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Extrinsic Symmetric Submanifolds Contained
in Quaternionic Symmetric Spaces.

MIRIAM PACHECO (*) - CRISTIÁN SÁNCHEZ (**)

ABSTRACT - In this paper imbeddings into R n, for the irreducible Quaternionic
symmetric spaces, are constructed. These imbeddings have the following
property. For some maximal Hermitian symmetric subspace H there is an
affine subspace P c R n such that H is an extrinsic symmetric submanifold of P
in the Ferus’ sense.

1. - Introduction.

Symmetric submanifolds of Euclidean spaces, or extrinsic symmetric
submanifolds were studied by D. Ferus [6]. These submanifolds are es-
sentially compact symmetric spaces M with an injective isometric im-
mersion into a Euclidean space R n such that, for each x E M, the symme-
try sx extends to an isometry of the ambient space R n , so that its action
on the normal space to M at x is the identity. On that paper, Ferus deter-
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mines these submanifolds and proves that they are exactly, the symmet-
ric R-spaces.

Quaternionic symmetric spaces were studied and characterized by
J. Wolf in [8]. It is well known that these spaces are not symmetric
R-spaces; hence, they are not extrinsic symmetric submanifold of any
Euclidean space. In the present paper we study Quaternionic symmetric
spaces and our main result could be roughly described by saying that
Quaternionic symmetric spaces are just as extrinsic symmetric as they
can possibly be.

To explain the meaning of this phrase we must notice first that any
Quaternionic symmetric space Q contains, as a totally geodesic submani-
fold, a Hermitian symmetric space H which has maximal dimension
(these subspaces are described in [3] for the Quaternionic symmetric
spaces of the exceptional groups). The present paper is devoted to show
that for each Quaternionic symmetric spaces Q there are an isometric
immersion g : into a Euclidean space and an affine subspace P c
c R n such that the image of the composition R n is contained in P

and is an extrinsic symmetric submanifold of In the majority of
the cases, the immersion g : has minimal dimension, more pre-
cisely, there are no equivariant immersions of Q in R P with p  n.

The paper is organized as follows. In section 2 we recall the definition
of extrinsic symmetric submanifolds of R n from [6] and give a proof of
the well known fact that every Hermitian symmetric space is extrinsic
symmetric. We also recall the definition of Quaternionic symmetric
space and describe the maximal Hermitian symmetric subspace for each
of them.

In section 3 we give the general construction of the immersion for the
Quaternionic symmetric spaces in Theorem 3.2. In section 4 we describe
the immersions for the Quaternionic symmetric spaces of the exceptional
Lie groups and in section 5 those of the spaces corresponding to the clas-
sical Lie groups.

2. - Extrinsic symmetric submanifolds, Quaternionic symmetric
spaces and maximal Hermitian subspaces.

Let M be a connected compact n-dimensional Riemannian manifold
and be an isometric immersion into an Euclidean (n + p)-
space. For each x E M, let a x be the affine linear transformation
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of R"+P which fixes the affine normal space to d/x(TxM) at f(x)
and reflects f (x~ +dfx ( Tx M) at f(x).

As in [6] we shall say that f: M ~ I-~ n + ~ is an extrinsic symmetric
submanifolds, if for every x E M there is an isometry B x : M ~ M such
that o f .

The following theorem shows that every Hermitian symmetric space
is an extrinsic symmetric submanifold.

THEOREM 2.1. Let H = G/K be a compact irreducible Hermitian

symmetric space. Let ~ and W be the respective Lie algebras of G and K;
3k the orthogonal complement of W with respect to the Killing form B of
~ (B is negative definite on ~ ). Considering on ~ the inner product
(X, Y~ _ - B(X , ~, ( ~ , ~, ~) is an Euclidean space. Then

(i) there is a nonzero vector vo E W, such that

this defines an imbedding f: H ~ ~ given by f(gK) = Ad (g) vo ;

(ii) we consider H with the Riemannian metric induced by , ), i. e
we make f an isometric imbedding, then H is an extrinsic symmetric
submanifolds.

PROOF. (i) Since H is irreducible, Z(K) is analytically isomorphic to
the group of the unit complex numbers T ~ [4, p.382 (6.2)]. Then z(x), the
center of ~. , is isomorphic to I~ .

Take vo ~ 0 in 
If Ad (g)vo =vo.

Conversely, if g E G and Ad (g)vo = vo, then

Consequently, g E CG ( T 1 ), the centralizer of T in G. Since, K is maxi-
mal connected in G [4, p. 381-2 (6.1 )] 

Thus, 

(ii) We observe that if o = [K], then 3k.
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Since ~ I and for each Y E 3K

we have as a result = x and [;)1(" vo ] c ;)1(,. *
Let So be the geodesic symmetry of the symmetric space H at o = [K].

We know that s~ E T = Z(K) [4, p. 376 (4.5) (ii)] and its action on H is

given by K.

Let us call a o is an isometry of the Euclidean space
(fJ, (, ».

If gK is a point in H, we have:

We must see that ao flxes every element in x and is -Id on m.
Write So = exp tovo for some to E R. If X E X, then

Since G acts by isometries on H, if x = gK the symmetry at x is

Sx = gSa g - 1 E G .
By [4, p. 208 (3.3)] the geodesics through o are

Hence,

From (3) we obtain

and by (1)

It follows that

then

In that way, (1), (2) and (4) prove (ii). QED.
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We adopt the notation from [8] concerning Quaternionic symmetric
spaces. We recall the basic facts from [8] for the convenience of the reader.

Let V be a real vector space. A quaternion algebras on V is an algebra
of linear transformations on V which is isomorphic to the algebra of real
quaternions, and whose unit element is the identity transformation of V.
If A is a quaternion algebra on V, then V is a quaternion vector space
with the structure given by A.

Let M be a Riemannian manifold. Given x E M, let tp x be the linear
hoLonomy group consisting of all linear transformations of the tangent
space Mx obtained from parallel translation along curves from x to x. A set
Ax of linear transformations of Mx is called tp x-invariant if = Ax
for every g E tp x. A set A of fields of linear transformations of all tangent
spaces of M is called parallel if, given x , y e M and a curve a from x to y,
the parallel translation satisfies i QAx i Q 1 = Ay . Ax extends to a paral-
lel set of fields of linear transformations of tangent spaces, if and only if
Ax is -invariant; in that case, the extension is unique, being defined
by Ay = roAxr-1o.

A quaternionic structure on a Riemannian manifold M is a parallel
field A of quaternion algebras Ax on the tangent spaces Mx , such that
every unimodular element of Ax is an orthogonal linear transformation
on Mx (compare [8]).

Choose x E M and let A be the quaternion structure of M. Then Ax is
a Yx-stable quaternion algebra on Mx, so tp x = Qx·A’x, where (P x is the
centralizer of Ax and Ax is the intersection with Ax . 0 x and A’ are the A-
linear and A-scalar parts of We say that the holonomy group have
quaternion scalar part if A’ spans Ax .

In [8] the following fact is proved. Let G be a compact centerless sim-
ple Lie group. Let T be a maximal torus and let and 1F be the respec-
tive Lie algebras. Let g  and x be the respective complexifications of
and 5;’ x is a Cartan subalgebra of the complex simple Lie algebra £1c.
Let W be the set of root of g  for x and £1a the one-dimensional subspace
characterized by

The Killing form on GC is denoted (, ), and let ha (a E W) be the element
of ~-C characterized by:

Let yr be a base of simple roots and let f3 be the maximal root with respect
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to the order induced by jr. We define

x = 21 (D cr1 is direct sum of ideals. Let L1, and K = L1 A1 be the cor-
responding analytic subgroups of. In [8] Wolf proves the following
theorem.

THEOREM 2.2. GIK is a compact simply connected irreducibLe Rie-
mannian symmetric space. A1= generates a quaternion algebra
on the tangent space on [K]. This quaternion algebra parallel translat-
ed over G/K gives a quaternionic structure A in which the holonomy
has quaternion scalar part.

Conversely, if M is a compact simply connected Riemannian sym-
metric space with a quaternionic structure AM in which the holonomy
has quaternion scalar part, then there is an isometry of M onto a mani-
fold G/K as above, which carries AM to A .

A Quaternionic symmetric space will be a compact simply connected
Riemannian symmetric space M with a quaternionic structure AM in
which the holonomy has quaternion scalar part.

REMARK 2.3. In [1, p. 408-9] the so called ,quaternionic-Kdhler
Riemannian symmetric spaces» are defined. They coincide with the
«quaternionic symmetric» of J. Wol£ such as is indicated.

Hereafter we adopt the following notation. Q will be a Quaternionic
symmetric space as in Theorem 2. Inside Q = G/K we want to consider
the compact irreducible Hermitian symmetric subspaces M defined by
subgroups L of G as follows. M = and U = L n K.

If the Hermitian symmetric subspace M has maximal dimension
among those contained in Q we denote it by H and coinsider it written as
H=L/U with U=LnK.

We shall denote by o the point [K] e Q. Clearly, 
When G is an exceptional Lie group, the maximal Hermitian symmet-

ric subspaces of the corresponding Quaternionic symmetric spaces are
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listed in [3]. They are:

The following list shows the other Quaternionic symmetric spaces (i.e
those with G classical) (compare [1, pag. 409]) and the corresponding
maximal Hermitian subspaces:

REMARK 2.4. The space Q = ,SU(n + 2 )/,S(U(n) x U(2 ) ) is itself a
Hermitian symmetric space.

REMARK 2.5. Observe that there are two subspaces in the Quater-
nionic symmetric space SO(n + 4 )/,SO(n) x ,SO( 4 ) when n = 2 m .

The subspaces H are totally geodesic submanifolds of the corre-
sponding Q . This is straightforward in all cases except for the Hermitian
space H = + x U( 2 ) ) in the Quaternionic metric space
Q = SO(n + 4)/SO(n) x SO(4) when n = 2 m . We give a proof of this fact
in the following lemma.

LEMMA 2.6. The space H = ,SU(m + 2 )/,S( U(m) x U( 2 ) ) is totally
geodesic submani, f ’oLd of Q = SO(n + 4 )/,SO(n ) x SO( 4 ) when n = 2 m .
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PROOF. Let ~: S U(m + 2) -~,SO(n + 4 ) be given by the correspon-
dence

= 

Take the descompositions , I

where

We shall see that

is a Lie triple system, where if

A simple computation shows that Then,
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thus

It is easy to see that

The first term of this sum is

where Btx 2 = and the others terms of A are similar.

Now we compute 

where

It follows that, [[Ø(X1), E and the lemma is

proven. QED.

3. - General construction of the immersion.

To construct an immersion of the Quaternionic symmetric space Q
such that the maximal Hermitian simmetric space H is an extrinsic sym-
metric submanifold of the ambient Euclidean space, we shall use some
results from representation theory which we now recall.
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Let G be a compact semisimple Lie algebra, GC the complexification
ofg.

Let ~C be a Cartan subalgebra of g  and V a set of root of g  relative
to ~C. Let Jr = {a 1, ... , be a base of simple roots of W, and W ’ and
gJ - denote the sets of positive and negative roots with respect to the or-
der induced by jr.
We denote by ha and Xa the elements of GC usually defined as in sec-

tion 2 and [4, p. 176] respectively. We shall always call ~3 the maximal
root 

be a irreducible complex representation with
n n

highest weight ~, . We write and define

Let be the element of the Weyl group such that =

= Y-.

The following theorem is a well known criterion to decide if a complex
representation induces a real representation [7, pag. 305].

THEOREM 3.1. There is a descomposition V = V, + iV2 with V, and
V2 G-invariant vector spaces over R if and only if E(A) = 1 and

woÀ == 2013A.

Let Q be an irreducible Quaternionic symmetric space and H a maxi-
mal compact irreducible Hermitian subspace of Q. Write Q = G/K and H
= L/U as in section 2.

Lest 2 and a be the Lie algebras of G , K, L and U respectively.
Then

and Lie triple system .

X C and Mc be the complexifications of £1, x and 
respectively.

THEOREM 3.2. Let Q = G/K be an irreducible Quaternionic sym-
metric space, H = L/U a maximal compact irreducible Hermitian sub-
space of Q. Let £1, X, 2 and ‘LI, as above and V C a nontrivial irreducible
complex representation such that its restriction to XC contains
the trivial representation with multiplicity 1. Let us assume that
it induces a real representation (P of £1 on V with V c = V + iV and V £1-
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invariant as in Theorem 3.1. Furthermore, assume that 0 induces a
representation ~: 

Let V ~ ( 0 ) = Y( 0 ) + iV( 0 ) and vo E V( 0 )be a nonzero vector. Then the
orbit vo gives an immersion of Q into V = R n .

Assume that 0 ie splits as a sum Øl.e = rAd(£) ® sW( 0 ) ® W where
Ad (2) is the adjoint representation of 2, W( o ) stands for the trivial one
dimensional representation of 2 and W is some, not necessarily irre-
ducible, 2-module which contains neither the adjoint representation of
ve nor the trivial one.

If vo E r Ad (2) ® sW( o ), then H is a extrinsic symmetric submani-
fold of an affine subspace P c V.

PROOF. Let us consider the orbit Ø(£J) vo .
We have Ø(X)vo = 0 and an isomorphism between M and 

given by X - In fact, IX E mè: vo = 0 ) is a K-submod-
ule of mè because if X E Y EX,

Since the action of x on 3K is irreducible, we either have x = {0} or
x = 311. This last case is not possible because (P is irreducible and so
~ _ ~ 0 ~. This shows that the orbit has the same dimension as Q. Then, it
defines the desired immersion. Clearly, Ø(G)vo gives an induced immer-
sion of Q.

To see the other part assume that (r = 1) and
write vo = w1 + wo with w1EAd(2) and wo e sw(0). We have for XE2,
~(X) vo = 0 if and only if X E II and this is equivalent to Ø(X)W1 = 0 and
in turn, to WI E z( ‘1,1,) (center of ‘L1,). Now Theorem 2.2 yields the

result.

IfvoErAd(2)EÐsW(0) with r &#x3E; 1, vo may have nonzero components
in more than one of the copies of Ad (2). Let us write vo = (vl, ... , vr)
and take the first nonzero component, say v~ . The isotropy subalgebra of
vj by 2 is clearly a (because it is maximal) and this is so for each nonzero
component. Furthermore, if we identify 2 and Ad (2) as usual, each com-
ponent of vo lies in the center of ‘l,l,, which is one dimensional. Then vo can
be written as (some A i may be 0) and X-
- (À 1 X, ..., defines an invariant subspace whose representation is
Ad (£). This subspace contains H and we can act as in the case r = 1.
QED
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4. - Immersions of the exceptional irreducible Quaternionic sym-
metric spaces.

We said that a Quaternionic symmetric space Q = G/K is exceptional
if G is an exceptional Lie group; analogously, Q = G/K will be called clas-
sical if G is a classical Lie group.

It is a well known fact of representation theory that if G is simply
connected, then any representation of the Lie algebra ~ induces a repre-
sentation of the Lie group G. In this section we shall assume that our ex-

ceptional Quaternionic symmetric space is written as Q = G/K with G
simply connected.

From [7, p. 307-310] we obtain the number E indicated in Theorem 3.1
(the compact case corresponds to j = 0) and the element wo in the corre-
sponding Weyl group can be found in [2, p. 251-275]. -

For the numbering of the roots and basic weights, we adopt the nota-
tion from [5, p. 64-65-69].

Let Q be a subset of the set W of roots of GC. We say that a subalge-
is «the subalgebra generated by Q» if a is generated by the

a E E n ~~ .
In the rest of this section we describe the results obtained for the ex-

ceptional irreducible Quaternionic symmetric spaces.

Representation of g2 : V = V( 20 ), dim V = 27 ,

and

Thus,
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Representation of ff: V = V( 0002 ), dim V = 324.
and

we take Cc generated by the roots { -/3,

Then,

But since

V( 22 )|A1 = 3 V( 4 ) ® 3 V( 2 ) where Al is generated by {-B}.
Observe that vo does not have component in V( 22 ) , because the com-

ponent is a vector fixed by 11, then vo E 9 V( 11 ) ® 9 V( 00 ).

2) JE=s~(3), 2c=A2, generated by the a 2 ~.

Representation of o

and the permutation sending a 1, a 2 , a 3 , a 4, a 5 , a 6 in

-a6, -a2, -a5, -a4, -a3, -~1 1 respectively, as

a simple computation shows that
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generated by the roots

contains the subalgebra generated by the roots

then v0 E V( 0110 ) because vo is a vector flxed by U.
Thus, vo E 5 V( 1001 ) fl9 5 V( 0000 ).

2) Choosing A4 generated a 4 , a 5 , a 6} the descomposi-
tion in irreducible component of VI2C is the same.

Representation of

generated by the roots {
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Representation of E

generated by the root

A6 generated by the roots

REMARK 4.1. In all cases the vector vo can be taken in the corre-

sponding real and the representations of the involved subal-
gebras are also real in the following sense; either they induce them-
selves a real representation (as defined before) or appear, in the sum,
the contragredient representation in such a way that they lumped to-
gether, form the complexification of a real irreducible one.

5. - Immersions of the classical irreducible symmetric spaces.

In this section we construct the immersions for the spaces of classical

«type». In B1 and D we work with a realization of the representation,
while in B2 and C we need some results from representation theory.
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A) x U(2)). This case is trivial since Q it-
self is a Hermitian symmetric space.

, n = 2 m , m ; 2 (see Lemma 2.6).

1) x U(2)).
We take the usual Cartan decomposition of sl(n + 4):

where

Give to 0 structure of so(n + 4 )-module as usual

This is a realization of the real representation induced by the com-
plex representation of highest weight (20 ... 0 ).

For so(n + 4) we have the decomposition, so(n + 4 ) = where

Let

Then, Awo = 0 if and only if Ae x. Thus, SO( n + 4 ) wo gives a immersion
of Q into ~P.
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The induced action of the group SO(n + 4) is given by

We want to show that vo is contained in the adjoint representation of
SU(m + 2).

Let ~: ,SU(m + 2 ) -~ SO(n + 4 ) as in the lemma 2.6 and let

O : ~(m+2)2013&#x3E;~P be defined by: if

where

To show that the subspace O(su(m + 2 ) ) is ,SU(m + 2)-invariant and
the representation of the group S U( m + 2) on that space is the adjoint
one, it suffices to see that

where

with
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On the other hand,

and

Consequently,
Let

Clearly, e(Zo) = vo; then, Hl is a extrinsic symmetric submanifold of
0(su(m + 2 ) ) .

As representation of D5 we take

generated by the roots
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, generated by the roots

D3 generated bye

then V( 0002 ) ® V( 0020 ) . Thus, vo E V( 0100 ) which is the adjoint rep-
resentation of D4.
Now we assume n ~ 8 , n = 2 m , 
We take as representation of D~ + 2 : V = V( 00010 ... 0 ) = V(A 4),

1 1

Here E = 1 and if m is even, and w0(a1, ...
~~~, am, am+2) = -(a,, .... am, am+2~ am + 1)’ if m is odd so, in
any case, WO(A4) _ - ~, 4 .

The representation is not spin, so it induces a representation of
SO(n + 4). A realization of this complex representation of the group is
v- ~ 4 ( C n + 4 ) ~ and the induced real representation is V = /~ 4 (R n + 4 ).

dard basis of I

Lest 1

Then, (so(n) ED so( 4 ) )v o = 0, so contains the trivial representation of
x and clearly is the isotropy subalgebra of vo.

Now we consider the restriction to ~ = so(n + 2 ), Cc = D + i .
To find we use the reference [9, p. 378-379] where there are for-

mulas to restrict a representation from so(v) to so(v - I ). We have used
this formulas traslated into our notation. The conclussion is the

following.
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If

But,

and

But,

and

Thus, vo E V( 010000 ), the adjoint representation of D6 .

Now,

and

Then, vo E V( 010 ... 0 ) =V(À2), the adjoint representation of 
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Representation of B3 : V = V( 002 ), dim V = 35 .

The representation is not spin so induces a representation of

SO( 7 ).
A realization of the representation space is V = /B 3(C7).
Let where {e1, e2 , e3 , ... , is the canonical basis

of C 7 . Here 

Then, (so(3) (D so(4)) vo = 0 and SO(7).vo gives an immersion of Q. We
take

It is easy to see that if we call W the real span of the orbit SO(5 ) .vo ;
hence, W = /B 3(C5) because any element ei A e A ek ( i  j  k K 5) of the
basis of /~ 3 ( C ~ ) is contained in W.

It is well known that = so the representation of
SO(5) in W is just the adjoint representation. Since vo E W, we obtain the
desired result.

We take the representation of B4 : V = V( 0002 ), dim V = 126 .
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generated by the roots {

, generated by the 

B2 generated by (a  , a 4 }

Then, v 0 fI- V( 002 ).
Thus, Vo E V(010) which is the adjoint representation.

Now we assume n ; 7 , n = 2 m + 1, g~=~+s.
We take the representation of Bm + 2 : V = V( 00010 ... 0) = V(~, 4 ),

The representation is not spin, so it gives a representation of ,SO(n +
+ 4 ).
A realization of this representation is V = /~ 4 ( C n + 4 ). As before let

be the canonical basis. Let

As in the case n even we see that x~ vo = 0 if and only if xE so(n) fl9
® so( 4 ).

Thus, V I so(n) x so(4) contains the trivial representation and again we
get an immersion of Q.

Now consider the Hermitian symmetric subspace.

To find V 12C we resort to [9, p. 378-379] again. The conclussion is the
following. 

°

To see that V( 0002 ) ED 2 V( 0010 ) does not have vectors flxed by ‘U,, we ob-
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serve that

But, V( 0002 ) ~ = 3 V( 002 ) 0 V( 010 ) and

Then, vo E V( 0100 ) the adjoint representation of B4 .

Now,

But, and

Thus, vo E V( 01000 ), the adjoint representation of B5 .

Now,

and

Then, voEV(010 ...0) = V(~, 2 ), which is the adjoint representation of
Bm+1·

We take the representation of Cn + 1: V(010 ... 0) = V(À 2) and work
with a realization of this representation.



120

We take the Cartan descomposition su
where

1P has the structure of + 1 )-module given by the action

Clearly, vo E 1P.
For sp(n + 1) we have the Cartan descomposition

where
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a simple calculation shows that

Thus, A~ vo = 0 if and only if AE x .
Hence, + gives an immersion of Q.
To restrict the action to SU(n + 1) we need the following maps.
Let ~: SU(n + 1) + 1) given by

Let O : su(n + 1 ) -j ~ro given by

We wish to see that if i

But,
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Thus, e(su(n + 1» is SU(n + 1 )-invariant and the action is the

adjoint representation of the group.
Clearly, if

Then, vo is in the adjoint representation of SU(n + 1 ).
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