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Continuity Results for Solutions
of Certain Degenerate Parabolic Equations.

GIULIA SARGENTI(*)

ABSTRACT - In this paper we prove the local continuity for essentially bounded
local weak solutions of a large class of degenerate parabolic equations, with
principal part characterized by non standard growth conditions.

1. - Introduction.

The present section is devoted to introduce a class of quasilinear de-
generate parabolic equations of the type

where = S~ x ( o, T), ,~ is a bounded domain in R N and 0  T  00,
6D’ is the space of distributions on and Du denotes the gradient re-
spect only to the space variable. Here we assume:

(1.2) 
F: R x (n, z) - F(n, z)
is continuous in n, uniformly continuous In z .

There exists two functions C1, C2, such that for all 17 E=- R, 

(*) Indirizzo dell’A.: Dipartimento di Matematica, Universita di Roma «La
Sapienza», Piazzale Aldo Moro 2, 00185 Roma, Italy.

E-mail: sargenti@mat.uniromal.it
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for a.e. (x, t) E Q T. Here p &#x3E; q ~ 0, (s), s &#x3E; 0, is a non increasing
and positive function, while s H C2 ( s ), s &#x3E; 0 is a non decreasing func-
tion. For 0~1, we shall assume that is uniformly
continuous and bounded, say for example there exists some constants
0 1  s 2 such that

A measurable function u is a local distributional solution (supersolu-
tion, subsolution) of (1.1) in if it satisfies the following condi-
tions :

and for every compact subset % of S~ and every subinterval of

(o, T]

for every non negative local testing functions =

- ~ cp E ~( S2 T ): cp with support in x x [ tl , 
We can also assume that

for some positive and finite constant M. Moreover

(1.8) 
The maximum principle holds for boundary value problems

~~°~~ 
(associated to equation (1.1) .

Lastly, we assume that a solution of (1.1) can be constructed as the
weak limit in the norm (1.5) of local smooth solutions of regularized
problems where F satisfies the following monotonicity condition:

for all zi , Z2 e R, where {’, ’) denotes the scalar product in RN.
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We always refer to ((C1 (M), C2 (M), M, N, p, q) as the data and we
say C = C(data) if C is a constant which we can determinate a priori in
terms of the previous quantities.

The aim of this paper is to get a regularity result for a solution of
( 1.1 ). More precisely we want to state the following theorem:

MAIN THEOREM. Under the assumptions (1.2)-(1.9), every essen-

tially bounded distributional solution of (1.1) is locally continuous in
QT . Moreover, there exists a nondecreasing, non negative function

such that

for all (Xi, ti ) E K x ( E, T), K a compact subset of Q, i = 1, 2 .

The idea of the proof may be euristically discussed as follows: for
every Q T, there is a sequence of shrinking cylinders around
(xo , to ) such that the essential oscillation of u in these sets decreases to
zero as they tend to zero. The crucial step is to obtain from (1.1) some
basic inequalities. This kind of equations can describe the evolution of
nonlinear elastic phenomena. The stationary case has been widely stud-
ied (see for istance the contributions due to Marcellini [9, 10, 11] for a
wide literature on this subject). Here our approach is completely differ-
ent : we will apply the new techniques mainly developped by Di
Benedetto and usually applied for some nonlinear parabolic prob-
lems-(see [4, 5, 6,14,16])-even in this case, where the main difficulty
is given by the non standard structure condition (1.3). The way we
overcome this obstacle is fully explained in the next section. Section 3 is
devoted to other basic inequalities necessary to prove-in the last sec-
tion-the main theorem.

REMARK 1.1. For the proof of the main theorem it is only necess-
ary to assume instead of (1.7). We can also assume

REMARK 1.2. Main teorem is still valid for the operator

which satisfies (1.2)-(1.8) and it is also continuous in t.
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2. - Notation and local integral inequalities.

Let 1 be fixed. In what follows, we always assume
that 0 and Q are numbers such that:

where Q(g, is the cylinder centered in the origin, with height
cross section Ke ,

For k we define the truncations

We will choose levels k satisfying

where 3 is a positive number to fix later. Since F satisfies (1.9), for all
k E R the functions (u - k) + are subsolutions of (1.1) in the sense of (1.6)
(see [5, chapter II, section 1]). Let Hk be defined as in (2.1). We intro-
duce the logarithmic function

which we briefly denote by Vf(u) and a piecewise smooth cutoff function
~, defined in the cylinder [(xo , to ) + Q(Q, B~o p + 2 )] and such that

We also define the sets

Now we can state the fundamental inequalities necessary to prove
the main theorem. First we need the following lemma:

- 

LEMMA 2.1. Let (1.2)-(1.4) and (1.7) hold. There exists constants
Ci = Ci (Ci (M)), i = 1, 2 such that for all L &#x3E; 1, for all y &#x3E; 0, there
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exists 3 E (0, 1/2 ), which can be determinated a priori in terms of
the data and ~3 E [ q, p] snch that for all zo I E [1, L ], for all
r¡o E R, 

where

PROOF. If (1.4) holds, (2.4) follows with B = 0. If (1.3) holds, we
get

for a.e. (X, t) E By (1.2), (1.3) and (1.7), we get the existence of a
number f3 E [q, p] and of a constant C E [ C1 (M), such that

where I is arbitrarily fixed in [ 1, L ] [ y, M], y &#x3E; 0. Since
(1.2) holds, for all E &#x3E; 0 there exists dE &#x3E; 0 such that Vz, 

We fix - = C1 (M)/2. Collecting the previous inequalities we obtain

for all (n, z) E 1,5 (no, We choose 6 = d(C, (M)) E (o, 1/2). Since

Lemma will follow choosing

PROPOSITION 2.1. Let (1.1)-(1.9) hold. There exists a constant
C = C(data) such that for every cylinder [(xo , to ) + Q(ag, c
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where a E ( 0, 1 ), and for every level

PROOF. It would be technically convenient to have a formulation
equivalent to (1.6) that involves ut. Fix t E ( o, T) and let h be so small
that 0  t  t + h  T. In (1.6) we take t1 = t, t2 = t + h and a function
cp = cp(x). Dividing by h, we get

where Uh is the Steklov average of u,

Now we fix a subinterval [t1, t2] ç (0, + h 5 T and we inte-

grate the previous integral equality over with a testing
function

where u’ is the average of Uk in the x variables,
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with w E C °° (R N ), w = 0 for 1, f w(y) dy = 1. Such a choice
IYI -1 1

of q is admissable since supp cp = Q, Q = x’ x [tl , t2 ], with x’ c %,
at cp E L 2 ( Q ), D n cp E C( ~ ), for any order n . Up to a translation we may
assume (xo , to ) = (0, 0) and we may choose g sufficiently small in order
to have

(see [7, chapter II] for more details ). We will state (2.5) only when the
structure conditions (1.2), (1.3), (1.5)-(1.9) hold since in the case (1.4) we
have nothing to prove. By Lemma 2.1, for all (x, t) E Q(Q, Bop + 2 ), for
all u satisfying (1.7), whatever is the value which the gradient of u as-
sumes, there exists an interval of the type 15-whom the gradient be-
longs to-such that (2.4) holds. Moreover, for all j ~ 1, we can define
the following sets:

Aj = t) E Q(Q, + 2 ): there exists /3~ E [q, p] such that

where Co , C2 are fixed constants for every interval Obviously

moreover, V(.r, t ) e 9o p + 2 ) there exists a number j = j, such that
(x, t) EAJ, so we get

For semplicity we set

for t E ( - B~O p + 2 , 0). We integrate by parts over Qt and estimate the
terms separately. By the regularity of uh and its convergence to uh in
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the norm L 2 (Q), letting e - 0 we get

and then, by the convergence of ~h to u in L 2 (Q), for h - 0 we get

By (1.5) the regularity of Duh and Uk and the use of the local smooth
approximations andicated in the introduction, we get

where C doesn’t depend on E, we can apply Lebesgue theorem: since
Du’ and to a subsequence-converges to DUh and a. e. in Q,
for E ~ 0 we obtain
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(see also [7, chapter II] for the convergence arguments ). Combining
(2.7) with (2.8), we obtain

By means of (2.6), we can write

where

From the definition of Aj, using Holder’s inequality with exponents
+ 2 )/(~i~ + 1) and (3j, choosing a = (3j + 2, we get

Inserting (2.10) in (2.9) and using (2.11), we obtain
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We fix the value

By (2.13), (2.12) becomes

In order to estimate the second term of the right hand side of (2.14)
we observe that since

where is the characteristic function on the set A. Applying Hold-
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er’s inequality we get

We apply (1.3) on the third term of the left hand side of (2.14) in
which also we insert (2.15). This yealds the following estimate:

(2.5) follows from (2.16), using the fact that t was arbitrary in the in-
terval ( - oep + 2 , 0)..

PROPOSITION 2.2. Let (1.1)-(1.6) hold. There exists a constant C =
= C(data) such that for every level k satisfying (2.1) and 1/2
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PROOF. We may assume (xo , to ) = (0, 0) and we work with the sets
A~ and the cylinders t and Qt introduced earlier. We take the
cutoff functions ~ defined in (2.3) indipendent of 0) and
we select the testing functions

where we use the symbol ’ - a u and where uEh is defined as in the proof
of Proposition 2.1.

By direct calculation

which implies that T is an admissable function in (1.6). We follow the
scheme used in the previous proof: we integrate by parts over Q,  t and
consider separately the terms. For E - 0 we get

then for h - 0

In the same way, for E ~ 0

For h -~ 0, the previous inequality implies
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Collecting (2.18) with (2.19), we obtain

We repeat the method used in Proposition (2.1). Define

By Lemma 2.1, using Holder’s inequality with exponents + 2)/
+ 1) and f3j + 2, choosing a = ~i~ + 2, we get

By virtue of (2.2) and (2.1)

Therefore, inserting (2.22) in (2.21), we get
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Inserting (2.23) in (2.20), using (1.3) together with (1.7) and (2.4), we
obtain

We f°1x e as in (2.13) and we omit the third term on the left hand side;
then (2.24) becomes

Arguing as in the conclusion of the Proposition 2.1

Combining (2.26) with (2.25), (2.17) follows.
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3. - Basic results.

Let introduce the following subsets of 

and

The previous definitions imply

where M is the constant introduced in (1.7). In what follows, we always
consider the values E R of the type

where ) * E (0, 1/2 ) and when we want to point out the dependence of k
to ~ ± , we shall write A~ ± , e instead of For sake of semplicity, we
also introduce the following notation:

let m, p &#x3E; 1 and consider the Banach spaces

both equipped with the norm

When m = p we set (Q T) = Vp ( S~ T ). Without loss of generality,
we may assume

We apply the inequalities stated in section 2 to get an estimate of
!~B.!. ..
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PROPOSITION 3.1. There exists a number v + = v + E ( 0, 1 ), v + =
= v 

+ ( cv , ~ + , 0, data), such that if

then

There exists a number v + E ( 0, 1 ), v + = C( data)/B such that if (3.3)
and also

hold, then

Analogous result for the set A~ _ , ~ ~ . .

PROOF. We can assume (xo , to ) = (0, 0). We will work within the
cylinders

where

In Qn we define a sequence of cutoff functions iz such that iz = 1
over Qn , ç n = 0 on the parabolic boundary of 2 nje, 0 ~
~ at ~ n ~ Then we choose

First we observe that

so that (3.1) and (1.10) imply
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We can apply (2.5): using the fact that (u - kn )2 , (u - ~n )q + 2 and
(u_~)p+2B(u_~)q+2~ we get

Let (x) be a non negative piecewise smooth cutoff function
defined in K, , which equals one on Ken + 1 and which satisfies

then ( Since

we can rewrite (3.7) in a more concise way:

By means of Corollary 3.1 in chapter I of [5], Holder’s inequality and
the fact that (u - kn)+ Çn E (0, 1], we get
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By means of (3.8), (3.9) becomes

Next we observe that

indeed, if not, we would immediately get (3.4) and the continuity theo-
rem will easily follows. Thus
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The left hand side of (3.10) is estimated below by

C ombining (3.10) with (3.11), we obtain

We divide (3.12) by 1 and introduce the quantities Yn =
= I so that (3.12) becames

where

By [5, Lemma 4.1, chapt. I], (3.4) follows if (3.3) holds with

(3.6) follows in a similar way choosing in (2.5) a sequence of testing
functions depending only on x and working within the cylinders

The main difference is that in this case
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PROPOSITION 3.2. E (0, 1/2) be a fixed number such that

then for every v + E ( 0, 1 ), there exists a E ( 0, ~ o /4 ), where
~+ = ~+ (~6, (J, data), such that

Analogous result for the set I A-, Q (t)|. -

PROOF. We may assume (xo , to) = (0, 0) and choose in (2.2) the
values

where 0  ~ +  ~/4 will be chosen later. In this way (u - 1~)+ ~
~ ~o cv ~ 1/2 so that (2.1) is satisfied with 3 K 1/2. We can apply proposi-
tion 2.2: we choose a testing function ~ such that

Using (3.13), (3.15) and the fact that 0  ~ 1, we get that the right
hand side of (2.17) is majorised by

We minorise the left hand side of (2.17) by

(3.17) together with (3.16) gives

To prove (3.14), we choose C+ from the relation
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4. - Proof of the continuity theorem.

In this section, we prove the main theorem following the method
used in [6, Sections 5-29] and [14, Section 4]. Up to a translation we can
assume (xo , to ) _ (0, 0) and choose the parameter 0 equal to 1.

The first alternative.

If (3.3) hold, thanks to (3.4), we can apply proposition 3.2. (3.14) im-
plies again (3.3) from which (3.4) follows in the cylinder
Q(e/4, (e/4)P + 2 ). This joined with the analogous result for 
plies 

’

where t7 = q(m) E (0, 1). Thus, going down from Q(e, ~Op + 2 ) to

o p + 2 ~8 ), the oscillation of u decreases by a factor t7.

The second alternative: the case N = q + 2.

Assume that both (3.3) and the analogous for A~ - , e ~ I are violated.

Arguing as in [6, sections 5-9], we get the existence of a constant
C = C(data) such that:

where D = E (6e, e) x (-~~~~, 0)) and 3 e (0, 1) is an increasing
function of w, 5(~)2013~0 for ~2013~0 [6, Propositions 8.1].

We write (4.2) for the family of cylinders

Adding over j and then over n = 0, 1, ..., no - 1, we arrive at the
following estimate:

Thanks to (2.5), we can majorize the right hand side of the previous
inequality by C(02QN . For N = q + 2 we get:
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We choose a number no such that the reverse inequality holds. The
contradiction implies (3.3) must hold and the continuity theorem fol-
lows arguing as in the first alternative.

The case N &#x3E; q + 2.

In order to state the main theorem in dimension greater than q + 2,
we substantially follow [6, Sections 22-29]: first we make a partition of

in the following way:

We fix one of these box and translate its vertex into the origin. By
few changes of Propositions 22.1 and 23.1 of [6], we obtain the following
result:

PROPOSITION 4.1. There exists positive integers m and 6 E ( o, 1),
which can be determined a priori in terms of only data, co, such that for
each box [(0, ti ) + Q(Q, o ~ + 2 )], there exists a subcylinder [(xl , th) +
+ Q( 2d o o, 2(d o o)p + 2 )], for which either

where

Now assume that one of the previous conditions, say for example
(4.4), holds in the cylinder

TE[-~(4~o)~-~~(l-~)(4~o)~L r E con-

tained in the lower half of Q(Q, being fixed. From such a box
we can construct the long cylinder 

’
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Thus (4.4) implies

The last information is the analogous of (3.13); using Proposition 3.1,
we get the following result:

PROPOSITION 4.2. Under the previous assumptions, there exists a
number ~ E ( o, 1/18), that can be determined a priori in terms of data,
to, such that

PROOF. See [6, Proposition 24.1] for more details.

If xl = 0, we could procede as in the first alternative. Since in gener-
al is not so, we have to prove that an estimate similar to (4.6) actually
holds in a cylinder with vertex at the origin. We will determine the
number 0 as the product of a finite increasing sequence of positive inte-
gers i.e.

We assume that ..., kj have been found and determine kj + 1.
We take contiguous stacks of boxes of the type (4.3), each containing

Ft 1 ki of such cylinders, i.e.

In turn we form larger stacks by taking kj+1 contiguous stacks of the
form S~, i. e.

Each stn + 1 is the union 1 pairwise disjoint stacks S~, By a lem-
ma of sequential selection [6, Lemma 29.1], we find ..., 

such that among the stacks there exists one where (4.4) holds for
the same abscissa xl , for at least one cube of the type (4.3), within each
of the smaller stacks Si (see also [6, section 26]). Now we rewrite (4.4):
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within Q(Q, 9~0 ~ + 2 ), for some 1 E ( - 0, 0), there is a cylinder

such that

0, we can consider it as the centre of a ball con-

tained in and including K2e . Now we make a change of vari-
ables :

Since 0g, we have the transformation

We introduce the new function

(4.8)-(4.10) enable us to formulate the following parabolic prob-
lem :

Here we assume:

is continuous in w, uniformly continuous in Dw ,
is monotone for all z 

There exists two functions
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Ci , i = 1, 2 defined as in (1.3), such that

PROPOSITION 4.3. Consider the parabolic problem

Under assumptions (4.1l)-(4.13) problem (4.14)-(4.15) has a unique
continuous radial solution

Moreover, there exists a number ao and a time level k which can be
determine a priori in terms of the data, such that, for every y 
 I  d ~, there is a time t E ( 0, k) such that

PROOF. With few modifications, we can make use of the energy es-
timates contained in sections 2, 3 and the first and the second alterna-
tive of the present section in order to prove the continuity of v. In par-
ticular, using the scheme of sections 20 and 21 of [6], we get (4.17), while
(4.16) is a consequence of assumption (1.7) (see also [6, Propositions
13.1-13.3] for more details).

We will use v as a comparison function for the solution of (4.12). In-
deed by (4.17), we can state the existence of a positive number ao ; such
that 

’

where t E ( o, k~ + 1 ). We fix a point for which (4.18) holds: since v( ~, t) is
continuous in {!~2d}~ uniformly in t, there exists a ball
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BýÑdj(Y) such that

Since v(., t) is radial, the previous lower bound still holds at that

point of the annulus {1  ~x~  2d} which coincides with the origin of
the original coordinates. By (1.8) we get

i.e., using (4.10), coming back to the original variables, there exists a
time level to ,

and a number 6 such that

By this procedure we can determine kj+1 from ... , Analo-

gously if we have started from (4.5). Now the main theorem follows as
in [6, Propositions 24.2, 24.3 and section 25].
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