameter determining the pencil up to isomorphism.

It follows that the pencil (x*, y(y3+ 8dx®y + ex®)) has type (A) if
d=e=0, type (B) if e=0, d=0, type (C) if e=0, 8d®+e%=0 and other-
wise type (D), with parameter d®/e?# —1/8. The pencil (x®y, x(y® +
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+8dxy? + ex®)) has type (e) if d = ¢ = 0, type (f) ife = 0, d = 0, type (1) if
e#0, d®=e and otherwise type (0), with parameter d3/e = 1.

The same argument as gave the normal form shows also that for each
of (D) and (o) a generic pencil has no non-trivial automorphism; the case
b =0 admits a group of order 3.

We have already discussed the automorphism group in the cases
when each of f and ¢ is a monomial. Here the group is infinite, so the case
is necessarily non-stable. These are the cases (a), (b),(d), (e), (i),(A)

For the remaining cases we recall the list of multiplicities of linear
factors of J:

() ) (k) ) (B) ©
3,2,1) (4,1,1) (4,1,1) (3,2,1) (3,1,1,1) (3,2,1)

In cases (f),(1),(C), J has no non-trivial automorphism, hence nor has
the pencil. In cases (g) and (k) we obtain a group of order 2 (interchange
x and y, resp. change a sign). In case (B), the same argument as for (D)
shows that x and y are determined up to scalars; it is now clear that the
automorphism group has order 2.

6. — Stratification of the moduli space.

If f and g are subjected to a linear transformation with determinant
0, an invariant of weight r is multiplied by 6”. When we calculate the in-
variants (for a case which is at least semi-stable) we shall regard them as
defining the point in weighted projective space P(1, 1, 2, 3) with coordi-
nates (I, J3, Iy, Ig): the results below are given with this understand-
ing. Note that if J is taken as —1, these four invariants are unchanged
but FIy changes sign. Since FI is determined up to sign by the other in-
variants, its value does not yield additional information, and we omit it
from the tabulations to follow.

We next tabulate invariants for all cases giving a unique point in
moduli space. As well as the 1-point strata of Tables 2 and 3, we list other
points picked out by symmetry considerations. The prefix S in the last
two cases denotes an element of a stratum with extra symmetry.

We observe that (s4) and (f3) are the two points at which the moduli
space P(1, 1, 2, 3) is not smooth.

It will clarify our discussion of 1-dimensional strata if we first discuss
cases with symmetry. The generic symmetric case (s,) is characterised
by the equation FI, =0, for a direct calculation shows that FI, vanishes
on it, and F, is irreducible, so its zero locus also is. Special cases of this
may be obtained by substituting in FI¢ and factorising. This leads to 6
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TABLE 5.

Case I, J I, I
(e)* 3 -1 0 0
(V-0 6 1 1 0
(c) -1 -1 0 1
(he) -4 0 0 1
G) 9 1 0 0
(m) 1 0 0 0
(E) -2 1 1 8
(@) - 18 1 1 0
) 0 -3 -3 0
(84) 0 0 1 0
(3) 0 0 0 1
(SH) 0 1 1 0
(Sn) 0 1 0 0
cases, as follows.

Name Condition Equation

(S1) Ig=0 I,=0

(S2) I;=0 8(271, + 12— 121,J, + 9J2)2 = 41,(I, — 6J,)
(S3) I,=0 6415+ I,(I, — 9J,)2 =0

(S4) I,=0 6415+ (I + 37,3 =0

(S5) I4=J22 6416+12(12+18J2)2=0

(S6) I,=J3 6415+ (I, — 6J,° =0

The factors defining (S4) and (S6) each occur squared when we sub-
stitute in FIZ. We can at once identify three of these cases: we have
(82) = (J), (S4) = (h), (86) = (F). For if we take new normal forms for

TABLE 6.

16=0=F19 Iﬁ;tO:FIg 16=0¢F19 I6¢0¢FIQ
I,=0,1,=J% (unstable) (he) (m) (p), (t3)
I,=0,I;=J; (e)*,(4),(Sn) (h),(83),(c)  (n) (@
I,#20,1,=J§ (A)*,(G),(SH) (F),(S5),(E) (H) (K)

1,20, Ii=J7  (J),(SD),(),(sq) (s2) (L) (M), (s3)
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TABLE 7.
Name Normal form
Zero Invariants
Parameter Special parameter values
Nature of special case
(S1) (x%y, 2t + 2axy% + y*)
I, FI, (0,1,a7%,0)
a? 0 1 3 o
(s4) (SH) (0] (Sn)
(82) = (J) (x3(x + 4ky), y3(x + ¥))
Iy, FI, 6k —1),1—2k—2k? 1—4k,0)
k 0 1 4 -8 ©
A (9 ) (@ (e)*
(S3) (x*+x%y?, dady + xy®)
I, FI, (4d, 4,0, —d(d —9)?)
d 0 1 9 o
(Sn) (c) (5 (ho)
(S4) = (h) (w2(x® + 2axy + y?), y*(x® + 2axy + y?))
L, Fi, (302—4, —U«Zy 0,1)
a® 0 1 ©
(ho) (c) (e)*
(S5) (x2y?, 2+ 2cxly — 2cay® — y*)
1,—J, Fl, (4(c*~1),2,4,(1-c*)(c*+8))
c? 0 1 -8 o
(E) (SH) (@ (ko)
(86) = (F) (x?y?, (@® + 2azy + y*))
1,-J%, FI, (2(4a2-1),1,1, —8@?-1)°%)
a? 0 1 0
(E) A)* (ho)
(n) (x3y, y2(x?+ 2axy + y?))
14! 16 (3‘12’ 1- aZ’ 07 0)
a? 0 3/4 1 )
(Sn) (@) (m) (e)*
() (x2y?, y(x® + by’ + y*))
I, I, - J§ (-4,0,0,1-579)
b3 0 1 0
(t3) (m) (ho)
(H) (x3y, (2% + 2axy + y2)?)
I(:?’III_JZ2 (6@2, 1,1,0)
a? 0 1 -3 )
(SH) A* (&) (m)
(s9) (@ +ay®, ax’y +y*)
FI, B(a—4)%, 8+20a—a? —64(a—1)% 729a2(a —4)?)
a 0 1 4 -8 0

A" (© (L) (M) (e)*
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these latter as
) (x3(x+ky), y3(y + kx)),
(h)  (wy(x?®+ kxy), xy(y® + kxy)),
(F)  (x*(x+ky)P, y*(y + ka)?),

we see that in each case there is a symmetry interchanging « and y. Thus
for (J) it interchanges the two terms divisible by a cube; for (&) it swaps
the two common factors and for (') we interchange the two terms which
are perfect squares.

The remaining cases are more easily identified as special cases of the
given normal form (ax* + bx?y® + cy*, dady + exy?) for (s,): viz. (S1) as
the case e =0 (or d =0), (S3) as the case ¢ =0 and (S5) as the case b%=
=4ac. These identifications are all confirmed by checking the invariants.

We may thus organise our strata according to which of I, I,
1, — J#, FIy vanish on them. This gives Table 6, which also shows how all
strata are defined by equations, and hence characterises the cases in Ta-
bles 2 and 3 in terms of invariants. Where there are several entries in
one square in the table, either we have two of the (Sr) strata, with equa-
tions given above, or we have a 0-dimensional stratum, with invariants
given in Table 5.

In Table 7 we list properties of the 1-dimensional strata. Each is re-
garded as a rational curve in moduli space. We identify a parameter for
this curve and list those values of the parameter at which some special
behaviour is encountered, thus describing the closure of the stratum in
moduli space. In virtually all cases this is given by the vanishing of one of
I, I,, I, — JZ, FI, which does not vanish on the whole stratum. Outside
the cases listed, these strata are disjoint.
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